

Cada	 año,	 se	 invierten	 innumerables	 horas	 y	 se	 pierden	 numerosos	 recursos
debido	 a	 código	 mal	 escrito,	 ralentizando	 el	 desarrollo,	 disminuyendo	 la
productividad,	 generando	 graves	 fallos	 e	 incluso	 pudiendo	 acabar	 con	 la
organización	o	empresa.

El	 reconocido	 experto	de	 software	Robert	C.	Martin,	 junto	 con	 sus	 colegas	de
Object	Mentor,	 nos	 presentan	 sus	 óptimas	 técnicas	 y	metodologías	 ágiles	 para
limpiar	 el	 código	 sobre	 la	 marcha	 y	 crearlo	 de	 forma	 correcta,	 de	 este	 modo
mejorará	como	programador.

Esta	obra	se	divide	en	tres	partes.	La	primera	describe	los	principios,	patrones	y
prácticas	para	crear	código	 limpio.	La	segunda	 incluye	varios	casos	de	estudio
cuya	 complejidad	va	 aumentando.	Cada	 ejemplo	 es	 un	 ejercicio	 de	 limpieza	 y
transformación	de	código	con	problemas.	La	tercera	parte	del	libro	contiene	una
lista	de	heurística	y	síntomas	de	código	erróneo	(smells)	confeccionada	al	crear
los	 casos	 prácticos.	 El	 resultado	 es	 una	 base	 de	 conocimientos	 que	 describe
cómo	pensamos	cuando	creamos,	leemos	y	limpiamos	código.

Imprescindible	 para	 cualquier	 desarrollador,	 ingeniero	 de	 software,	 director	 de
proyectos,	 jefe	 de	 equipo	 o	 analista	 de	 sistemas	 interesado	 en	 crear	 código	 de
mejor	calidad.

¡El	libro	que	todo	programador	debe	leer!

Robert	Cecil	Martin

Código	limpio
Manual	de	estilo	para	el	desarrollo	ágil	de	software

ePub	r1.1

XcUiDi	21.03.2018

Título	original:	Clean	code:	A	handbook	of	agile	software	craftsmanship
Robert	Cecil	Martin,	2009
Traducción:	José	Luis	Gómez	Celador
Ilustraciones:	Jeniffer	Kohnke	&	Angela	Brooks

Editor	digital:	XcUiDi

Colaborador:	Mario	J.	C.	(PDF-Español)
ePub	base	r1.2

Este	libro	se	ha	maquetado	siguiendo	los	estándares	de	calidad	de	www.epublibre.org.	La	página,	y	sus	editores,	no	obtienen	ningún	tipo	de	beneficio	económico	por	ello.	Si	ha	llegado	a	tu
poder	desde	otra	web	debes	saber	que	seguramente	sus	propietarios	sí	obtengan	ingresos	publicitarios	mediante	archivos	como	este

Para	Ann	Marie:	El	verdadero	amor	de	mi	vida.

Agradecimientos

Me	gustaría	dar	las	gracias	a	mis	dos	artistas,	Jeniffer	Kohnke	y	Angela	Brooks.
Jennifer	 es	 la	 encargada	 de	 las	 impresionantes	 ilustraciones	 del	 inicio	 de	 cada
capítulo	 y	 también	 de	 los	 retratos	 de	 Kent	 Beck,	 Ward	 Cunningham,	 Bjarne
Stroustrup,	Ron	Jeffries,	Grady	Booch,	Dave	Thomas,	Michael	Feathers	y	el	mío
propio.

Angela	 se	 encarga	 de	 las	 ilustraciones	 internas	 de	 los	 capítulos.	 Ha
realizado	muchos	dibujos	para	mí	en	los	últimos	años,	incluidos	muchos	de	los
del	 libro	 Agile	 Software	 Development:	 Principles,	 Patterns,	 and	 Practices.
También	es	mi	primogénita.

Un	 agradecimiento	 especial	 a	 los	 revisores	Bob	Bogetti,	George	Bullock,
Jeffrey	Overbey	 y	 especialmente	Matt	Heusser.	Han	 sido	 increíbles.	Han	 sido
inmisericordes.	Han	 sido	minuciosos.	Me	han	 forzado	al	máximo	para	 realizar
las	mejoras	necesarias.

Gracias	 a	 mi	 editor,	 Chris	 Guzikowski,	 por	 su	 apoyo,	 aliento	 y	 amistad.
Gracias	 a	 todo	 el	 personal	 de	 la	 editorial,	 incluida	 Raina	 Chrobak,	 que	 se
encargó	de	que	fuera	honesto	y	cumpliera	los	plazos.

Gracias	a	Micah	Martin	y	a	todos	los	de	8th	Light	(www.8thlight.com)	por
sus	críticas	y	su	apoyo.

Gracias	a	 todos	 los	Object	Mentor,	pasados,	presentes	y	futuros,	 incluidos
Bob	Koss,	Michael	Feathers,	Michael	Hill,	Erik	Meade,	Jeff	Langr,	Pascal	Roy,
David	 Farber,	 Brett	 Schuchert,	 Dean	 Wampler,	 Tim	 Ottinger,	 Dave	 Thomas,
James	 Grenning,	 Brian	 Button,	 Ron	 Jeffries,	 Lowell	 Lindstrom,	 Angelique
Martin,	 Cindy	 Sprague,	 Libby	 Ottinger,	 Joleen	 Craig,	 Janice	 Brown,	 Susan
Rosso	y	el	resto.

Gracias	Jim	Newkirk,	mi	amigo	y	socio,	que	me	ha	enseñado	más	de	lo	que
cree.	 Mi	 agradecimiento	 a	 Kent	 Beck,	 Martin	 Fowler,	 Ward	 Cunningham,
Bjarne	Stroustrup,	Grady	Booch	y	todos	mis	mentores,	compatriotas	y	colegas.
Gracias	a	John	Vlissides	por	estar	ahí	cuando	lo	necesitaba.	Gracias	a	todos	los
de	 Zebra	 por	 permitirme	 despotricar	 sobre	 la	 extensión	 que	 debe	 tener	 una
función.

Y,	por	último,	darle	las	gracias	por	leer	estos	agradecimientos.

Prólogo

Una	 de	 nuestras	 golosinas	 preferidas	 en	 Dinamarca	 es	Ga-Jol,	 con	 un	 fuerte
sabor	a	regaliz,	que	constituye	un	complemento	perfecto	para	nuestro	húmedo	y
frío	 clima.	 Parte	 del	 encanto	 de	Ga-Jol	 para	 los	 daneses	 es	 la	 frase	 que	 suele
incluir	en	el	envoltorio.	Esta	mañana	compré	un	paquete	de	dos	y	me	encontré
con	este	antiguo	dicho	danés:

Ærlighed	i	små	ting	er	ikke	nogen	lille	ting.

«La	 honestidad	 por	 las	 cosas	 pequeñas	 no	 es	 algo	menor».	 Perfecto	 para
que	lo	que	pensaba	escribir.	Las	cosas	pequeñas	importan.	Este	libro	trata	sobre
humildes	preocupaciones	cuyo	valor	dista	mucho	de	ser	menor.

Dios	está	en	los	detalles,	afirmó	el	arquitecto	Ludwig	mies	van	der	Rohe.
Esta	cita	recuerda	argumentos	contemporáneos	sobre	el	papel	de	la	arquitectura
en	 el	 desarrollo	 de	 software,	 en	 especial	 en	 el	 universo	 ágil.	Bob	 y	 yo	 hemos
tenido	esta	conversación	muchas	veces.	Y	sí,	mies	van	der	Rohe	se	fijaba	en	la
utilidad	 y	 la	 forma	 atemporal	 de	 la	 construcción	 que	 subyace	 a	 las	 grandes

creaciones	arquitectónicas.	Por	otra	parte,	seleccionaba	personalmente	los	pomos
de	todas	las	puertas	de	todas	las	casas	que	diseñaba.	¿Por	qué?	Porque	las	cosas
pequeñas	importan.

En	nuestro	interminable	debate	sobre	TDD,	Bob	y	yo	coincidimos	en	que	la
arquitectura	 del	 software	 desempeña	 una	 importante	 labor	 en	 el	 desarrollo,
aunque	 tenemos	 diferentes	 visiones	 de	 lo	 que	 esto	 significa.	 Estas	 diferencias
carecen	 de	 importancia,	 ya	 que	 podemos	 aceptar	 que	 los	 profesionales
responsables	 dedican	 parte	 de	 su	 tiempo	 a	 planificar	 un	 proyecto	 antes	 de
comenzarlo.	 Las	 nociones	 de	 diseño	 controlado	 únicamente	 por	 pruebas	 y	 el
código,	propias	de	finales	de	la	década	de	1990,	ya	no	son	válidas.	Y	la	atención
al	 detalle	 es	 un	 pilar	 fundamental	 de	 los	 profesionales,	 casi	 como	 cualquier
visión.	Por	un	lado,	la	práctica	en	los	detalles	otorga	dominio	a	los	profesionales,
y	aumenta	 su	confianza	para	 la	práctica	a	mayor	escala.	Por	otra	parte,	el	más
mínimo	fallo	de	construcción,	una	puerta	que	no	cierre	bien	o	un	baldosín	mal
colocado,	acaba	con	el	encanto	del	todo.	De	eso	se	trata	el	código	limpio.

Pero	 la	 arquitectura	 es	 sólo	 una	metáfora	 del	 desarrollo	 de	 software	 y	 en
concreto	 de	 la	 parte	 del	 software	 que	 ofrece	 el	 producto	 inicial,	 de	 la	 misma
forma	que	un	arquitecto	entrega	un	edificio	inmaculado.	Hoy	en	día,	el	objetivo
es	 comercializar	 rápidamente	 los	 productos.	 Queremos	 que	 las	 fábricas
produzcan	 software	 a	 pleno	 rendimiento.	 Se	 trata	 de	 fábricas	 humanas,
programadores	que	piensan,	que	sienten	y	que	 trabajan	para	crear	un	producto.
La	metáfora	de	la	manufacturación	es	incluso	más	evidente	en	este	pensamiento.
Los	 aspectos	 productivos	 de	 las	 fábricas	 de	 automóviles	 japonesas	 fueron	 una
gran	inspiración	para	Serum.

Pero	incluso	en	la	industria	automovilística,	gran	parte	del	trabajo	no	radica
en	la	fabricación	sino	en	el	mantenimiento,	o	más	bien	en	cómo	evitarlo.	En	el
software,	el	80	por	100	o	más	de	lo	que	hacemos	se	denomina	cuantitativamente
mantenimiento,	 el	 acto	 de	 reparar.	 En	 lugar	 de	 optar	 por	 la	 típica	 costumbre
occidental	 de	 crear	 software	 de	 calidad,	 debemos	 pensar	 como	 reparadores	 o
mecánicos.	¿Qué	piensan	los	directores	japoneses	de	todo	esto?

En	 1951,	 un	 enfoque	 de	 calidad	 denominado	 TPM	 (Total	 Productive
Maintenance	o	Mantenimiento	productivo	total)	apareció	en	escena.	Se	centraba
en	 el	mantenimiento	 y	 no	 en	 la	 producción.	Uno	 de	 los	 pilares	 de	TPM	 es	 el
conjunto	 de	 principios	 denominados	 5S,	 una	 serie	 de	 disciplinas.	 Estos
principios	5S	son	en	realidad	la	base	Lean,	otro	conocido	término	en	la	escena
occidental,	y	cada	vez	más	presente	en	el	mundo	del	software.	Estos	principios
no	 son	 opcionales.	 Como	 indica	 Uncle	 Bob,	 la	 práctica	 del	 software	 correcto
requiere	 disciplina.	 No	 siempre	 se	 trata	 de	 hacer,	 de	 producir	 a	 la	 velocidad
óptima.

La	filosofía	5S	incluye	estos	conceptos:
	

Seiri	 u	 organización:	 Es	 fundamental	 saber	 dónde	 están	 las	 cosas,
mediante	 enfoques	 como	 el	 uso	 de	 nombres	 correctos.	 ¿Cree	 que	 los
nombres	 de	 los	 identificadores	 no	 son	 relevantes?	 Lea	 los	 siguientes
capítulos.
Seiton	o	sistematización:	Existe	un	antiguo	dicho	norteamericano:	un	sitio
para	cada	cosa	y	cada	cosa	en	su	sitio.	Un	fragmento	de	código	debe	estar
donde	 esperamos	 encontrarlo;	 en	 caso	 contrario,	 refactorice	 hasta
conseguirlo.
Seiso	 o	 limpieza:	 Mantenga	 limpio	 el	 lugar	 de	 trabajo.	 ¿Qué	 dicen	 los
autores	 sobre	 inundar	 el	 código	 de	 comentarios	 y	 líneas	 que	 capturan
historias	o	deseos	futuros?	Elimínelos.
Seiketsu	 o	 estandarización:	 El	 grupo	 decide	 cómo	 mantener	 limpio	 el
lugar	de	trabajo.	¿Cree	que	este	libro	habla	sobre	tener	un	estilo	de	código
coherente	y	una	serie	de	prácticas	dentro	del	grupo?	¿De	dónde	provienen
esos	estándares?	Siga	leyendo.
Shutsuke	 o	 disciplina:	 Significa	 ser	 disciplinado	 en	 la	 aplicación	 de	 las
prácticas	y	reflejarlas	en	el	trabajo	y	aceptar	los	cambios.

Si	 acepta	 el	 reto,	 ha	 leído	 bien,	 el	 reto,	 de	 leer	 y	 llevar	 a	 la	 práctica	 este
libro,	podrá	comprender	y	apreciar	el	último	punto.	Aquí	nos	acercamos	a	la	raíz
de	la	profesionalidad	responsable	de	una	profesión	que	debería	preocuparse	del
ciclo	vital	de	un	producto.	Al	igual	que	mantenemos	coches	y	otras	máquinas,	el
mantenimiento	divisible,	esperar	a	que	surjan	los	errores,	es	la	excepción.	Por	el
contrario,	 ascendemos	 un	 nivel:	 inspeccionamos	 diariamente	 las	 máquinas	 y
arreglamos	 los	componentes	gastados	antes	de	que	se	rompan,	o	cambiamos	el
aceite	 cada	 varios	 miles	 de	 kilómetros	 para	 evitar	 problemas.	 En	 el	 código,
debemos	refactorizar	sin	compasión.	Puede	ascender	otro	nivel	más,	como	hizo
el	 movimiento	 TPM	 hace	 50	 años:	 crear	 máquinas	 que	 se	 pueden	 mantener
mejor.	Crear	código	legible	es	tan	importante	como	crear	código	ejecutable.	La
práctica	definitiva,	que	apareció	en	los	círculos	TPM	en	1960,	es	la	que	se	centra
en	 introducir	nuevas	máquinas	o	 sustituir	 las	 antiguas.	Como	Fred	Brooks	nos
advirtió,	 deberíamos	 rehacer	 el	 software	 cada	 siete	 años	 para	 eliminar	 los
problemas	 latentes.	 Tendríamos	 que	 actualizar	 este	 plazo	 por	 semanas,	 días	 e
incluso	horas	en	lugar	de	años.	Ahí	es	donde	se	encuentra	el	detalle.

El	detalle	 tiene	un	gran	poder,	y	es	un	enfoque	vital	humilde	y	profundo,
como	es	de	esperar	de	cualquier	enfoque	de	origen	 japonés.	Pero	no	es	sólo	 la

visión	oriental	de	la	vida;	también	lo	encontramos	en	el	pueblo	norteamericano.
La	 cita	 seiton	 anterior	 proviene	 de	 la	 pluma	 de	 un	 ministro	 de	 Ohio	 que,
literalmente,	consideraba	la	limpieza	como	un	remedio	para	todas	las	formas	del
mal.	 ¿Y	 seiso?	 La	 limpieza	 es	 la	 pureza.	 Aunque	 una	 casa	 sea	 bella,	 el
mobiliario	 inadecuado	 acaba	 con	 su	 encanto.	 ¿Y	 la	 opinión	 de	 shutsuke	 al
respecto?	 El	 que	 confíe	 en	 lo	 pequeño	 confiará	 en	 lo	 superior.	 ¿Y	 la
predisposición	 a	 refactorizar	 en	 el	 momento	 adecuado,	 reforzando	 nuestra
posición	para	las	posteriores	grandes	decisiones,	en	lugar	de	dejarlo	pasar?	Una
puntada	a	tiempo	ahorra	ciento.	Al	que	madruga,	Dios	le	ayuda.	No	dejes	para
mañana	lo	que	puedas	hacer	hoy	(éste	era	el	sentido	original	de	la	frase	«en	el
momento	 adecuado»	 de	 Lean	 hasta	 que	 cayó	 en	 manos	 de	 consultores	 de
software).	 ¿Y	 sobre	 calibrar	 la	 importancia	 de	 los	 pequeños	 esfuerzos
individuales	en	un	 todo	mayor?	De	pequeñas	semillas	crecen	grandes	árboles.
¿Y	 la	 integración	 de	 sencillas	 tareas	 preventivas	 en	 la	 vida	 diaria?	Más	 vale
prevenir	que	curar.	El	código	limpio	honra	las	raíces	de	la	sabiduría	popular,	de
antes	o	de	ahora,	y	se	puede	aplicar	con	atención	al	detalle.

Incluso	 en	 la	 literatura	 arquitectónica	 encontramos	 ejemplos	 de	 estos
detalles.	Piense	en	los	pomos	de	mies	van	der	Rohe.	Eso	es	seiri.	Es	la	atención
a	 todos	 los	 nombres	 de	 variables.	Debe	 bautizar	 a	 una	 variable	 con	 el	mismo
cuidado	como	si	fuera	su	primogénito.

Y	 como	 todo	 sabemos,	 este	 cuidado	 no	 acaba	 nunca.	 El	 arquitecto
Christopher	 Alexander,	 padre	 de	 patrones	 y	 lenguajes	 de	 patrones,	 considera
todo	acto	de	diseño	como	un	pequeño	acto	 local	 de	 reparación,	 y	 considera	 la
maestría	 de	 la	 estructura	 como	 competencia	 única	 del	 arquitecto;	 las	 formas
mayores	 se	 ceden	 a	 los	patrones	y	 su	 aplicación	 a	 los	habitantes.	El	 diseño	 es
interminable	no	sólo	al	añadir	una	nueva	habitación	a	una	casa,	 sino	al	prestar
atención	a	la	pintura,	a	cambiar	las	alfombras	o	a	instalar	un	nuevo	fregadero	en
la	cocina.	Otras	artes	muestran	sentimientos	análogos.	En	nuestra	búsqueda	por
la	 importancia	 de	 los	 detalles,	 nos	 topamos	 con	 el	 autor	 francés	 del	 siglo	 XIX

Gustav	Flaubert.	El	poeta	francés	Paul	Valery	afirma	que	un	poema	no	se	acaba
nunca	 y	 que	 tiene	 que	 retocarse	 continuamente,	 y	 que	 dejar	 de	 trabajar	 en	 el
poema	es	señal	de	abandono.	Tal	preocupación	por	el	detalle	es	común	en	todas
las	empresas	de	excelencia.	Puede	que	esto	no	sea	nada	nuevo,	pero	al	leer	este
libro	sentirá	 la	necesidad	de	adoptar	disciplinas	rechazadas	en	su	momento	por
apatía	o	por	un	deseo	de	espontaneidad	o	una	simple	respuesta	al	cambio.

Desafortunadamente,	no	 solemos	considerar	 estas	preocupaciones	 la	 clave
del	arte	de	la	programación.	Renunciamos	pronto	a	nuestro	código,	no	porque	lo
hayamos	 completado,	 sino	 porque	 nuestro	 sistema	 de	 valores	 se	 centra	 en	 el
futuro	más	que	en	la	sustancia	de	nuestros	productos.

Esto	tiene	un	precio	final:	hierba	mala	nunca	muere.	La	investigación,	ni	en
el	mundo	industrial	ni	en	el	académico,	se	reduce	a	mantener	limpio	el	código.
Cuando	 trabajaba	 en	 la	 organización	 Bell	 Labs	 Software	 Production	 Research
(sin	duda	de	producción)	comprobamos	que	un	estilo	de	sangrado	coherente	era
uno	 de	 los	 mayores	 indicadores	 estadísticamente	 significativos	 de	 una	 baja
densidad	 de	 errores.	 Queremos	 que	 una	 arquitectura,	 un	 lenguaje	 de
programación	 u	 otra	 noción	 superior	 sea	 el	 motivo	 de	 la	 calidad;	 como	 seres
cuya	supuesta	profesionalidad	se	debe	al	dominio	de	herramientas	y	métodos	de
diseño,	nos	sentimos	insultados	por	el	valor	que	los	programadores	añaden	con
tan	 sólo	 aplicar	 un	 estilo	 de	 sangrado	 coherente.	 Para	 citar	mi	 propio	 libro	 de
hace	17	años,	dicho	estilo	distingue	la	excelencia	de	la	simple	competencia.	La
visión	 japonesa	 comprende	 el	 verdadero	 valor	 del	 trabajador	 cotidiano	 y,	 en
especial,	 de	 los	 sistemas	 de	 desarrollo	 que	 dependen	 de	 las	 sencillas	 acciones
diarias	de	tales	trabajadores.	La	calidad	es	el	resultado	de	un	millón	de	acciones
cuidadosas,	 no	 de	 un	 método	magnífico	 caído	 del	 cielo.	 Que	 dichas	 acciones
sean	simples	no	significa	que	sean	simplistas,	y	mucho	menos	que	sean	sencillas.
Son	 la	 base	 de	 la	 grandeza	 y,	 cada	 vez	 más,	 de	 cualquier	 empresa	 humana.
Ignorarlas	no	es	humano	en	absoluto.

Evidentemente,	todavía	defiendo	el	pensamiento	global,	en	especial	el	valor
de	los	enfoques	arquitectónicos	cimentados	en	el	conocimiento	de	los	dominios
y	la	capacidad	de	uso	del	software.	Este	libro	no	versa	sobre	esto,	al	menos	no	de
forma	evidente.	Este	 libro	transmite	un	mensaje	más	sutil	cuya	profundidad	no
debe	menospreciarse.	Coincide	 con	 la	visión	de	gente	 como	Peter	Sommerlad,
Kevlin	Henney	y	Giovanni	Asproni,	cuyos	mantras	son	«El	código	es	el	diseño»
y	«Código	simple».	Aunque	debemos	recordar	que	la	interfaz	es	el	programa	y
que	 sus	 estructuras	 dicen	 mucho	 sobre	 la	 propia	 estructura	 del	 programa,	 es
fundamental	adoptar	de	forma	continuada	la	humilde	posición	de	que	el	diseño
vive	en	el	código.	Y	aunque	 los	cambios	y	 la	metáfora	de	 la	 fábrica	supongan
costes,	 los	 cambios	 de	 diseño	 suponen	 valor.	 Debemos	 considerar	 al	 código
como	la	articulación	de	los	esfuerzos	de	diseño,	visto	como	un	proceso,	no	como
algo	estático.	Es	en	el	código	donde	se	desarrollan	los	conceptos	arquitectónicos
de	conexión	y	cohesión.	Si	escucha	a	Larry	Constantine	describir	la	conexión	y
la	 cohesión,	 lo	 hace	 en	 términos	 del	 código,	 no	 desde	 conceptos	 abstractos
propios	de	UML.	En	su	ensayo	Abstraction	Descant,	Richard	Gabriel	afirma	que
la	abstracción	es	el	mal.	El	código	es	el	remedio	al	mal	y	el	código	limpio	puede
que	sea	divino.

Volviendo	 a	 mi	 caja	 de	 Ga-Jol,	 considero	 importante	 recordar	 que	 la
sabiduría	danesa	nos	recomienda	no	sólo	prestar	atención	a	las	pequeñas	cosas,
sino	también	ser	honestos	con	ellas.	Esto	significa	ser	honesto	con	el	código,	con

nuestros	colegas	sobre	el	estado	del	código	y,	en	especial,	con	nosotros	mismos.
¿Hemos	 hecho	 todo	 lo	 posible	 para	 dejar	 las	 cosas	 mejor	 que	 como	 las
encontramos?	¿Hemos	refactorizado	el	código	antes	de	 terminarlo?	No	se	 trata
de	preocupaciones	periféricas,	 sino	que	se	encuentran	en	 la	base	misma	de	 los
valores	 Agile.	 En	 Serum	 se	 recomienda	 que	 la	 refactorización	 sea	 parte	 del
concepto	 de	 Terminado.	 Ni	 la	 arquitectura	 ni	 el	 código	 limpio	 insisten	 en	 la
perfección,	 sino	 en	 la	 honestidad	 y	 en	 hacerlo	 lo	 mejor	 posible.	 Errar	 es
humano;	 perdonar	 es	 divino.	 En	 Serum,	 todo	 lo	 hacemos	 de	 forma	 visible.
Aireamos	los	trapos	sucios.	Somos	honestos	sobre	el	estado	de	nuestro	código	ya
que	nunca	es	perfecto.	Nos	hemos	hecho	más	humanos,	más	merecedores	de	lo
divino	y	estamos	más	próximos	a	la	grandeza	de	los	detalles.

En	nuestra	profesión,	necesitamos	desesperadamente	toda	la	ayuda	posible.
Si	 un	 suelo	 seco	 reduce	 el	 riesgo	 de	 resbalones	 y	 las	 herramientas	 bien
organizadas	aumentan	la	productividad,	es	nuestra	meta.	Y	en	cuanto	al	libro,	es
la	mejor	aplicación	pragmática	de	los	principios	Lean	de	software	que	he	visto
nunca	en	formato	impreso.	No	esperaba	menos	de	este	grupo	de	individuos	que
durante	 años	 se	 han	 esforzado	 no	 sólo	 por	 mejorar	 sino	 en	 ofrecer	 sus
conocimientos	 a	 la	 industria	 mediante	 obras	 como	 la	 que	 ahora	 tiene	 entre
manos.	Hace	que	el	mundo	sea	un	poco	mejor	que	antes	de	que	Uncle	Bob	me
enviara	el	manuscrito.

Y	tras	completar	este	ejercicio,	me	dispongo	a	limpiar	mi	escritorio.

James	O.	Coplien
Mørdrup,	Dinamarca

Introducción

Reproducido	con	permiso	de	Thom	Holwerda.
http://www.osnews.com/story/19266/WTFs_m.	©	2008	Focus	Shift.

¿Qué	 puerta	 representa	 su	 código?	 ¿Qué	 puerta	 representa	 a	 su	 equipo	 o	 a	 su
empresa?	 ¿Por	 qué	 estamos	 en	 esa	 habitación?	 ¿Es	 una	 sencilla	 revisión	 del
código	o	hemos	detectado	un	sinfín	de	problemas	terribles?	¿Depuramos	presas
del	 pánico	 el	 código	 que	 pensábamos	 que	 funcionaba?	 ¿Los	 clientes	 huyen
despavoridos	y	los	directores	nos	pisan	los	talones?	¿Cómo	asegurarnos	de	que
abrimos	 la	 puerta	 correcta	 cuando	 las	 cosas	 se	 ponen	 feas?	 La	 respuesta:	 la
maestría.

La	 maestría	 se	 consigue	 de	 dos	 formas:	 conocimientos	 y	 trabajo.	 Debe

adquirir	 el	 conocimiento	 de	 los	 principios,	 patrones,	 prácticas	 y	 heurística
propios	de	un	maestro,	y	dominar	dichos	conocimientos	a	través	de	la	práctica.

Puedo	enseñarle	 la	 teoría	de	montar	en	bicicleta.	De	hecho,	 los	conceptos
matemáticos	clásicos	son	muy	sencillos.	Gravedad,	fricción,	velocidad	angular,
centro	 de	masa,	 etc.,	 se	 pueden	 demostrar	 en	menos	 de	 una	 página	 repleta	 de
ecuaciones.	 Con	 esas	 fórmulas,	 puedo	 demostrar	 que	 montar	 en	 bicicleta	 es
práctico	y	proporcionarle	los	conocimientos	necesarios	para	conseguirlo.	Pero	la
primera	vez	que	se	monte	en	una	bici	se	caerá	al	suelo.

El	 diseño	 de	 código	 no	 es	 diferente.	 Podríamos	 enumerar	 todos	 los
principios	 del	 código	 limpio	 y	 confiar	 en	 que	 se	 encargue	 del	 resto	 (es	 decir,
dejar	 que	 se	 cayera	 de	 la	 bici)	 pero	 entonces	 la	 pregunta	 sería	 qué	 clase	 de
profesores	somos	y	qué	clase	de	alumno	sería.

No.	Así	no	funciona	este	libro.
Aprender	 a	 crear	 código	 limpio	 es	 complicado.	 Requiere	 algo	 más	 que

conocer	principios	y	patrones.	Tiene	que	sudar.	Debe	practicarlo	y	fallar.	Debe
ver	cómo	otros	practican	y	 fallan.	Debe	observar	cómo	se	caen	y	 recuperan	el
paso.	Debe	ver	cómo	agonizan	en	cada	decisión	y	el	precio	que	pagan	por	tomar
decisiones	equivocadas.

Para	leer	este	libro,	prepárese	a	trabajar	duro.	No	es	un	libro	que	se	pueda
leer	 en	 un	 avión	 y	 terminarlo	 antes	 de	 aterrizar.	 Este	 libro	 le	 hará	 trabajar,	 y
mucho.	¿Y	qué	tipo	de	trabajo?	Tendrá	que	leer	código,	en	abundancia.	Y	se	le
pedirá	que	piense	en	qué	acierta	el	código	y	en	qué	falla.	Se	le	pedirá	que	siga
nuestras	 descripciones	 mientras	 despedazamos	 módulos	 y	 los	 volvemos	 a
ensamblar.	Para	ello	necesitará	 tiempo	y	esfuerzo,	pero	creemos	que	merece	 la
pena.

Hemos	dividido	el	libro	en	tres	partes.	Los	primeros	capítulos	describen	los
principios,	 patrones	 y	 prácticas	 para	 crear	 código	 limpio.	 Incluyen	 abundante
código	y	resultan	difíciles	de	leer.	Sirven	como	preparación	a	la	segunda	parte.
Si	abandona	tras	leer	la	primera	sección,	que	tenga	buena	suerte.

La	segunda	parte	del	libro	es	la	más	difícil.	Incluye	varios	casos	de	estudio
cuya	complejidad	va	aumentando.	Cada	ejemplo	es	un	ejercicio	de	limpieza	de
código,	transformar	código	con	problemas	para	que	tenga	menos	problemas.	El
detalle	 de	 esta	 parte	 es	 abundante.	 Tendrá	 que	 alternar	 entre	 el	 texto	 y	 los
listados	de	 código.	Tendrá	que	 analizar	 y	 entender	 el	 código,	 y	 comprender	 el
razonamiento	 de	 cada	 cambio	 realizado.	 Piense	 en	 que	 esta	 parte	 le	 llevará
varios	días.

La	 tercera	 parte	 del	 libro	 es	 un	 único	 capítulo	 que	 contiene	 una	 lista	 de
heurística	y	síntomas	de	código	erróneo	(smells)	confeccionada	al	crear	los	casos
prácticos.	 Al	 analizar	 y	 limpiar	 el	 código	 de	 los	 ejemplos,	 documentamos	 el

motivo	 de	 todas	 nuestras	 acciones	 como	 heurística	 o	 síntoma.	 Intentamos
comprender	nuestras	reacciones	al	código	que	leíamos	y	modificábamos,	y	nos
esforzamos	 por	 capturar	 las	 sensaciones	 que	 tuvimos	 y	 las	 decisiones	 que
adoptamos.	 El	 resultado	 es	 una	 base	 de	 conocimientos	 que	 describe	 cómo
pensamos	cuando	creamos,	leemos	y	limpiamos	código.

Esta	base	de	conocimientos	no	le	servirá	de	mucho	si	no	lee	atentamente	los
casos	 de	 la	 segunda	 parte	 del	 libro.	 En	 esos	 capítulos	 hemos	 anotado	 con
precisión	 todos	 los	 cambios	 realizados	 con	 referencias	 a	 la	 heurística.	 Estas
referencias	se	muestran	entre	corchetes,	como	[H22].	De	este	modo	puede	ver	el
contexto	en	el	que	se	ha	aplicado	y	creado	dicha	heurística.	No	importa	tanto	el
propio	 valor	 de	 las	 heurísticas	 sino	 la	 relación	 entre	 ellas	 y	 las	 decisiones
adoptadas	al	limpiar	el	código	en	los	ejemplos.

Si	lee	la	primera	y	la	tercera	parte	y	se	salta	los	casos	prácticos,	habrá	leído
otro	 libro	 distinto	 sobre	 cómo	 crear	 código	 correcto,	 pero	 si	 dedica	 tiempo	 a
analizar	 los	 casos,	 sigue	 todos	 y	 cada	 uno	 de	 los	 pasos,	 cada	 una	 de	 las
decisiones,	si	se	pone	en	nuestro	lugar	y	se	obliga	a	pensar	tal	y	como	lo	hicimos
nosotros,	 entonces	 comprenderá	 mucho	 mejor	 todos	 los	 principios,	 patrones,
prácticas	y	heurística.	Ya	no	será	un	conocimiento	superficial.	Se	convertirá	en
algo	profundo.	Lo	integrará	de	la	misma	forma	que	una	bicicleta	se	convierte	en
una	extensión	propia	una	vez	dominada	la	forma	de	montar.

Sobre	la	imagen	de	cubierta

La	imagen	de	la	portada	es	M104:	la	Galaxia	del	Sombrero.	M104	se	encuentra
en	Virgo,	a	unos	30	millones	de	años	luz,	y	su	núcleo	es	un	súper	agujero	negro
que	pesa	aproximadamente	mil	millones	de	masas	solares.

¿La	 imagen	 le	 recuerda	 la	 explosión	 de	 la	 luna	 Praxis	 de	 Klingon?
Recuerdo	 la	 escena	de	Star	Trek	VI	 en	 la	 que	 se	mostraba	un	 anillo	 de	 restos
flotando	 tras	 la	 explosión.	 Tras	 esa	 escena,	 el	 anillo	 se	 ha	 convertido	 en	 un
elemento	habitual	 de	 las	 explosiones	de	 ciencia	 ficción.	 Incluso	 se	 añadió	 a	 la
explosión	 de	 Alderaan	 en	 ediciones	 posteriores	 de	 la	 primera	 película	 de	 La
Guerra	de	las	Galaxias.

¿Qué	 provocó	 la	 formación	 de	 este	 anillo	 alrededor	 de	M104?	 ¿Por	 qué
tiene	un	centro	de	tales	dimensiones	y	un	núcleo	tan	brillante	y	diminuto?	Parece
como	si	el	agujero	negro	central	hubiera	provocado	un	orificio	de	30	000	años
luz	en	el	centro	de	la	galaxia.	La	desgracia	caería	sobre	las	civilizaciones	que	se
encontraran	en	el	camino	de	este	desastre	cósmico.

Los	 súper	 agujeros	 negros	 desayunan	 estrellas	 y	 convierten	 parte	 de	 su
masa	en	energía.	E=MC2	puede	bastar,	pero	cuando	M	es	una	masa	estelar	hay
que	 tener	 cuidado.	 ¿Cuántas	 estrellas	 habrá	 engullido	 este	 monstruo	 antes	 de
saciar	su	apetito?	El	tamaño	del	vacío	central	podría	ser	una	pista.

Imagen	de	portada:	©	Spitzet	Space	Telescope.

La	 imagen	 de	 M104	 de	 la	 portada	 es	 una	 combinación	 de	 la	 famosa
fotografía	del	Hubble	(imagen	superior)	y	 la	reciente	 imagen	de	 infrarrojos	del
observatorio	orbital	Spitzer	(inferior).

Esta	última	muestra	claramente	la	forma	de	anillo	de	la	galaxia.
A	la	luz,	sólo	vemos	el	borde	frontal	de	la	silueta	del	anillo.
La	masa	central	oculta	el	resto.
Pero	en	la	imagen	de	infrarrojos,	las	partículas	calientes	del	anillo	brillan	a

través	de	 la	masa	central.	Las	dos	 imágenes	combinadas	nos	ofrecen	una	vista
desconocida	 hasta	 ahora	 e	 implican	 que	 hace	 tiempo	 era	 un	 auténtico	 infierno
activo.

1
Código	Limpio

Está	leyendo	este	libro	por	dos	motivos.	Por	un	lado,	es	programador.	Por	otro,
quiere	ser	mejor	programador.	Perfecto.	Necesitamos	mejores	programadores.

Este	 libro	 trata	 sobre	 programación	 correcta.	 Está	 repleto	 de	 código.	 Lo
analizaremos	 desde	 todas	 las	 direcciones.	 Desde	 arriba,	 desde	 abajo	 y	 desde
dentro.	 Cuando	 terminemos,	 sabremos	 mucho	 sobre	 código	 y,	 en	 especial
sabremos	distinguir	entre	código	correcto	e	incorrecto.	Sabremos	cómo	escribir
código	correcto	y	cómo	transformar	código	incorrecto	en	código	correcto.

Hágase	el	código

Se	podría	afirmar	que	un	libro	sobre	código	es	algo	obsoleto,	que	el	código	ya	no
es	 el	 problema	 y	 que	 deberíamos	 centrarnos	 en	 modelos	 y	 requisitos.	 Hay
quienes	sugieren	que	el	final	del	código	está	próximo.	Que	los	programadores	ya
no	 serán	 necesarios	 porque	 los	 empresarios	 generarán	 programas	 a	 partir	 de
especificaciones.

No	es	cierto.	El	código	nunca	desaparecerá,	ya	que	representa	 los	detalles
de	 los	 requisitos.	 En	 algún	 nivel,	 dichos	 detalles	 no	 se	 pueden	 ignorar	 ni
abstraer;	 deben	 especificarse,	 y	 para	 especificar	 requisitos	 de	 forma	 que	 un
equipo	pueda	ejecutarlos	se	necesita	la	programación.	Dicha	especificación	es	el
código.

Espero	que	el	nivel	de	abstracción	de	nuestros	lenguajes	siga	aumentando.
También	espero	que	aumente	el	número	de	 lenguajes	 específicos	de	dominios.
Será	 algo	 positivo,	 pero	 no	 eliminará	 el	 código.	 De	 hecho,	 todas	 las
especificaciones	creadas	en	estos	lenguajes	de	nivel	superior	y	específicos	de	los
dominios	 serán	 código,	 y	 tendrá	 que	 ser	 riguroso,	 preciso,	 formal	 y	 detallado
para	que	un	equipo	pueda	entenderlo	y	ejecutarlo.

El	que	piense	que	el	 código	va	a	desaparecer	 es	 como	el	matemático	que
espera	 que	 un	 día	 las	 matemáticas	 no	 sean	 formales.	 Esperan	 descubrir	 una
forma	de	crear	máquinas	que	hagan	lo	que	queramos	en	lugar	de	lo	que	digamos.
Esas	 máquinas	 tendrían	 que	 entendernos	 de	 tal	 forma	 que	 puedan	 traducir
necesidades	 ambiguas	 en	 programas	 perfectamente	 ejecutados	 que	 satisfagan
dichas	necesidades	a	la	perfección.

Esto	 nunca	 sucederá.	 Ni	 siquiera	 los	 humanos,	 con	 toda	 su	 intuición	 y
creatividad,	 han	 sido	 capaces	 de	 crear	 sistemas	 satisfactorios	 a	 partir	 de	 las
sensaciones	de	sus	clientes.	En	realidad,	si	 la	disciplina	de	la	especificación	de
requisitos	nos	ha	enseñado	algo	es	que	los	requisitos	bien	especificados	son	tan
formales	como	el	código	y	que	pueden	actuar	como	pruebas	ejecutables	de	dicho
código.

Recuerde	que	 el	 código	 es	 básicamente	 el	 lenguaje	 en	 el	 que	 expresamos
los	 requisitos	 en	 última	 instancia.	 Podemos	 crear	 lenguajes	 que	 se	 asemejen	 a
dichos	 requisitos.	 Podemos	 crear	 herramientas	 que	 nos	 permitan	 analizar	 y
combinar	dichos	requisitos	en	estructuras	formales,	pero	nunca	eliminaremos	la
precisión	necesaria;	por	ello,	siempre	habrá	código.

Código	Incorrecto

			

Recientemente	 leí	 el	prólogo	del	 libro	 Implementation	Pattern[1]	 de	Kent	Beck,
donde	afirmaba	que	«…este	 libro	se	basa	en	una	 frágil	premisa:	que	el	código
correcto	 es	 relevante…».	 ¿Una	 frágil	 premisa?	En	 absoluto.	Considero	 que	 es
una	de	 las	más	robustas,	admitidas	e	 importantes	de	nuestro	sector	(y	creo	que
Kent	 lo	 sabe).	 Sabemos	 que	 el	 código	 correcto	 es	 relevante	 porque	 durante
mucho	tiempo	hemos	tenido	que	sufrir	su	ausencia.

Sé	de	una	empresa	que,	a	finales	de	la	década	de	1980,	creó	una	magnífica
aplicación,	 muy	 popular	 y	 que	 muchos	 profesionales	 compraron	 y	 utilizaron.
Pero	 los	 ciclos	de	publicación	 empezaron	 a	distanciarse.	No	 se	 corrigieron	 los
errores	 entre	 una	 versión	 y	 la	 siguiente.	 Crecieron	 los	 tiempos	 de	 carga	 y
aumentaron	 los	 fallos.	 Todavía	 recuerdo	 el	 día	 en	 que	 apagué	 el	 producto	 y
nunca	más	lo	volví	a	usar.

Poco	después,	la	empresa	desapareció.
Dos	 décadas	 después	 conocí	 a	 uno	 de	 los	 empleados	 de	 la	 empresa	 y	 le

pregunté	sobre	lo	que	había	pasado.	La	respuesta	confirmó	mis	temores.	Habían
comercializado	el	 producto	 antes	de	 tiempo	con	graves	 fallos	 en	 el	 código.	Al
añadir	 nuevas	 funciones,	 el	 código	 empeoró	 hasta	 que	 ya	 no	 pudieron
controlarlo.	El	código	incorrecto	fue	el	motivo	del	fin	de	la	empresa.

¿En	alguna	ocasión	el	código	incorrecto	le	ha	supuesto	un	obstáculo?	Si	es
programador	 seguramente	 sí.	 De	 hecho,	 tenemos	 una	 palabra	 que	 lo	 describe:
sortear.	 Tenemos	 que	 sortear	 el	 código	 incorrecto.	 Nos	 arrastramos	 por	 una

maraña	de	zarzas	y	trampas	ocultas.	Intentamos	buscar	el	camino,	una	pista	de	lo
que	está	pasando,	pero	lo	único	que	vemos	es	más	y	más	código	sin	sentido.

Sin	duda	el	código	incorrecto	 le	ha	supuesto	un	obstáculo.	Entonces,	¿por
qué	lo	escribió?

¿Tenía	prisa?	¿Plazos	de	entrega?	Seguramente.	Puede	que	pensara	que	no
tenía	 tiempo	para	hacer	un	buen	 trabajo;	que	 su	 jefe	 se	enfadaría	 si	necesitaba
tiempo	para	limpiar	su	código.	O	puede	que	estuviera	cansado	de	trabajar	en	ese
programa	 y	 quisiera	 acabar	 cuanto	 antes.	 O	 que	 viera	 el	 trabajo	 pendiente	 y
tuviera	que	acabar	con	un	módulo	para	pasar	al	siguiente.	A	todos	nos	ha	pasado.

Todos	hemos	visto	el	 lío	en	el	que	estábamos	y	hemos	optado	por	dejarlo
para	otro	día.	Todos	hemos	sentido	el	alivio	de	ver	cómo	un	programa	incorrecto
funcionaba	y	hemos	decidido	que	un	mal	programa	que	funciona	es	mejor	que
nada.	Todos	hemos	dicho	que	 lo	 solucionaríamos	después.	Evidentemente,	por
aquel	entonces,	no	conocíamos	la	ley	de	LeBlanc:	Después	es	igual	a	nunca.

El	coste	total	de	un	desastre

Si	es	programador	desde	hace	dos	o	 tres	años,	probablemente	haya	sufrido	 los
desastres	 cometidos	 por	 otros	 en	 el	 código.	 Si	 tiene	más	 experiencia,	 lo	 habrá
sufrido	en	mayor	medida.	El	grado	de	sufrimiento	puede	ser	significativo.	En	un
periodo	de	un	año	o	dos,	 los	equipos	que	avancen	 rápidamente	al	 inicio	de	un
proyecto	pueden	acabar	a	paso	de	tortuga.	Cada	cambio	en	el	código	afecta	a	dos
o	 tres	partes	del	mismo.	Ningún	cambio	es	 trivial.	Para	ampliar	o	modificar	el
sistema	 es	 necesario	 comprender	 todos	 los	 detalles,	 efectos	 y	 consecuencias,
para	de	ese	modo	poder	añadir	nuevos	detalles,	efectos	y	consecuencias.	Con	el
tiempo,	el	desastre	aumenta	de	tal	modo	que	no	se	puede	remediar.	Es	imposible.

Al	aumentar	este	desastre,	 la	productividad	del	equipo	disminuye	y	acaba
por	 desaparecer.	 Al	 reducirse	 la	 productividad,	 el	 director	 hace	 lo	 único	 que
puede:	 ampliar	 la	 plantilla	 del	 proyecto	 con	 la	 esperanza	 de	 aumentar	 la
productividad.	 Pero	 esa	 nueva	 plantilla	 no	 conoce	 el	 diseño	 del	 sistema.	 No
conocen	la	diferencia	entre	un	cambio	adecuado	al	objetivo	de	diseño	y	otro	que
lo	 destroce.	 Por	 tanto,	 todos	 se	 encuentran	 sometidos	 a	 una	 gran	 presión	 para
aumentar	la	productividad.	Por	ello,	cometen	más	errores,	aumenta	el	desastre	y
la	productividad	se	acerca	a	cero	cada	vez	más	(véase	la	figura	1.1).

Figura	1.1.	Productividad	frente	a	tiempo.

El	gran	cambio	de	diseño
En	 última	 instancia,	 el	 equipo	 se	 rebela.	 Informan	 al	 director	 que	 no	 pueden
seguir	trabajando	con	ese	código.	Exigen	un	cambio	de	diseño.	La	dirección	no
requiere	invertir	en	un	cambio	de	diseño	del	proyecto,	pero	no	puede	ignorar	el
bajo	nivel	de	productividad.

Acaba	por	ceder	a	 las	exigencias	de	 los	programadores	y	autoriza	el	gran
cambio	de	diseño.	Se	 selecciona	un	nuevo	equipo.	Todos	quieren	 formar	parte
del	nuevo	equipo	por	ser	un	 lienzo	en	blanco.	Pueden	empezar	de	cero	y	crear
algo	realmente	bello,	pero	sólo	los	mejores	serán	elegidos	para	el	nuevo	equipo.
Los	demás	deben	continuar	con	el	mantenimiento	del	sistema	actual.

Ahora	los	dos	equipos	compiten.	El	nuevo	debe	crear	un	sistema	que	haga
lo	 que	 el	 antiguo	 no	 puede.	 Además,	 deben	 asumir	 los	 cambios	 que
continuamente	se	aplican	al	sistema	antiguo.	La	dirección	no	sustituirá	el	sistema
antiguo	hasta	que	el	nuevo	sea	capaz	de	hacer	todo	lo	que	hace	el	antiguo.

Esta	 competición	 puede	 durar	 mucho	 tiempo.	 Conozco	 casos	 de	 casi	 10
años.	 Y	 cuando	 acaba,	 los	 miembros	 originales	 del	 equipo	 nuevo	 han
desaparecido	 y	 los	 miembros	 actuales	 exigen	 un	 cambio	 de	 diseño	 del	 nuevo
sistema	porque	es	un	desastre.

Si	 ha	 experimentado	 alguna	 fase	 de	 esta	 historia,	 ya	 sabrá	 que	 dedicar
tiempo	 a	 que	 el	 código	 sea	 correcto	 no	 sólo	 es	 rentable,	 es	 una	 cuestión	 de
supervivencia	profesional.

Actitud

¿Alguna	vez	ha	tenido	que	superar	un	desastre	tan	grave	que	ha	tardado	semanas
en	lo	que	normalmente	hubiera	tardado	horas?	¿Ha	visto	un	cambio	que	debería
haberse	 realizado	 en	 una	 línea,	 aplicado	 en	 cientos	 de	módulos	 distintos?	 Son
síntomas	demasiado	habituales.

¿Por	qué	sucede	en	el	código?	¿Por	qué	el	código	de	calidad	se	transforma
tan	rápidamente	en	código	incorrecto?	Hay	muchas	explicaciones.	Nos	quejamos
de	que	los	requisitos	cambian	de	forma	que	comprometen	el	diseño	original,	de
que	 los	 plazos	 de	 entrega	 son	 demasiado	 exigentes	 para	 hacer	 las	 cosas	 bien.
Culpamos	a	directores	incompetentes,	a	usuarios	intolerantes	y	a	comerciales	sin
sentido.	Pero	la	culpa,	querido	Dilbert,	es	nuestra.	No	somos	profesionales.

Puede	 que	 resulte	 duro	 escucharlo.	 ¿Cómo	 es	 posible	 que	 seamos
responsables	de	tales	desastres?	¿Qué	pasa	con	los	requisitos?	¿Y	los	plazos	de
entrega?	¿Y	los	directores	incompetentes	y	los	comerciales	sin	sentido?	¿No	es
también	culpa	suya?

No.	 Los	 directores	 y	 los	 comerciales	 nos	 exigen	 la	 información	 que
necesitan	 para	 realizar	 sus	 promesas	 y	 compromisos,	 e	 incluso	 cuando	 no
recurren	 a	 nosotros,	 no	 debemos	 tener	miedo	 a	 decirles	 lo	 que	 pensamos.	Los
usuarios	acuden	a	nosotros	para	validar	la	forma	de	encajar	los	requisitos	en	el
sistema.	 Los	 directores	 de	 proyectos	 acuden	 a	 nosotros	 para	 determinar	 los
objetivos.	 Somos	 cómplices	 en	 la	 programación	 del	 proyecto	 y	 compartimos
gran	parte	de	la	responsabilidad	de	los	fallos,	en	especial	si	 tienen	que	ver	con
código	incorrecto.

Seguramente	piense	que,	si	no	hace	lo	que	su	jefe	le	dice,	le	despedirán.	Es
improbable.	Muchos	jefes	sólo	quieren	la	verdad,	aunque	lo	disimulen.	Muchos
quieren	 código	 correcto,	 aunque	 estén	 obsesionados	 con	 los	 objetivos.	 Pueden
defender	 apasionadamente	 los	objetivos	y	 los	 requisitos,	 pero	 es	 su	 trabajo.	El
nuestro	es	defender	el	código	con	la	misma	intensidad.

Para	resumir,	imagine	que	es	médico	y	un	paciente	le	exige	que	no	se	lave
las	manos	antes	de	una	operación	porque	se	pierde	demasiado	tiempo[2].	En	este
caso,	el	paciente	es	el	jefe,	pero	el	médico	debe	negarse	a	lo	que	pide.	¿Por	qué?
Porque	el	médico	sabe	más	que	el	paciente	sobre	los	riesgos	de	infecciones.	No
sería	profesional	(incluso	sería	ilegal)	que	el	médico	cediera	a	las	exigencias	del
paciente.

Tampoco	sería	profesional	que	los	programadores	cedieran	a	la	voluntad	de
los	jefes	que	no	entienden	los	riesgos	de	un	posible	desastre.

El	enigma

Los	programadores	se	enfrentan	a	un	enigma	de	valores	básicos.	Los	que	tienen
años	de	experiencia	saben	que	un	desastre	 ralentiza	su	 trabajo,	y	aun	así	 todos
los	programadores	sienten	la	presión	de	cometer	errores	para	poder	cumplir	los
plazos	de	entrega.	En	definitiva,	no	toman	el	tiempo	necesario	para	avanzar.

Los	verdaderos	profesionales	saben	que	la	segunda	parte	del	enigma	no	es
cierta.	No	se	cumple	un	plazo	de	entrega	cometiendo	un	error.	De	hecho,	el	error
nos	ralentiza	de	forma	inmediata	y	hace	que	no	 lleguemos	al	plazo	de	entrega.
La	 única	 forma	 de	 cumplirlo,	 la	 única	 forma	 de	 avanzar,	 es	 intentar	 que	 el
código	siempre	sea	limpio.

¿El	arte	del	código	limpio?
Imagine	que	cree	que	el	código	incorrecto	es	un	obstáculo	significativo.	Imagine
que	 acepta	 que	 la	 única	 forma	 de	 avanzar	 es	 mantener	 el	 código	 limpio.
Entonces	 se	 preguntará	 cómo	 crear	 código	 limpio.	 No	 tiene	 sentido	 intentar
crearlo	si	no	sabe	lo	que	es.

La	 mala	 noticia	 es	 que	 crear	 código	 limpio	 es	 como	 pintar	 un	 cuadro.
Muchos	sabemos	si	un	cuadro	se	ha	pintado	bien	o	no,	pero	poder	reconocer	la
calidad	de	una	obra	no	significa	que	sepamos	pintar.	Por	ello,	reconocer	código
limpio	no	significa	que	sepamos	cómo	crearlo.

Para	crearlo	se	 requiere	el	uso	disciplinado	de	miles	de	 técnicas	aplicadas
mediante	un	detallado	sentido	de	la	«corrección».	Este	sentido	del	código	es	la
clave.

Algunos	nacen	con	este	sentido.	Otros	han	de	luchar	para	conseguirlo.	No
sólo	 permite	 distinguir	 entre	 código	 correcto	 e	 incorrecto,	 sino	 que	 también
muestra	 la	 estrategia	 para	 aplicar	 nuestra	 disciplina	 y	 transformar	 código
incorrecto	en	código	correcto.

Un	programador	sin	este	 sentido	puede	 reconocer	el	desastre	cometido	en
un	módulo,	pero	no	saber	cómo	solucionarlo.	Un	programador	con	este	sentido
verá	las	posibles	opciones	y	elegirá	la	variante	óptima	para	definir	una	secuencia
de	cambios.

En	 definitiva,	 un	 programador	 que	 cree	 código	 limpio	 es	 un	 artista	 que
puede	transformar	un	lienzo	en	blanco	en	un	sistema	de	código	elegante.

Concepto	de	código	limpio
Existen	 tantas	 definiciones	 como	 programadores.	 Por	 ello,	 he	 consultado	 la
opinión	de	conocidos	y	experimentados	programadores.

Bjarne	 Stroustrup,	 inventor	 de	 C++	 y	 autor	 de	 The	 C++	 Programming
Language

			

Me	gusta	que	mi	código	sea	elegante	y	eficaz.	La	 lógica	debe	ser	directa
para	 evitar	 errores	 ocultos,	 las	 dependencias	 deben	 ser	 mínimas	 para
facilitar	el	mantenimiento,	el	procesamiento	de	errores	completo	y	sujeto	a
una	 estrategia	 articulada,	 y	 el	 rendimiento	 debe	 ser	 óptimo	para	 que	 los
usuarios	no	 tiendan	a	estropear	el	código	con	optimizaciones	sin	sentido.
El	código	limpio	hace	bien	una	cosa.

Bjarne	usa	la	palabra	«elegante».	Menuda	palabra.
Según	 el	 diccionario,	 «elegante»	 significa	 «dotado	 de	 gracia,	 nobleza	 y

sencillez».	Aparentemente	Bjarne	piensa	que	el	código	limpio	es	un	placer	a	la
hora	de	leerlo.	Su	lectura	debe	hacernos	sonreír,	como	una	caja	de	música	o	un
coche	bien	diseñado.

Bjarne	 también	 menciona	 la	 eficacia,	 en	 dos	 ocasiones.	 No	 debería
sorprendemos	viniendo	del	 inventor	de	C++;	pero	considero	que	hay	algo	más
que	el	mero	deseo	de	velocidad.	Los	ciclos	malgastados	no	son	elegantes,	no	son
un	 placer.	 Y	 fíjese	 en	 la	 palabra	 empleada	 por	 Bjarne	 para	 describir	 la
consecuencia	de	esta	falta	de	elegancia.	Usa	tiendan.	Una	gran	verdad.	El	código
incorrecto	 tiende	 a	 aumentar	 el	 desastre.	 Cuando	 otros	 cambian	 código
incorrecto,	tienden	a	empeorarlo.

Dave	 Thomas	 y	 Andy	 Hunt	 lo	 expresan	 de	 forma	 diferente.	 Usan	 la
metáfora	 de	 las	 ventanas	 rotas[3].	 Un	 edificio	 con	 ventanas	 rotas	 parece

abandonado.	 Y	 hace	 que	 otros	 lo	 abandonen.	 Dejan	 que	 se	 rompan	 otras
ventanas.	E	incluso	las	rompen	a	propósito.	La	fachada	se	ensucia	con	pintadas	y
se	acumula	la	basura.	Una	ventana	rota	inicia	el	proceso	de	la	decadencia.

Bjarne	 también	 menciona	 que	 el	 procesamiento	 de	 errores	 debe	 ser
completo,	lo	que	se	relaciona	con	la	disciplina	de	prestar	atención	a	los	detalles.
El	 procesamiento	 de	 errores	 abreviado	 es	 una	 forma	 de	 ignorar	 los	 detalles.
Otras	son	las	fugas	de	memoria,	las	condiciones	de	carrera	o	el	uso	incoherente
de	los	nombres.	En	definitiva,	el	código	limpio	muestra	gran	atención	al	detalle.

Bjarne	termina	afirmando	que	el	código	limpio	hace	una	cosa	bien.	No	es
accidental	 que	 existan	 tantos	 principios	 de	 diseño	 de	 software	 que	 se	 puedan
reducir	a	esta	sencilla	máxima.	Muchos	escritores	han	tratado	de	comunicar	este
pensamiento.	El	código	incorrecto	intenta	hacer	demasiadas	cosas	y	su	cometido
es	 ambiguo	 y	 enrevesado.	 El	 código	 limpio	 es	 concreto.	 Cada	 función,	 cada
clase	y	cada	módulo	muestran	una	única	actitud	que	se	mantiene	invariable	y	no
se	contamina	por	los	detalles	circundantes.

Grady	 Booch,	 autor	 de	 Object	 Oriented	 Analysis	 and	 Design	 with
Applications

			

El	código	limpio	es	simple	y	directo.	El	código	limpio	se	lee	como	un	texto
bien	escrito.	El	código	limpio	no	oculta	la	intención	del	diseñador,	sino	que
muestra	nítidas	abstracciones	y	líneas	directas	de	control.

Grady	mantiene	las	mismas	ideas	que	Bjarne,	pero	adopta	una	perspectiva
de	legibilidad.	Me	gusta	especialmente	que	el	código	limpio	se	pueda	leer	como
un	 texto	 bien	 escrito.	 Piense	 en	 un	 buen	 libro.	 Recordará	 que	 las	 palabras

desaparecen	y	se	sustituyen	por	imágenes,	como	ver	una	película.
Mejor	todavía.	Es	ver	los	caracteres,	escuchar	los	sonidos,	experimentar	las

sensaciones.
Leer	código	limpio	nunca	será	como	leer	El	Señor	de	los	Anillos.	Pero	esta

metáfora	 literaria	 no	 es	 incorrecta.	 Como	 una	 buena	 novela,	 el	 código	 limpio
debe	 mostrar	 de	 forma	 clara	 el	 suspense	 del	 problema	 que	 hay	 que	 resolver.
Debe	llevar	ese	suspense	hasta	un	punto	álgido	para	después	demostrar	al	lector
que	los	problemas	y	el	suspense	se	han	solucionado	de	forma	evidente.

La	frase	«nítida	abstracción»	de	Grady	es	un	oxímoron	fascinante.	Nítido	es
casi	 un	 sinónimo	 de	 concreto,	 con	 un	 potente	 mensaje.	 El	 código	 debe	 ser
específico	 y	 no	 especulativo.	 Sólo	 debe	 incluir	 lo	 necesario.	Nuestros	 lectores
deben	percibir	que	hemos	tomado	decisiones.

«Big»	Dave	Thomas,	fundador	de	OTI,	el	padrino	de	la	estrategia	Eclipse

			

El	código	limpio	se	puede	leer	y	mejorar	por	parte	de	un	programador	que
no	sea	su	autor	original.	Tiene	pruebas	de	unidad	y	de	aceptación.	Tiene
nombres	 con	 sentido.	 Ofrece	 una	 y	 no	 varias	 formas	 de	 hacer	 algo.	 Sus
dependencias	son	mínimas,	se	definen	de	forma	explícita	y	ofrece	una	API
clara	y	mínima.	El	código	debe	ser	culto	en	función	del	lenguaje,	ya	que	no
toda	 la	 información	 necesaria	 se	 puede	 expresar	 de	 forma	 clara	 en	 el
código.

Big	 Dave	 comparte	 el	 deseo	 de	 Grady	 de	 la	 legibilidad,	 pero	 con	 una
importante	 variante.	 Dave	 afirma	 que	 el	 código	 limpio	 facilita	 las	 labores	 de
mejora	de	otros.	Puede	parecer	evidente	pero	no	debemos	excedernos.	Después
de	 todo,	existe	una	diferencia	entre	el	 código	 fácil	de	 leer	y	el	 código	 fácil	de
cambiar.

Dave	 vincula	 la	 limpieza	 a	 las	 pruebas.	 Hace	 10	 años	 esto	 hubiera
provocado	 cierta	 controversia.	Pero	 la	 disciplina	 del	Desarrollo	 controlado	por
pruebas	ha	tenido	un	gran	impacto	en	nuestro	sector	y	se	ha	convertido	en	uno
de	 sus	 pilares.	 Dave	 tiene	 razón.	 El	 código,	 sin	 pruebas,	 no	 es	 limpio.
Independientemente	 de	 su	 elegancia,	 legibilidad	 y	 accesibilidad,	 si	 no	 tiene
pruebas,	no	será	limpio.

Dave	 usa	 dos	 veces	 la	 palabra	 mínimo.	 Valora	 el	 código	 de	 tamaño
reducido,	una	opinión	habitual	en	la	literatura	de	software	desde	su	concepción.
Cuanto	más	pequeño,	mejor.

También	afirma	que	el	código	debe	ser	culto,	una	referencia	indirecta	a	la
programación	de	Knuth[4]	y	que	en	definitiva	indica	que	el	código	debe	redactarse
de	una	forma	legible	para	los	humanos.

Michael	Feathers,	autor	de	Working	Effectively	with	Legacy	Code

			

Podría	 enumerar	 todas	 las	 cualidades	 del	 código	 limpio,	 pero	 hay	 una
principal	que	engloba	a	 todas	ellas.	El	código	 limpio	siempre	parece	que
ha	sido	escrito	por	alguien	a	quien	 le	 importa.	No	hay	nada	evidente	que

hacer	 para	 mejorarlo.	 El	 autor	 del	 código	 pensó	 en	 todos	 los	 aspectos
posibles	 y	 si	 intentamos	 imaginar	 alguna	 mejora,	 volvemos	 al	 punto	 de
partida	 y	 sólo	 nos	 queda	 disfrutar	 del	 código	 que	 alguien	 a	 quien	 le
importa	realmente	nos	ha	proporcionado.

Una	 palabra;	 dar	 importancia.	 Es	 el	 verdadero	 tema	 de	 este	 libro,	 que
incluso	podría	usar	el	subtítulo	«Cómo	dar	importancia	al	código».

Michael	 ha	 acertado	 de	 pleno.	 El	 código	 limpio	 es	 aquél	 al	 que	 se	 le	 ha
dado	 importancia.	 Alguien	 ha	 dedicado	 su	 tiempo	 para	 que	 sea	 sencillo	 y	 ha
prestado	atención	a	los	detalles.	Se	ha	preocupado.

Ron	 Jeffries,	 autor	 de	 Extreme	 Programming	 Installed	 y	 Extreme
Programming	Adventures	in	C#

			

Ron	 comenzó	 su	 carrera	 como	 programador	 con	 Fortran	 en	 Strategic	Air
Command	y	ha	escrito	código	para	la	práctica	totalidad	de	lenguajes	y	equipos.
Merece	la	pena	fijarse	en	sus	palabras:

En	 los	 últimos	 años,	 comencé	 y	 prácticamente	 terminé	 con	 las	 reglas	 de
código	simple	de	Beck.
En	orden	de	prioridad,	el	código	simple:

	

Ejecuta	todas	las	pruebas.
No	contiene	duplicados.

Expresa	todos	los	conceptos	de	diseño	del	sistema.
Minimiza	 el	 número	 de	 entidades	 como	 clases,	 métodos,	 funciones	 y
similares.

De	todos	ellos,	me	quedo	con	la	duplicación.	Cuando	algo	se	repite	una	y
otra	 vez,	 es	 una	 señal	 de	 que	 tenemos	 una	 idea	 que	 no	 acabamos	 de
representar	 correctamente	 en	 el	 código.	 Intento	 determinar	 cuál	 es	 y,
después,	 expresar	 esa	 idea	 con	 mayor	 claridad.	 Para	 mí,	 la	 expresividad
debe	incluir	nombres	con	sentido	y	estoy	dispuesto	a	cambiar	los	nombres
de	 las	 cosas	 varias	 veces.	Con	 las	modernas	 herramientas	 de	 creación	 de
código	como	Eclipse,	el	cambio	de	nombres	es	muy	sencillo,	por	lo	que	no
me	supone	problema	alguno.
La	expresividad	va	más	allá	de	los	nombres.	También	me	fijo	si	un	objeto	o
un	método	hacen	más	de	una	cosa.	Si	se	trata	de	un	objeto,	probablemente
tenga	que	dividirse	en	dos	o	más.	Si	se	trata	de	un	método,	siempre	recurro
a	la	refactorización	de	extracción	de	métodos	para	generar	un	método	que
exprese	con	mayor	claridad	su	cometido	y	varios	métodos	secundarios	que
expliquen	cómo	lo	hace.
La	 duplicación	 y	 la	 expresividad	 son	 dos	 factores	 que	 permiten	 mejorar
considerablemente	código	que	no	sea	limpio.	Sin	embargo,	existe	otra	cosa
que	también	hago	conscientemente,	aunque	sea	más	difícil	de	explicar.
Tras	años	en	este	trabajo,	creo	que	todos	los	programas	están	formados	de
elementos	muy	similares.	Un	ejemplo	es	la	búsqueda	de	elementos	en	una
colección.	Independientemente	de	que	sea	una	base	de	datos	de	registros	de
empleados	o	un	mapa	de	claves	y	valores,	o	una	matriz	de	elementos,	por	lo
general	tenemos	que	buscar	un	elemento	concreto	de	esa	colección.	Cuando
esto	sucede,	suelo	incluir	esa	implementación	concreta	en	un	método	o	una
clase	 más	 abstractos.	 De	 ese	 modo	 disfruto	 de	 una	 serie	 de	 interesantes
ventajas.
Puedo	implementar	la	funcionalidad	con	algo	sencillo,	como	un	mapa	hash,
por	ejemplo,	pero	como	ahora	todas	las	referencias	a	la	búsqueda	se	ocultan
en	mi	pequeña	abstracción,	puedo	modificar	la	implementación	siempre	que
desee.	Puedo	avanzar	rápidamente	al	tiempo	que	conservo	la	posibilidad	de
realizar	cambios	posteriores.
Además,	 la	abstracción	de	la	colección	suele	captar	mi	atención	en	lo	que
realmente	 sucede	 e	 impide	 que	 implemente	 comportamientos	 de
colecciones	arbitrarias	si	lo	que	realmente	necesito	es	una	forma	sencilla	de
localizar	un	elemento.
Reducir	 los	 duplicados,	 maximizar	 la	 expresividad	 y	 diseñar	 sencillas

abstracciones	en	 las	 fases	 iniciales.	Para	mí,	es	 lo	que	hace	que	el	código
sea	limpio.

En	estos	breves	párrafos,	Ron	 resume	el	 contenido	de	este	 libro.	Nada	de
duplicados,	un	objetivo,	expresividad	y	pequeñas	abstracciones.	Todo	está	ahí.

Ward	 Cunningham,	 inventor	 de	Wiki,	 Fit,	 y	 uno	 de	 los	 inventores	 de	 la
programación	 eXtreme.	 Uno	 de	 los	 impulsores	 de	 los	 patrones	 de	 diseño.
Una	de	las	mentes	tras	Smalltalk	y	la	programación	orientada	a	objetos.	El
padrino	de	todos	a	los	que	les	importa	el	código.

			

Sabemos	 que	 estamos	 trabajando	 con	 código	 limpio	 cuando	 cada	 rutina
que	 leemos	 resulta	 ser	 lo	 que	 esperábamos.	 Se	 puede	 denominar	 código
atractivo	cuando	el	código	hace	que	parezca	que	el	lenguaje	se	ha	creado
para	el	problema	en	cuestión.

Este	 tipo	 de	 afirmaciones	 son	 características	 de	 Ward.	 Las	 leemos,
asentimos	 y	 pasamos	 a	 la	 siguiente.	 Es	 tan	 razonable	 y	 evidente	 que	 apenas
parece	 profundo.	 Incluso	 podemos	 pensar	 que	 es	 lo	 que	 esperábamos.	 Pero
preste	atención.

«…	resulta	ser	lo	que	esperábamos».	¿Cuándo	fue	la	última	vez	que	vio	un
módulo	que	fuera	más	o	menos	lo	que	esperaba?	¿Lo	habitual	no	es	ver	módulos
complicados	 y	 enrevesados?	 ¿No	 es	 esta	 falta	 de	 concreción	 lo	 habitual?	 ¿No

está	acostumbrado	a	intentar	extraer	el	razonamiento	de	un	sistema	para	llegar	al
módulo	 que	 está	 leyendo?	 ¿Cuándo	 fue	 la	 última	 vez	 que	 leyó	 un	 código	 y
asintió	como	seguramente	haya	hecho	al	leer	la	afirmación	de	Ward?

Ward	 espera	 que	 al	 leer	 código	 limpio	 no	 le	 sorprenda.	 De	 hecho,	 ni
siquiera	 tendrá	 que	 esforzarse.	 Lo	 leerá	 y	 será	 prácticamente	 lo	 que	 esperaba.
Será	evidente,	sencillo	y	atractivo.	Cada	módulo	prepara	el	camino	del	siguiente.
Cada	uno	indica	cómo	se	escribirá	el	siguiente.	Los	programas	limpios	están	tan
bien	escritos	que	ni	siquiera	se	dará	cuenta.	El	diseñador	consigue	simplificarlo
todo	enormemente,	como	sucede	con	todos	los	diseños	excepcionales.

¿Y	 la	 noción	 de	 atractivo	 de	Ward?	 Todos	 hemos	 criticado	 que	 nuestros
lenguajes	no	se	hayan	diseñado	para	nuestros	problemas.	Pero	la	afirmación	de
Ward	 hace	 que	 ahora	 la	 responsabilidad	 sea	 nuestra.	 Afirma	 que	 el	 código
atractivo	 hace	 que	 el	 lenguaje	 parezca	 creado	 para	 el	 problema.	 Por	 tanto,
somos	responsables	de	que	el	lenguaje	parezca	sencillo.	No	es	el	lenguaje	el	que
hace	 que	 los	 programas	 parezcan	 sencillos,	 sino	 el	 programador	 que	 consigue
que	el	lenguaje	lo	parezca.

Escuelas	de	pensamiento

			

¿Y	 yo	 (Uncle	 Bob)?	 ¿Qué	 es	 para	 mí	 el	 código	 limpio?	 En	 este	 libro	 le
contaremos,	 con	 todo	 detalle,	 lo	 que	 yo	 y	 mis	 colegas	 pensamos	 del	 código
limpio.	Le	 contaremos	 lo	 que	 pensamos	 que	 hace	 que	 un	 nombre	 de	 variable,
una	función	o	una	clase	sean	limpias.

Presentaremos	estas	opiniones	de	forma	absoluta,	sin	disculparnos.	En	este

punto	de	nuestra	carrera,	ya	son	absolutas.	Son	nuestra	escuela	de	pensamiento
del	código	limpio.

Los	especialistas	de	las	artes	marciales	no	se	ponen	de	acuerdo	sobre	cuál
es	la	mejor	de	todas,	ni	siquiera	sobre	cuál	es	la	mejor	técnica	de	un	arte	marcial.
Es	habitual	que	los	maestros	de	las	artes	marciales	creen	sus	propias	escuelas	de
pensamiento	y	 los	alumnos	aprendan	de	ellos.	De	esta	 forma	nació	Gracie	Jiu
Jitsu,	 creada	 e	 impartida	 por	 la	 familia	 Gracie	 en	 Brasil;	Hakkoryu	 Jiu	 Jitsu,
fundada	e	 impartida	por	Okuyama	Ryuho	en	Tokio	o	Jeet	Kune	Do,	 fundada	e
impartida	por	Bruce	Lee	en	Estados	Unidos.

Los	 alumnos	 de	 estas	 disciplinas	 se	 sumergen	 en	 las	 enseñanzas	 del
fundador.	Se	dedican	a	aprender	lo	que	su	maestro	les	enseña	y	suelen	excluir	las
enseñanzas	 de	 otros	maestros.	Después,	 cuando	 han	mejorado	 su	 arte,	 pueden
convertirse	en	alumnos	de	otro	maestro	diferente	para	ampliar	sus	conocimientos
y	 su	 experiencia.	 Algunos	 seguirán	 mejorando	 sus	 habilidades,	 descubriendo
nuevas	técnicas	y	fundando	sus	propias	escuelas.

Ninguna	de	estas	escuelas	tiene	la	razón	absoluta	pero	dentro	de	cada	una
actuamos	 como	 si	 las	 enseñanzas	 y	 las	 técnicas	 fueran	 correctas.	 Después	 de
todo,	existe	una	forma	correcta	de	practicar	Hakkoryu	Jiu	Jitsu	o	Jeet	Kune	Do,
pero	esta	corrección	dentro	de	una	escuela	determinada	no	anula	las	enseñanzas
de	otra	diferente.

Imagine	 que	 este	 libro	 es	 una	 descripción	 de	 la	Escuela	 de	mentores	 del
código	 limpio.	 Las	 técnicas	 y	 enseñanzas	 impartidas	 son	 la	 forma	 en	 la	 que
practicamos	 nuestro	 arte.	 Podemos	 afirmar	 que,	 si	 sigue	 nuestras	 enseñanzas,
disfrutará	 de	 lo	 que	 hemos	 disfrutado	 nosotros,	 y	 aprenderá	 a	 crear	 código
limpio	 y	 profesional.	 Pero	 no	 cometa	 el	 error	 de	 pensar	 que	 somos	 los	 únicos
que	 tenemos	 razón.	 Existen	 otras	 escuelas	 y	 otros	 maestros	 tan	 profesionales
como	nosotros,	y	su	labor	es	aprender	de	ellos	también.

De	 hecho,	 muchas	 de	 las	 recomendaciones	 del	 libro	 son	 controvertidas,
seguramente	 no	 esté	 de	 acuerdo	 con	 muchas	 de	 ellas	 y	 puede	 que	 rechace
algunas	de	forma	definitiva.	Es	correcto.	No	somos	la	autoridad	final.	Pero,	por
otra	 parte,	 las	 recomendaciones	 del	 libro	 son	 algo	 en	 lo	 que	 hemos	 pensado
mucho.	Las	hemos	aprendido	tras	décadas	de	experiencia	y	ensayo	y	error.	Por
lo	 tanto,	 esté	o	no	de	acuerdo,	 sería	una	 lástima	que	no	apreciara,	y	 respetara,
nuestro	punto	de	vista.

Somos	autores

El	campo	@author	 de	un	 Javadoc	 indica	quiénes	 somos.	Somos	autores.	Y	 los

autores	tienen	lectores.	De	hecho,	los	autores	son	responsables	de	comunicarse
correctamente	con	sus	lectores.	La	próxima	vez	que	escriba	una	línea	de	código,
recuerde	que	es	un	autor	y	que	escribe	para	que	sus	lectores	juzguen	su	esfuerzo.

Seguramente	 se	 pregunte	 qué	 cantidad	 de	 código	 se	 lee	 realmente	 y	 si	 la
mayor	parte	del	esfuerzo	no	se	concentra	en	crearlo.

¿Alguna	vez	ha	reproducido	una	sesión	de	edición?	En	las	décadas	de	1980
y	1990	teníamos	editores	como	Emacs	que	controlaban	cada	pulsación	de	tecla.
Se	 podía	 trabajar	 durante	 una	 hora	 y	 después	 reproducir	 la	 sesión	 de	 edición
completa	 como	 una	 película	 a	 alta	 velocidad.	 Cuando	 lo	 hice,	 los	 resultados
fueron	fascinantes.

La	mayor	parte	de	la	reproducción	eran	desplazamientos	entre	módulos.

Bob	accede	al	módulo.
Se	desplaza	hasta	la	función	que	tiene	que	cambiar.
Se	detiene	y	piensa	en	las	posibles	opciones.
Oh,	 vuelve	 al	 inicio	 del	módulo	 para	 comprobar	 la	 inicialización	 de	 una
variable.
Ahora	vuelve	a	bajar	y	comienza	a	escribir.
Vaya,	borra	lo	que	había	escrito.
Vuelve	a	escribirlo.
Lo	vuelve	a	borrar.
Escribe	algo	diferente	pero	también	lo	borra.
Se	desplaza	a	otra	función	que	invoca	la	función	que	está	modificando	para
comprobar	cómo	se	invoca.
Vuelve	a	subir	y	escribe	el	mismo	código	que	acaba	de	borrar.
Se	detiene.
Vuelve	a	borrar	el	código.
Abre	 otra	 ventana	 y	 examina	 las	 subclases.	 ¿Se	 ha	 reemplazado	 esa
función?
…

Se	hace	una	 idea.	En	 realidad,	 la	proporción	entre	 tiempo	dedicado	a	 leer
frente	a	tiempo	dedicado	a	escribir	es	de	más	de	10:1.	Constantemente	tenemos
que	leer	código	antiguo	como	parte	del	esfuerzo	de	crear	código	nuevo.

Al	ser	una	proporción	tan	elevada,	queremos	que	la	lectura	del	código	sea
sencilla,	aunque	eso	complique	su	creación.	Evidentemente,	no	se	puede	escribir
código	sin	leerlo,	de	modo	que	si	es	más	fácil	de	leer	será	más	fácil	de	escribir.

Es	una	 lógica	sin	escapatoria.	No	se	puede	escribir	código	si	no	se	puede
leer	el	código	circundante.	El	código	que	intente	escribir	hoy	será	fácil	o	difícil
de	escribir	en	función	de	lo	fácil	o	difícil	de	leer	que	sea	el	código	circundante.
Si	quiere	avanzar	rápidamente,	 terminar	cuanto	antes	y	que	su	código	sea	fácil
de	escribir,	haga	que	sea	fácil	de	leer.

La	regla	del	Boy	Scout

No	 basta	 con	 escribir	 código	 correctamente.	 El	 código	 debe	 limpiarse	 con	 el
tiempo.	Todos	hemos	visto	que	el	código	se	corrompe	con	el	 tiempo,	de	modo
que	debemos	adoptar	un	papel	activo	para	evitarlo.

Los	 Boy	 Scouts	 norteamericanos	 tienen	 una	 sencilla	 regla	 que	 podemos
aplicar	a	nuestra	profesión:

Dejar	el	campamento	más	limpio	de	lo	que	se	ha	encontrado[5].

Si	todos	entregamos	el	código	más	limpio	de	lo	que	lo	hemos	recibido,	no
se	corromperá.	No	hace	falta	que	la	limpieza	sea	masiva.	Cambie	el	nombre	de
una	 variable,	 divida	 una	 función	 demasiado	 extensa,	 elimine	 elementos
duplicados,	simplifique	una	instrucción	if	compuesta.

¿Se	 imagina	 trabajar	 en	 un	proyecto	 en	 el	 que	 el	 código	mejorara	 con	 el
tiempo?	 ¿Cree	 que	 hay	 otras	 opciones	 que	 puedan	 considerarse	 profesionales?
De	 hecho,	 ¿la	 mejora	 continuada	 no	 es	 una	 parte	 intrínseca	 de	 la
profesionalidad?

Precuela	y	principios

En	muchos	 aspectos,	 este	 libro	 es	 una	 «precuela»	 de	 otro	 que	 escribí	 en	 2002
titulado	Agile	Software	Development:	Principles,	Patterns,	and	Practices	(PPP).
El	libro	PPP	trata	sobre	los	principios	del	diseño	orientado	a	objetos	y	muchas	de
las	 técnicas	 empleadas	 por	 desarrolladores	 profesionales.	 Si	 no	 ha	 leído	 PPP,
comprobará	 que	 continúa	 la	 historia	 contada	 en	 este	 libro.	 Si	 lo	 ha	 leído,
encontrará	muchas	de	 las	sensaciones	de	ese	 libro	 reproducidas	en	éste	a	nivel
del	código.

En	 este	 libro	 encontrará	 referencias	 esporádicas	 a	 distintos	 principios	 de

diseño	como	SRP	(Single	Responsibility	Principle	o	Principio	de	responsabilidad
única),	 OCP	 (Open	 Closed	 Principle	 o	 Principio	 Abierto/Cerrado)	 y	 DIP
(Dependency	 Inversion	 Principle	 o	 Principio	 de	 inversión	 de	 dependencias)
entre	otros.	Todos	estos	principios	se	describen	detalladamente	en	PPP.

Conclusión

Los	 libros	 sobre	 arte	 no	 le	 prometen	 que	 se	 convertirá	 en	 artista.	 Solamente
pueden	mostrarle	 herramientas,	 técnicas	 y	 procesos	 de	 pensamiento	 que	 otros
artistas	hayan	utilizado.	Del	mismo	modo,	este	 libro	no	puede	prometer	que	se
convierta	 en	 un	 buen	 programador,	 que	 tenga	 sentido	 del	 código.	 Sólo	 puede
mostrarle	 los	 procesos	 de	 pensamiento	 de	 buenos	 programadores	 y	 los	 trucos,
técnicas	y	herramientas	que	emplean.

Al	 igual	 que	 un	 libro	 sobre	 arte,	 este	 libro	 está	 repleto	 de	 detalles.
Encontrará	 mucho	 código.	 Verá	 código	 correcto	 y	 código	 incorrecto.	 Verá
código	 incorrecto	 transformado	 en	 código	 correcto.	 Verá	 listas	 de	 heurística,
disciplinas	 y	 técnicas.	 Verá	 un	 ejemplo	 tras	 otro.	 Y	 después	 de	 todo,	 será
responsabilidad	suya.

¿Recuerda	 el	 chiste	 sobre	 el	 violinista	 que	 se	 pierde	 camino	 de	 un
concierto?	Se	cruza	con	un	anciano	y	le	pregunta	cómo	llegar	al	Teatro	Real.	El
anciano	 mira	 al	 violinista	 y	 al	 violín	 que	 lleva	 bajo	 el	 brazo	 y	 le	 responde:
«Practique	joven,	practique».

Bibliografía
	

[Beck07]:	Implementation	Patterns,	Kent	Beck,	Addison-Wesley,	2007.
[Knuth92]:	Literate	Programming,	Donald	E.	Knuth,	Center	for	the	Study
of	Language	and	Information,	Leland	Stanford	Junior	University,	1992.

2
Nombres	con	sentido

por	Tim	Ottinger

Introducción

En	 el	 software,	 los	 nombres	 son	 omnipresentes.	 Aparecen	 en	 variables,
funciones,	 argumentos,	 clases	 y	 paquetes.	 Asignamos	 nombres	 a	 archivos	 y	 a
directorios,	a	archivos	jar,	war	y	ear.	Usamos	nombres	constantemente.	Por	ello,
debemos	 hacerlo	 bien.	 A	 continuación,	 veremos	 algunas	 reglas	 básicas	 para
crear	nombres	correctos.

Usar	nombres	que	revelen	las	intenciones

Es	 fácil	 afirmar	 que	 los	 nombres	 deben	 revelar	 nuestras	 intenciones.	 Lo	 que
queremos	recalcar	es	la	 importancia	de	hacerlo.	Elegir	nombres	correctos	lleva
tiempo,	pero	 también	 ahorra	 trabajo.	Por	 ello,	 preste	 atención	 a	 los	nombres	y
cámbielos	 cuando	 encuentre	 otros	 mejores.	 Todo	 el	 que	 lea	 su	 código	 se	 lo
agradecerá.

El	 nombre	 de	 una	 variable,	 función	 o	 clase	 debe	 responder	 una	 serie	 de
cuestiones	básicas.	Debe	indicar	por	qué	existe,	qué	hace	y	cómo	se	usa.	Si	un
nombre	requiere	un	comentario,	significa	que	no	revela	su	cometido.

int	d;	//	tiempo	transcurrido	en	días

El	 nombre	 d	 no	 revela	 nada.	 No	 evoca	 una	 sensación	 de	 tiempo
transcurrido,	ni	de	días.	Debe	elegir	un	nombre	que	especifique	lo	que	se	mide	y
la	unidad	de	dicha	medida:

int	elapsedTimeInDays;

int	daysSinceCreation;

int	daysSinceModification;

int	fileAgeInDays;

La	elección	de	nombres	que	revelen	intenciones	facilita	considerablemente
la	 comprensión	 y	 la	 modificación	 del	 código.	 ¿Para	 qué	 sirve	 el	 siguiente
código?

public	List<int[]>	getThem()	{

List<int[]>	list1	=	new	ArrayList<int[]>();

for	(int[]	x	:	theList)

if	(x[0]	==	4)

list1.add(x);

return	list1;

}

¿Por	 qué	 es	 complicado	 saber	 la	 función	 de	 este	 código?	 No	 hay
expresiones	complejas.	Los	espacios	y	el	sangrado	son	razonables.	Sólo	hay	tres
variables	 y	 dos	 constantes.	 Ni	 siquiera	 contiene	 clases	 complejas	 o	 métodos
polimórficos,	sólo	una	lista	de	matrices	(o	eso	parece).

El	problema	no	es	 la	 simplicidad	del	 código	 sino	 su	carácter	 implícito:	 el
grado	en	el	que	el	contexto	no	es	explícito	en	el	propio	código.	Implícitamente,
el	código	requiere	que	sepamos	las	respuestas	a	las	siguientes	preguntas:

¿Qué	contiene	theList?
¿Qué	significado	tiene	el	subíndice	cero	de	un	elemento	de	theList?
¿Qué	importancia	tiene	el	valor	4?
¿Cómo	se	usa	la	lista	devuelta?

Las	 respuestas	 a	 estas	 preguntas	 no	 se	 encuentran	 en	 el	 código,	 pero	 se
podrían	 haber	 incluido.	 Imagine	 que	 trabaja	 en	 un	 juego	 de	 buscar	 minas.	 El
tablero	 es	 una	 lista	 de	 celdas	 llamada	 theList.	 Cambiemos	 el	 nombre	 por
gameBoard.

Cada	celda	del	teclado	se	representa	por	medio	de	una	matriz.	El	subíndice

cero	es	la	ubicación	de	un	valor	de	estado	que,	cuando	es	4,	significa	que	se	ha
detectado.	Al	asignar	nombres	a	estos	conceptos	mejoramos	considerablemente
el	código:	public	List<int[]>	getFlaggedCells()	{

List<int[]>	flaggedCells	=	new	ArrayList<int[]>();

for	(int[]	cell	:	gameBoard)

if	(cell[STATUS_VALUE]	==	FLAGGED)

flaggedCells.add(cell);

return	flaggedCells;

}

La	 simplicidad	 del	 código	 no	 ha	 cambiado.	 Sigue	 teniendo	 los	 mismos
operadores	y	constantes	y	el	mismo	número	de	niveles	anidados,	pero	ahora	es
mucho	más	explícito.	Podemos	crear	una	sencilla	clase	para	celdas	en	lugar	de
usar	 una	 matriz	 de	 elementos	 int.	 Puede	 incluir	 una	 función	 que	 revele	 el
objetivo	 (con	 el	 nombre	isFlagged)	 para	 ocultar	 los	 números.	 El	 resultado	 es
una	nueva	versión	de	la	función:	public	List<Cell>	getFlaggedCells()	{

List<Cell>	flaggedCells	=	new	ArrayList<Cell>();

for	(Cell	cell	:	gameBoard)

if	(cell.isFlagged())

flaggedCells.add(cell);

return	flaggedCells;

}

Con	 estos	 sencillos	 cambios	 de	 nombre,	 es	 fácil	 saber	 qué	 sucede.	 Es	 la
ventaja	de	seleccionar	nombres	adecuados.

Evitar	la	desinformación

Los	programadores	deben	evitar	dejar	pistas	falsas	que	dificulten	el	significado
del	 código.	 Debemos	 evitar	 palabras	 cuyo	 significado	 se	 aleje	 del	 que
pretendemos.	Por	ejemplo,	hp,	aix	y	sco	son	nombres	de	variables	pobres	ya	que
son	los	nombres	de	plataformas	o	variantes	de	Unix.	Aunque	se	trate	del	código
de	una	hipotenusa	y	hp	parezca	la	abreviatura	correcta,	puede	no	serlo.

No	haga	referencia	a	un	grupo	de	cuentas	como	accountList	a	menos	que
realmente	sea	una	lista	(List).	La	palabra	lista	tiene	un	significado	concreto	para
los	 programadores.	 Si	 el	 contenedor	 de	 las	 cuentas	 no	 es	 realmente	 una	 lista,
puede	 provocar	 falsas	 conclusiones[6].	 Por	 tanto,	 resulta	 más	 adecuado	 usar
accountGroup,	bunchOfAccounts	o	simplemente	accounts.

Evite	usar	nombres	con	variaciones	mínimas.	¿Cuánto	se	tarda	en	apreciar
la	 sutil	 diferencia	 entre	 XYZControllerForEfficientHandlingOfStrings	 y
XYZControllerForEfficientStorageOfStrings	 en	 un	 módulo?	 Ambas
palabras	tienen	una	forma	similar.

La	 ortografía	 similar	 de	 conceptos	 parecidos	 es	 información;	 el	 uso	 de
ortografía	incoherente	es	desinformación.	En	los	entornos	modernos	de	Java,	el
código	 se	 completa	 de	 forma	 automática.	 Escribimos	 varios	 caracteres	 de	 un
nombre	y	pulsamos	varias	teclas	para	obtener	una	lista	de	posibles	opciones	de

un	 nombre.	 Es	 muy	 útil	 si	 los	 nombres	 de	 elementos	 similares	 se	 ordenan
alfabéticamente	de	forma	conjunta	y	si	las	diferencias	son	muy	evidentes,	ya	que
es	 probable	 que	 el	 programador	 elija	 un	 objeto	 por	 nombre	 sin	 fijarse	 en	 los
comentarios	o	la	lista	de	métodos	proporcionados	por	una	clase.

Un	ejemplo	de	nombre	desinformativo	sería	el	uso	de	la	L	minúscula	o	la	O
mayúscula	 como	 nombres	 de	 variables,	 sobre	 todo	 combinados.	 El	 problema,
evidentemente,	es	que	se	parecen	a	las	constantes	1	y	0	respectivamente:	int	a	=	l;

if	(O	==	l)

a	=	O1;

else

l	=	01;

El	lector	puede	pensar	que	es	una	invención,	pero	hemos	visto	código	con
abundancia	de	estos	elementos.	En	un	caso,	el	autor	del	código,	sugirió	usar	una
fuente	distinta	para	que	las	diferencias	fueran	más	evidentes,	una	solución	que	se
hubiera	transmitido	a	todos	los	futuros	programadores	como	tradición	oral	o	en
un	 documento	 escrito.	 El	 problema	 se	 resolvió	 con	 carácter	 definitivo	 y	 sin
necesidad	de	crear	nuevos	productos,	con	tan	sólo	cambiar	los	nombres.

Realizar	distinciones	con	sentido

			

Los	programadores	se	crean	un	problema	al	crear	código	únicamente	dirigido	a
un	compilador	o	intérprete.	Por	ejemplo,	como	se	puede	usar	el	mismo	nombre
para	hacer	referencia	a	dos	elementos	distintos	en	el	mismo	ámbito,	puede	verse
tentado	 a	 cambiar	 un	 nombre	 de	 forma	 arbitraria.	 En	 ocasiones	 se	 hace
escribiéndolo	 incorrectamente,	 lo	 que	 provoca	 que	 los	 errores	 ortográficos
impidan	la	compilación[7].

No	basta	con	añadir	series	de	números	o	palabras	adicionales,	aunque	eso
satisfaga	al	compilador.	Si	 los	nombres	tienen	que	ser	distintos,	 también	deben
tener	un	significado	diferente.

Los	 nombres	 de	 series	 numéricas	 (a1,	 a2…	 aN)	 son	 lo	 contrario	 a	 los
nombres	 intencionados.	No	desinforman,	 simplemente	no	ofrecen	 información;
son	una	pista	sobre	la	intención	del	autor.	Fíjese	en	lo	siguiente:

public	static	void	copyChars(char	a1[],	char	a2[])	{

for	(int	i	=	0;	i	<	a1.length;	i++)	{

a2[i]	=	a1[i];

}

}

Esta	 función	 se	 lee	 mejor	 cuando	 se	 usa	 source	 y	 destination	 como
nombres	de	argumentos.

Las	palabras	adicionales	son	otra	distinción	sin	sentido.	Imagine	que	tiene
la	clase	Product.	Si	tiene	otra	clase	con	el	nombre	ProductInfo	o	ProductData,
habrá	creado	nombres	distintos,	pero	con	el	mismo	significado.	Info	y	Data	son
palabras	adicionales,	como	a,	an	y	the.

No	 es	 incorrecto	 usar	 prefijos	 como	 a	 y	 the	mientras	 la	 distinción	 tenga
sentido.	 Imagine	 que	 usa	 a	 para	 variables	 locales	 y	 for	 para	 argumentos	 de
funciones[8].	 El	 problema	 aparece	 cuando	 decide	 invocar	 la	 variable	 theZork
porque	ya	tiene	otra	variable	con	el	nombre	zork.

Las	 palabras	 adicionales	 son	 redundantes.	 La	 palabra	 variable	 no	 debe
incluirse	nunca	en	el	nombre	de	una	variable.	La	palabra	table	no	debe	incluirse
nunca	en	el	nombre	de	una	tabla.	¿Es	mejor	NameString	que	Name?	¿Podría	ser
Name	un	número	de	coma	flotante?	En	caso	afirmativo,	incumple	la	regla	anterior
sobre	desinformación.	Imagine	que	encuentra	una	clase	con	el	nombre	Customer
y	 otra	 con	 el	 nombre	 CustomerObject.	 ¿Cuál	 sería	 la	 distinción?	 ¿Cuál
representa	mejor	el	historial	de	pagos	de	un	cliente?

Existe	 una	 aplicación	 que	 lo	 ilustra.	 Hemos	 cambiado	 los	 nombres	 para
proteger	al	culpable.	Veamos	el	error	exacto:

getActiveAccount();

getActiveAccounts();

getActiveAccountInfo();

¿Cómo	 saben	 los	 programadores	 de	 este	 proyecto	 qué	 función	 deben
invocar?

En	 ausencia	 de	 convenciones	 concretas,	 la	 variable	 moneyAmount	 no	 se
distingue	de	money,	customerInfo	no	se	distingue	de	customer,	accountData	no
se	 distingue	 de	 account	 y	 theMessage	 no	 se	 distingue	 de	 message.	 Debe
diferenciar	los	nombres	de	forma	que	el	lector	aprecie	las	diferencias.

Usar	nombres	que	se	puedan	pronunciar

A	 los	humanos	 se	nos	dan	bien	 las	 palabras.	Gran	parte	de	nuestro	 cerebro	 se
dedica	 al	 concepto	 de	 palabras.	 Y,	 por	 definición,	 las	 palabras	 son
pronunciables.	Sería	una	pena	malgastar	esa	parte	de	nuestro	cerebro	dedicada	al
lenguaje	 hablado.	 Por	 tanto,	 cree	 nombres	 pronunciables.	 Si	 no	 lo	 puede
pronunciar,	 no	 podrá	 explicarlo	 sin	 parecer	 tonto.	 Es	 un	 factor	 importante,	 ya

que	la	programación	es	una	actividad	social.
Conozco	una	empresa	que	usa	genymdhms	 (fecha	de	generación,	año,	mes,

día,	hora,	minuto	y	segundo)	y	lo	pronuncian	tal	cual.	Yo	tengo	la	costumbre	de
pronunciar	 todo	 tal	 y	 como	 lo	 veo	 escrito,	 de	 forma	 que	 muchos	 analistas	 y
diseñadores	acabaron	por	llamarme	algo	como	«genimedemes».	Era	un	chiste	y
nos	parecía	divertido,	pero	en	 realidad	estábamos	 tolerando	el	uso	de	nombres
pobres.	 Teníamos	 que	 explicar	 las	 variables	 a	 los	 nuevos	 programadores	 y
cuando	 las	 pronunciaban,	 usaban	 palabras	 inventadas	 en	 lugar	 de	 nombres
correctos.	Compare:	class	DtaRcrd102	{

private	Date	genymdhms;

private	Date	modymdhms;

private	final	String	pszqint	=	“102”;

/*…	*/

};

con:
class	Customer	{

private	Date	generationTimestamp;

private	Date	modificationTimestamp;

private	final	String	recordId	=	“102”;

/*…	*/

};

Ahora	se	puede	mantener	una	conversación	inteligente:	«Eh,	Mikey,	fíjate
en	este	registro.	La	marca	de	 tiempo	de	generación	es	para	mañana.	¿Cómo	es
posible?»

Usar	nombres	que	se	puedan	buscar

Los	nombres	de	una	letra	y	las	constantes	numéricas	tienen	un	problema:	no	son
fáciles	 de	 localizar	 en	 el	 texto.	 Se	 puede	 detectar	 MAX_CLASSES_PER_STUDENT,
pero	 el	 número	 7	 resulta	más	 complicado.	 Las	 búsquedas	 pueden	 devolver	 el
dígito	 como	 parte	 de	 nombres	 de	 archivo,	 otras	 definiciones	 de	 constantes	 o
expresiones	en	las	que	se	use	con	otra	intención.	Mucho	peor	si	la	constante	es
un	número	extenso	y	alguien	ha	intercambiado	los	dígitos,	lo	que	genera	un	error
inmediato	y	no	aparece	en	la	búsqueda.

Del	mismo	modo,	el	nombre	e	es	una	opción	muy	pobre	para	variables	que
el	programador	tenga	que	buscar.	Es	la	letra	más	usada	en	inglés	y	aparece	en	la
práctica	 totalidad	 de	 los	 textos	 de	 un	 programa.	A	 este	 respecto,	 los	 nombres
extensos	superan	a	los	breves	y	cualquier	nombre	que	se	pueda	buscar	supera	a
una	constante	en	el	código.

Personalmente	prefiero	nombres	de	una	letra	que	sólo	se	puedan	usar	como
variables	 locales	 dentro	 de	 métodos	 breves.	 La	 longitud	 de	 un	 nombre	 debe
corresponderse	al	tamaño	de	su	ámbito	[N5].	Si	una	variable	o	constante	se	usa
en	 varios	 puntos	 del	 código,	 debe	 asignarle	 un	 nombre	 que	 se	 pueda	 buscar.

Compare:	for	(int	j=0;	j<34;	j++)	{
s	+=	(t[j]*4)/5;

}

con:
int	realDaysPerIdealDay	=	4;

const	int	WORK_DAYS_PER_WEEK	=	5;

int	sum	=	0;

for	(int	j	=	0;	j	<	NUMBER_OF_TASKS;	j++)	{

int	realTaskDays	=	taskEstimate[j]	*	realDaysPerIdealDay;

int	realTaskWeeks	=	(realdays	/	WORK_DAYS_PER_WEEK);

sum	+=	realTaskWeeks;

}

En	este	ejemplo,	sum	no	es	un	nombre	especialmente	útil,	pero	al	menos	se
puede	 buscar.	 Se	 usa	 una	 función	 más	 extensa,	 pero	 comprobará	 que	 resulta
mucho	más	 fácil	 buscar	 WORK_DAYS_PER_WEEK	 que	 todas	 las	 instancias	 de	 5	 y
filtrar	la	lista	a	los	casos	con	el	significado	adecuado.

Evitar	codificaciones

Ya	tenemos	suficientes	codificaciones	como	para	tener	que	añadir	otras	nuevas.
Al	 codificar	 información	 de	 tipos	 o	 ámbitos	 en	 un	 nombre	 se	 dificulta	 la
descodificación.	 No	 parece	 razonable	 que	 todos	 los	 nuevos	 empleados	 tengan
que	aprender	otro	lenguaje	de	codificación	además	del	código	con	el	que	van	a
trabajar.	 Es	 una	 carga	 mental	 innecesaria	 a	 la	 hora	 de	 intentar	 solucionar	 un
problema.	Los	nombres	codificados	resultan	impronunciables	y	suelen	escribirse
de	forma	incorrecta.

Notación	húngara
Antiguamente,	cuando	trabajábamos	con	lenguajes	en	los	que	la	longitud	de	los
nombres	era	un	reto,	incumplíamos	esta	regla	a	nuestro	pesar.	Fortran	forzaba	las
codificaciones	 convirtiendo	 la	 primera	 letra	 de	 un	 tipo	 en	 código.	 En	 sus
primeras	versiones,	BASIC	sólo	 se	permitía	una	 letra	y	un	dígito.	La	notación
húngara	(HN)	lo	llevó	a	un	nuevo	nivel.

HN	se	consideraba	muy	importante	en	el	API	C	de	Windows,	donde	 todo
era	 un	 control	 entero,	 un	 puntero	 long,	 un	 puntero	 void	 o	 una	 de	 varias
implementaciones	 de	 string	 (con	 diferentes	 usos	 y	 atributos).	 Por	 aquel
entonces,	 el	 compilador	 no	 comprobaba	 los	 tipos,	 de	 modo	 que	 los
programadores	tenían	que	recordarlos.

En	los	lenguajes	modernos	disponemos	de	sistemas	de	tipos	más	completos
y	 los	 compiladores	 recuerdan	 los	 tipos	 y	 los	 aplican.	 Es	 más,	 existe	 una
tendencia	a	usar	clases	y	funciones	más	breves	para	que	los	usuarios	aprecien	la

declaración	de	las	variables	que	usan.
Los	programadores	de	Java	no	 tienen	que	codificar	 tipos.	Los	objetos	son

de	 tipos	 fuertes	 y	 los	 entornos	 de	 edición	han	 avanzado	 tanto	 que	detectan	 un
error	de	 tipo	antes	de	ejecutar	 la	 compilación.	Por	 ello,	 en	 la	 actualidad	HN	y
otras	 formas	de	 codificación	de	 tipos	no	 son	más	que	un	 impedimento.	Hacen
que	 sea	más	 complicado	 cambiar	 el	 nombre	 o	 el	 tipo	 de	 una	 variable	 o	 clase.
Dificultan	 la	 legibilidad	 del	 código	 y	 pueden	 hacer	 que	 el	 sistema	 de
codificación	confunda	al	lector:	PhoneNumber	phoneString;

//	el	nombre	no	cambia	cuando	cambia	el	tipo

Prefijos	de	miembros
Tampoco	 es	necesario	 añadir	m_	 como	prefijo	 a	 los	nombres	de	variables.	Las
clases	y	funciones	tienen	el	tamaño	necesario	para	no	tener	que	hacerlo,	y	debe
usar	un	entorno	de	edición	que	resalte	o	coloree	los	miembros	para	distinguirlos.

public	class	Part	{

private	String	m_dsc;	//	La	descripción	textual

void	setName(String	name)	{

m_dsc	=	name;

}

}

public	class	Part	{

String	description;

void	setDescription(String	description)	{

this.description	=	description;

}

}

Además,	los	usuarios	aprenden	rápidamente	a	ignorar	el	prefijo	(o	sufijo)	y
fijarse	 en	 la	 parte	 con	 sentido	 del	 nombre.	Cuanto	más	 código	 leemos,	menos
nos	 fijamos	 en	 los	 prefijos.	En	última	 instancia,	 los	 prefijos	 son	un	 indicio	 de
código	antiguo.

Interfaces	e	Implementaciones
Existe	un	caso	especial	para	usar	codificaciones.	Imagine	por	ejemplo	que	crea
una	 factoría	 abstracta	 para	 crear	 formas.	 Esta	 factoría	 será	 una	 interfaz	 y	 se
implementará	 por	 medio	 de	 una	 clase	 concreta.	 ¿Qué	 nombres	 debe	 asignar?
¿IShapeFactory	 y	 ShapeFactory?	 Prefiero	 las	 interfaces	 sin	 adornos.	 La	 I
inicial,	 tan	 habitual	 en	 los	 archivos	 de	 legado	 actuales	 es,	 en	 el	 mejor	 de	 los
casos,	una	distracción,	y	 en	 el	peor,	 un	exceso	de	 información.	No	quiero	que
mis	 usuarios	 sepan	 que	 se	 trata	 de	 una	 interfaz,	 solamente	 que	 se	 trata	 de
ShapeFactory.	Si	tengo	que	codificar	la	interfaz	o	la	implementación,	opto	por
ésta	 última.	 Es	 mejor	 usar	 ShapeFactoryImp	 o	 incluso	 CShapeFactory,	 que

codificar	la	interfaz.

Evitar	asignaciones	mentales

Los	 lectores	 no	 tienen	 que	 traducir	mentalmente	 sus	 nombres	 en	 otros	 que	 ya
conocen.	 Este	 problema	 suele	 aparecer	 al	 elegir	 entre	 no	 usar	 términos	 de
dominio	de	problemas	o	de	soluciones.

Es	un	problema	de	los	nombres	de	variables	de	una	sola	letra.	Un	contador
de	bucles	se	podría	bautizar	como	i,	j	o	k	 (pero	nunca	l)	si	su	ámbito	es	muy
reducido	y	no	hay	conflictos	con	otros	nombres,	ya	que	los	nombres	de	una	letra
son	 tradicionales	en	contadores	de	bucles.	Sin	embargo,	en	otros	contextos,	un
nombre	de	una	letra	es	una	opción	muy	pobre:	es	como	un	marcador	de	posición
que	el	lector	debe	asignar	mentalmente	a	un	concepto	real.	No	hay	peor	motivo
para	usar	el	nombre	c	que	a	y	b	ya	estén	seleccionados.

Por	 lo	 general,	 los	 programadores	 son	 gente	 inteligente.	 A	 la	 gente
inteligente	le	gusta	presumir	de	sus	habilidades	mentales.	Si	puede	recordar	que
r	es	la	versión	en	minúscula	de	una	URL	sin	el	host	y	el	sistema,	debe	ser	muy
listo.

Una	 diferencia	 entre	 un	 programador	 inteligente	 y	 un	 programador
profesional	 es	 que	 este	 último	 sabe	 que	 la	 claridad	 es	 lo	 que	 importa.	 Los
profesionales	 usan	 sus	 poderes	 para	 hacer	 el	 bien	 y	 crean	 código	 que	 otros
puedan	entender.

Nombres	de	clases

Las	 clases	 y	 los	 objetos	 deben	 tener	 nombres	 o	 frases	 de	 nombre	 como
Customer,	WikiPage,	Account	y	AddressParser.	Evite	palabras	como	Manager,
Processor,	Data,	o	Info	en	el	nombre	de	una	clase.	El	nombre	de	una	clase	no
debe	ser	un	verbo.

Nombres	de	métodos

Los	métodos	deben	 tener	nombres	de	verbo	como	postPayment,	deletePage	o
save.	 Los	 métodos	 de	 acceso,	 de	 modificación	 y	 los	 predicados	 deben	 tener
como	nombre	su	valor	y	usar	como	prefijo	get,	set	e	is	de	acuerdo	al	estándar
de	javabean[9].

string	name	=	employee.getName();

customer.setName(“mike”);

if	(paycheck.isPosted())…

Al	 sobrecargar	 constructores,	 use	 métodos	 de	 factoría	 estáticos	 con
nombres	que	describan	los	argumentos.	Por	ejemplo:

Complex	fulcrumPoint	=	Complex.FromRealNumber(23.0);

es	mejor	que:
Complex	fulcrumPoint	=	new	Complex(23.0);

Refuerce	 su	 uso	 convirtiendo	 en	 privados	 sus	 constructores
correspondientes.

No	se	exceda	con	el	atractivo

			
Si	 los	 nombres	 son	 demasiado	 inteligentes,	 sólo	 los	 recordarán	 los	 que
compartan	 el	 sentido	 del	 humor	 de	 su	 autor,	 y	 sólo	 mientras	 se	 acuerden	 del
chiste.	¿Sabrán	qué	significa	la	función	HolyHandGrenade?	Sin	duda	es	atractiva,
pero	 en	 este	 caso	 puede	 que	 DeleteItems	 fuera	 más	 indicado.	 Opte	 por	 la
claridad	 antes	 que	 por	 el	 entretenimiento.	 En	 el	 código,	 el	 atractivo	 suele
aparecer	 como	 formas	 coloquiales	 o	 jergas.	 Por	 ejemplo,	 no	 use	 whack()	 en
lugar	de	kill().	No	recurra	a	bromas	culturales	como	eatMyShorts()	si	quiere
decir	abort().

Diga	lo	que	piense.	Piense	lo	que	diga.

Una	palabra	por	concepto

Elija	una	palabra	por	cada	concepto	abstracto	y	manténgala.	Por	ejemplo,	resulta
confuso	 usar	 fetch,	 retrieve	 y	 get	 como	 métodos	 equivalentes	 de	 clases
distintas.	 ¿Cómo	 va	 a	 recordar	 qué	 método	 se	 corresponde	 a	 cada	 clase?
Desafortunadamente,	 tendrá	 que	 recordar	 qué	 empresa,	 grupo	 o	 individuo	 ha
creado	 la	 biblioteca	 o	 clase	 en	 cuestión	 para	 recordar	 qué	 término	 se	 ha
empleado.	En	caso	contrario,	perderá	mucho	tiempo	buscando	en	encabezados	y

fragmentos	de	código.
Los	 entornos	 de	 edición	modernos	 como	 Eclipse	 e	 IntelliJ	 ofrecen	 pistas

sensibles	 al	 contexto,	 como	 la	 lista	 de	 métodos	 que	 puede	 invocar	 en	 un
determinado	objeto.	Pero	esta	lista	no	suele	incluir	los	comentarios	de	nombres
de	 funciones	 y	 listas	 de	 parámetros.	 Tendrá	 suerte	 si	muestra	 los	 nombres	 de
parámetros	de	las	declaraciones	de	funciones.	Los	nombres	de	funciones	deben
ser	 independientes	 y	 coherentes	 para	 que	 pueda	 elegir	 el	 método	 correcto	 sin
necesidad	de	búsquedas	adicionales.

Del	mismo	modo,	resulta	confuso	tener	un	controlador,	un	administrador	y
un	 control	 en	 la	 misma	 base	 de	 código.	 ¿Cuál	 es	 la	 diferencia	 entre
DeviceManager	y	ProtocolController?	¿Por	qué	no	son	los	dos	controladores	o
administradores?	 ¿Son	 controladores?	 El	 nombre	 hace	 que	 espere	 que	 dos
objetos	tengan	un	tipo	diferente	y	clases	diferentes.

Un	léxico	coherente	es	una	gran	ventaja	para	los	programadores	que	tengan
que	usar	su	código.

No	haga	juegos	de	palabras

Evite	usar	la	misma	palabra	con	dos	fines	distintos.	Suele	hacerse	en	juegos	de
palabras.	Si	 aplica	 la	 regla	 de	 una	palabra	 por	 conceptos,	 acabará	 con	muchas
clases	que	por	ejemplo	tengan	un	método	add.	Mientras	las	listas	de	parámetros
y	 los	 valores	 devueltos	 de	 los	 distintos	 métodos	 add	 sean	 semánticamente
equivalentes,	no	hay	problema.

Sin	 embargo,	 alguien	 puede	 decidir	 usar	 la	 palabra	 add	 por	 motivos	 de
coherencia,	aunque	no	sea	en	el	mismo	sentido.	Imagine	que	hay	varias	clases	en
las	que	add	crea	un	nuevo	valor	sumando	o	concatenando	dos	valores	existentes.
Imagine	ahora	que	crea	una	nueva	clase	con	un	método	que	añada	su	parámetro
a	una	colección.	 ¿Este	método	debe	 tener	 el	método	add?	Parece	coherente	ya
que	 hay	 otros	 muchos	 métodos	 add,	 pero	 en	 este	 caso	 hay	 una	 diferencia
semántica,	 de	 modo	 que	 debemos	 usar	 un	 nombre	 como	 insert	 o	 append.
Llamar	add	al	nuevo	método	sería	un	juego	de	palabras.

Nuestro	 objetivo,	 como	 autores,	 es	 facilitar	 la	 comprensión	 del	 código.
Queremos	que	 el	 código	 sea	 algo	 rápido,	 no	un	 estudio	 exhaustivo.	Queremos
usar	un	modelo	en	el	que	el	autor	sea	el	responsable	de	transmitir	el	significado,
no	un	modelo	académico	que	exija	investigar	el	significado	mostrado.

Usar	nombres	de	dominios	de	soluciones

Recuerde	 que	 los	 lectores	 de	 su	 código	 serán	 programadores.	 Por	 ello,	 use
términos	informáticos,	algoritmos,	nombres	de	patrones,	términos	matemáticos	y
demás.	No	conviene	extraer	todos	los	nombres	del	dominio	de	problemas	ya	que
no	queremos	que	nuestros	colegas	 tengan	que	preguntar	el	 significado	de	cada
nombre	en	especial	cuando	ya	conocen	el	concepto	bajo	otro	nombre	diferente.

El	nombre	AccountVisitor	 tiene	mucho	significado	para	un	programador
familiarizado	 con	 el	 patrón	 VISITOR.	 ¿Qué	 programador	 no	 sabe	 lo	 que	 es
JobQueue?	 Hay	 cientos	 de	 cosas	 técnicas	 que	 los	 programadores	 tienen	 que
hacer	y	elegir	nombres	técnicos	para	dichas	cosas	suele	ser	lo	más	adecuado.

Usar	nombres	de	dominios	de	problemas

Cuando	no	exista	un	término	de	programación	para	lo	que	esté	haciendo,	use	el
nombre	del	dominio	de	problemas.	Al	menos	el	programador	que	mantenga	su
código	podrá	preguntar	el	significado	a	un	experto	en	dominios.

Separar	los	conceptos	de	dominio	de	soluciones	y	de	problemas	es	parte	del
trabajo	de	un	buen	programador	y	diseñador.	El	código	que	tenga	más	relación
con	los	conceptos	del	dominio	de	problemas	tendrá	nombres	extraídos	de	dicho
dominio.

Añadir	contexto	con	sentido

Algunos	nombres	tienen	significado	por	sí	mismos,	pero	la	mayoría	no.	Por	ello,
debe	incluirlos	en	un	contexto,	en	clases,	funciones	y	espacios	de	nombres	con
nombres	 adecuados.	Cuando	 todo	 lo	demás	 falle,	 pueden	usarse	prefijos	 como
último	recurso.

Imagine	 que	 tiene	 las	 variables	 firstName,	 lastName,	 street,
houseNumber,	city,	state	 y	 zipcode.	 Si	 las	 combina,	 es	 evidente	 que	 forman
una	dirección.	Pero	si	 la	variable	state	se	usa	de	forma	aislada	en	un	método,
¿sabría	que	forma	parte	de	una	dirección?	Puede	añadir	contexto	por	medio	de
prefijos:	addrFirstName,	addrLastName,	addrState,	etc.	Al	menos	 los	 lectores
comprenderán	 que	 estas	 variables	 forman	 parte	 de	 una	 estructura	 mayor.
Evidentemente,	 es	 mejor	 crear	 la	 clase	 Address.	 De	 ese	 modo,	 incluso	 el
compilador	sabrá	que	las	variables	pertenecen	a	un	concepto	más	amplio.

Fíjese	en	el	método	del	Listado	2-1.	 ¿Las	variables	necesitan	un	contexto
con	más	sentido?	El	nombre	de	la	función	sólo	ofrece	parte	del	contexto,	el	resto
se	obtiene	del	algoritmo.	Tras	leer	la	función,	verá	que	las	tres	variables	number,
verb	 y	 pluralModifier	 forman	 parte	 del	 mensaje	 guess	 statistics.
Desafortunadamente,	 es	 necesario	 inferir	 el	 contexto.	 Al	 leer	 el	 método,	 el
significado	de	las	variables	no	es	evidente.

Listado	2-1
Variables	en	un	contexto	ambiguo.

private	void	printGuessStatistics(char	candidate,	int	count)	{

String	number;

String	verb;

String	pluralModifier;

if	(count	==	0)	{

number	=	“no”;

verb	=	“are”;

pluralModifier	=	“s”;

}	else	if	(count	==	1)	{

number	=	“1”;

verb	=	“is”;

pluralModifier	=	“”;

}	else	{

number	=	Integer.toString(count);

verb	=	“are”;

pluralModifier	=	“s”;

}

String	guessMessage	=	String.format(

“There	%s	%s	%s%s”,	verb,	number,	candidate,	pluralModifier

);

print(guessMessage);

}

La	función	es	demasiado	extensa	y	las	variables	aparecen	por	todas	partes.
Para	dividir	la	función	en	fragmentos	más	reducidos	necesitamos	crear	una	clase
GuessStatisticsMessage	 y	 convertir	 a	 las	 tres	 variables	 en	 campos	 de	 la
misma.	 De	 este	 modo	 contamos	 con	 un	 contexto	 más	 obvio	 para	 las	 tres
variables.	 Forman	 parte	 sin	 duda	 de	 GuessStatisticsMessage.	 La	mejora	 del
contexto	 también	 permite	 que	 el	 algoritmo	 sea	 más	 limpio	 y	 se	 divida	 en
funciones	más	reducidas	(véase	el	Listado	2-2).

Listado	2-2
Variables	con	un	contexto.

public	class	GuessStatisticsMessage	(

private	String	number;

private	String	verb;

private	String	pluralModifier;

public	String	make(char	candidate,	int	count)	{

createPluralDependentMessageParts(count);

return	String.format(

“There	%s	%s	%s%s,

verb,	number,	candidate,	pluralModifier);

}

private	void	createPluralDependentMessageParts(int	count)	{

if	(count	==	0)	{

thereAreNoLetters();

}	else	if	(cout	==	1)	{

thereIsOneLetter();

}	else	{

thereAreManyLetters(count);

}

}

private	void	thereAreManyLetters(int	count)	{

number	=	“1”;

verb	=	“is”;

pluralModifier	=	“”;

}

private	void	thereIsOneLetter()	{

number	=	“1”;

verb	=	“is”;

pluralModifier	=	“”;

}

private	void	thereAreNoLetters()	{

number	=	“no”;

verb	=	“are”;

pluralModifier	=	“s”;

}

}

No	añadir	contextos	innecesarios

En	la	aplicación	imaginaria	Gas	Station	Deluxe,	no	es	aconsejable	usar	el	prefijo
GSD	 en	 todas	 las	 clases.	 Es	 trabajar	 contra	 las	 herramientas	 proporcionadas.
Introduzca	G	y	pulse	la	tecla	de	finalización	para	acceder	a	una	lista	interminable
de	todas	las	clases	del	sistema.	¿Es	lo	correcto?	¿Por	qué	dificultar	la	ayuda	del
IDE?

Del	mismo	modo,	 imagine	 que	 ha	 creado	 la	 clase	MailingAddress	 en	 un
módulo	 de	 contabilidad	 de	 GSD,	 con	 el	 nombre	 GSDAccountAddress.	 Después,
necesita	 una	 dirección	 de	 correo	 para	 la	 aplicación	 de	 contacto	 con	 el	 cliente.
¿Usará	 GSDAccountAddress?	 ¿Le	 parece	 el	 nombre	 correcto?	 10	 de	 los	 17
caracteres	son	redundantes	o	irrelevantes.

Los	 nombres	 breves	 suelen	 ser	más	 adecuados	 que	 los	 extensos,	 siempre
que	sean	claros.	No	añada	más	contexto	del	necesario	a	un	nombre.	Los	nombres
accountAddress	 y	 customerAddress	 son	 perfectos	 para	 instancias	 de	 la	 clase
Address	pero	no	sirven	como	nombres	de	clase.	Address	sirve	como	nombre	de
clase.	 Para	 distinguir	 entre	 direcciones	 MAC,	 direcciones	 de	 puertos	 y
direcciones	 Web,	 podría	 usar	 PostalAddress,	 MAC	 y	 URI.	 Los	 nombres
resultantes	son	más	precisos,	el	objetivo	de	cualquier	nombre.

Conclusión

Lo	más	complicado	a	la	hora	de	elegir	un	buen	nombre	es	que	requiere	habilidad
descriptiva	 y	 acervo	 cultural.	 Es	 un	 problema	 de	 formación	 más	 que	 técnico,
empresarial	 o	 administrativo.	 Como	 resultado,	 mucha	 gente	 del	 sector	 no

aprende	a	hacerlo	bien.
La	gente	teme	que	al	cambiar	los	nombres	otros	programadores	se	quejen.

Nosotros	 no	 compartimos	 ese	 temor	 y	 agradecemos	 los	 cambios	 de	 nombre
(siempre	que	sean	a	mejor).	En	muchos	casos	no	memorizamos	los	nombres	de
clases	y	métodos.	Usamos	herramientas	modernas	para	estos	detalles	y	así	poder
centrarnos	en	si	el	código	se	lee	como	frases	o	párrafos,	o	al	menos	como	tablas
y	estructuras	de	datos	(una	frase	no	siempre	es	la	mejor	forma	de	mostrar	datos).
Seguramente	acabará	sorprendiendo	a	alguien	cuando	cambie	los	nombres,	como
puede	suceder	con	cualquier	otra	mejora	del	código.	No	deje	que	le	detenga.

Aplique	estas	reglas	y	compruebe	si	mejora	o	no	la	legibilidad	de	su	código.
Si	 es	 el	 encargado	 de	 mantener	 código	 de	 terceros,	 use	 herramientas	 para
solucionar	estos	problemas.	Obtendrá	recompensas	a	corto	y	largo	plazo.

3
Funciones

En	 los	 inicios	 de	 la	 programación,	 creábamos	 sistemas	 a	 partir	 de	 rutinas	 y
subrutinas.	Después,	en	la	época	de	Fortran	y	PL/1,	creábamos	nuestros	sistemas

con	programas,	subprogramas	y	funciones.	En	 la	actualidad,	sólo	 las	 funciones
han	 sobrevivido.	 Son	 la	 primera	 línea	 organizativa	 en	 cualquier	 programa.	 En
este	capítulo	veremos	cómo	crearlas.

Fíjese	en	el	 código	del	Listado	3-1.	Es	complicado	encontrar	una	 función
extensa	en	FitNesse[10],	pero	acabé	encontrando	ésta.	No	sólo	es	extensa,	sino	que
también	contiene	código	duplicado,	muchas	cadenas	y	 tipos	de	datos	extraños,
además	de	API	poco	habituales	 y	nada	 evidentes.	 Intente	 comprenderlo	 en	 los
próximos	tres	minutos.

Listado	3-1
HtmlUtil.java	(FitNesse	20070619).

public	static	String	testableHtml	{

PageData	pageData,

boolean	includeSuiteSetup

}	throws	Exception	{

WikiPage	wikiPage	=	pageData.getWikiPage();

StringBuffer	buffer	=	new	StringBuffer();

if	(pageData.hasAttribute(“Test”))	{

if	(includeSuiteSetup)	{

WikiPage	suiteSetup	=

PageCrawlerImpl.getInheritedPage(

SuiteResponder.SUITE_SETUP_NAME,	wikiPage

);

if	(suiteSetup	!=	null)	{

WikiPagePath	pagePath	=

suiteSetup.getPageCrawler().getFullPath	(suiteSetup);

String	pagePathName	=	PathParser.render(pagePath);

buffer.append(“!include	-setup	.”)

.append(pagePathName)

.append(“\n”);

}

}

WikiPage	setup	=

PageCrawlerImpl.getInheritedPage(“SetUp”,	wikiPage);

if	(setup	!=	null)	{

WikiPagePath	setupPath	=

wikiPage.getPageCrawler().getFullPath(setup);

String	setupPathName	=	PathParser.render(setupPath);

buffer.append(“!include	-setup	.”)

.append(setupPathName)

.append(“\n”);

}

}

buffer.append(pageData.getContent());

if	(pageData.hasAttribute(“Test”))	{

WikiPage	teardown	=

PageCrawlerImpl.getInheritedPage(“TearDown”,	wikiPage);

if	(teardown	!=	null)	{

WikiPagePath	tearDownPath	=

wikiPage.getPageCrawler().getFullPath(teardown);

String	tearDownPathName	=	PathParser.render(tearDownPath);

buffer.append(“\n”)

.append(“!include	-teardown	.”)

.append(tearDownPathName)

.append(“\n”);

}

if	(includeSuiteSetup)	{

WikiPage	suiteTeardown	=

PageCrawlerImpl.getInheritedPage(

SuiteResponder.SUITE_TEARDOWN_NAME,

wikiPage

);

if	(suiteTeardown	!=	null)	{

WikiPagePath	pagePath	=

suiteTeardown.getPageCrawler().getFullPath	(suiteTeardown);

String	pagePathName	=	PathParser.render(pagePath);

buffer.append(“!include	-teardown	.”)

.append(pagePathName)

.append(“\n”);

}

}

}

pageData.setContent(buffer.toString());

return	pageData.getHtml();

}

¿Tras	tres	minutos	entiende	la	función?	Seguramente	no.	Pasan	demasiadas
cosas	y	hay	demasiados	niveles	de	abstracción	diferentes.	Hay	cadenas	extrañas
e	invocaciones	de	funciones	mezcladas	en	instrucciones	if	doblemente	anidadas
controladas	por	indicadores.	Sin	embargo,	con	sencillas	extracciones	de	código,
algún	cambio	de	nombres	y	cierta	reestructuración,	pude	capturar	la	intención	de
la	función	en	las	nueve	líneas	del	Listado	3-2.	Compruebe	si	ahora	la	entiende.

Listado	3-2
HtmlUtil.java	(refactorización).

public	static	String	renderPageWithSetupsAndTeardowns(

PageData	pageData,	boolean	isSuite

)	throws	Exception	{

boolean	isTestPage	=	pageData.hasAttribute(“Test”);

if	(isTestPage)	{

WikiPage	testPage	=	pageData.getWikiPage();

StringBuffer	newPageContent	=	new	StringBuffer();

includeSetupPages	(testPage,	newPageContent,	isSuite);

newPageContent.append(pageData.getContent());

includeTeardownPages(testPage,	newPageContent,	isSuite);

pageData.setContent(newPageContent.toString());

}

return	pageData.getHtml();

}

A	 menos	 que	 sea	 un	 alumno	 de	 FitNesse,	 seguramente	 no	 entienda	 los
detalles.	Entenderá	que	la	función	se	encarga	de	añadir	páginas	de	configuración
y	 detalles	 en	 una	 página	 de	 prueba,	 que	 después	 muestra	 en	 HTML.	 Si	 está
familiarizado	 con	 JUnit[11],	 verá	 que	 esta	 función	 pertenece	 a	 algún	 tipo	 de
estructura	de	pruebas	basada	en	 la	Web	y,	 evidentemente,	 es	 correcto.	Resulta
sencillo	adivinar	esta	información	del	Listado	3-2	pero	no	del	Listado	3-1.	¿Qué
tiene	 la	 función	 del	 Listado	 3-2	 para	 que	 resulte	 sencilla	 de	 leer	 y	 entender?
¿Qué	hay	que	hacer	para	que	una	función	transmita	su	intención?	¿Qué	atributos
podemos	asignar	a	nuestras	funciones	para	que	el	 lector	pueda	intuir	el	 tipo	de
programa	al	que	pertenecen?

Tamaño	reducido

La	 primera	 regla	 de	 las	 funciones	 es	 que	 deben	 ser	 de	 tamaño	 reducido.	 La
segunda	 es	 que	 deben	 ser	 todavía	 más	 reducidas.	 No	 es	 una	 afirmación	 que
pueda	justificar.	No	puedo	mostrar	referencias	a	estudios	que	demuestren	que	las
funciones	muy	reducidas	sean	mejores.	Lo	que	sí	puedo	afirmar	es	que	durante
casi	 cuatro	 décadas	 he	 creado	 funciones	 de	 diferentes	 tamaños.	 He	 creado
monstruos	 de	 casi	 3000	 líneas	 y	 otras	 muchas	 funciones	 de	 entre	 100	 y	 300

líneas.	 También	 he	 creado	 funciones	 de	 20	 a	 30	 líneas	 de	 longitud.	 Esta
experiencia	me	ha	demostrado,	mediante	ensayo	y	error,	que	las	funciones	deben
ser	muy	reducidas.

En	la	década	de	1980	se	decía	que	una	función	no	debía	superar	el	tamaño
de	una	pantalla.	Por	aquel	entonces,	las	pantallas	VT100	tenían	24	líneas	por	80
columnas,	y	nuestros	editores	usaban	4	líneas	para	tareas	administrativas.	En	la
actualidad,	 con	 una	 fuente	 mínima	 y	 un	 monitor	 de	 gran	 tamaño,	 se	 pueden
encajar	150	caracteres	por	línea	y	100	líneas	o	más	en	una	pantalla.	Las	líneas	no
deben	tener	150	caracteres.	Las	funciones	no	deben	tener	100	líneas	de	longitud.
Las	funciones	deben	tener	una	longitud	aproximada	de	20	líneas.

¿Qué	tamaño	mínimo	debe	tener	una	función?	En	1999	visité	a	Kent	Beck
en	su	casa	de	Oregon.	Nos	sentamos	y	comenzamos	a	programar.	Me	enseñó	un
atractivo	 programa	 de	 Java/Swing	 que	 había	 llamado	 Sparkle.	 Generaba	 un
efecto	visual	en	pantalla,	 similar	a	 la	varita	mágica	del	hada	de	Cenicienta.	Al
mover	el	ratón,	salían	estrellitas	del	cursor,	y	descendían	a	la	parte	inferior	de	la
pantalla	en	un	campo	gravitatorio	simulado.	Cuando	Kent	me	enseñó	el	código,
me	 sorprendió	 la	 brevedad	 de	 las	 funciones.	 Estaba	 acostumbrado	 a	 ver
programas	de	Swing	con	funciones	que	ocupaban	kilómetros	de	espacio	vertical.
En	 este	 programa,	 las	 funciones	 tenían	 dos,	 tres	 o	 cuatro	 líneas	 de	 longitud.
Todas	eran	obvias.	Todas	contaban	una	historia	y	cada	una	llevaba	a	la	siguiente
en	un	orden	atractivo.	¡Así	de	breves	deberían	ser	todas	las	funciones![12]

¿Qué	tamaño	mínimo	deben	tener	sus	funciones?	Deberían	ser	más	breves
que	 las	 del	 Listado	 3-2.	 De	 hecho,	 el	 Listado	 3-2	 debería	 reducirse	 como	 el
Listado	3-3.

Listado	3-3
HtmlUtil.java	(nueva	refactorización).

public	static	String	renderPageWithSetupsAndTeardowns(

PageData	pageData,	boolean	isSuite)	throws	Exception	{

if	(isTestPage(pageData))

includeSetupAndTeardownPages(pageData,	isSuite);

return	pageData.getHtml();

}

Bloques	y	sangrado
Esto	implica	que	los	bloques	en	instrucciones	if,	else,	while	y	similares	deben
tener	una	línea	de	longitud	que,	seguramente,	sea	la	invocación	de	una	función.
De	esta	forma,	no	sólo	se	reduce	el	 tamaño	de	 la	función,	sino	que	 también	se
añade	valor	documental	ya	que	la	función	invocada	desde	el	bloque	puede	tener
un	 nombre	 descriptivo.	 También	 implica	 que	 las	 funciones	 no	 deben	 tener	 un

tamaño	 excesivo	 que	 albergue	 estructuras	 anidadas.	 Por	 tanto,	 el	 nivel	 de
sangrado	de	una	función	no	debe	ser	mayor	de	uno	o	dos.	Evidentemente,	de	esta
forma	las	funciones	son	más	fáciles	de	leer	y	entender.

Hacer	una	cosa

			
Es	 evidente	 que	 el	 Listado	 3-1	 hace	 más	 de	 una	 cosa.	 Crea	 búferes,	 obtiene
páginas,	busca	páginas	heredadas,	 añade	cadenas	antiguas	y	genera	HTML.	El
Listado	 3-1	 está	 muy	 ocupado	 realizando	 varias	 tareas.	 Por	 su	 parte,	 el
Listado	3-3	sólo	hace	una	cosa:	incluye	configuraciones	y	detalles	en	páginas	de
prueba.

El	siguiente	consejo	lleva	vigente,	de	una	u	otra	forma,	durante	más	de	30
años:

LAS	 FUNCIONES	 SÓLO	 DEBEN	 HACER	 UNA	 COSA.	 DEBEN
HACERLO	BIEN	Y	DEBE	SER	LO	ÚNICO	QUE	HAGAN.

El	problema	de	esta	afirmación	es	 saber	qué	es	una	cosa.	¿El	Listado	3-3
hace	una	cosa?	Se	podría	pensar	que	hace	tres:
	

1.	 Determinar	si	la	página	es	una	página	de	prueba.
2.	 En	caso	afirmativo,	incluir	configuraciones	y	detalles.
3.	 Representar	la	página	en	HTML.

¿Cuál	será	de	las	tres?	¿La	función	hace	una	o	tres	cosas?	Los	tres	pasos	de
la	 función	 se	 encuentran	 un	 nivel	 de	 abstracción	 por	 debajo	 del	 nombre	 de	 la
función.	Podemos	describir	la	función	como	un	breve	párrafo	TO	(PARA)[13]:

Para	renderPageWithSetupsAndTeardowns,	 comprobamos	 si	 la	página	es
de	 prueba	 y,	 en	 caso	 afirmativo,	 incluimos	 las	 configuraciones	 y	 los
detalles.	En	ambos	casos,	la	representamos	en	HTML.

Si	 una	 función	 sólo	 realiza	 los	 pasos	 situados	 un	 nivel	 por	 debajo	 del
nombre	de	la	función,	entonces	hace	una	cosa.	En	definitiva,	creamos	funciones
para	descomponer	conceptos	más	amplios	(es	decir,	el	nombre	de	la	función)	en
un	 conjunto	 de	 pasos	 en	 el	 siguiente	 nivel	 de	 abstracción.	 Es	 evidente	 que	 el
Listado	 3-1	 contiene	 pasos	 en	 distintos	 niveles	 de	 abstracción,	 por	 lo	 que	 es
obvio	 que	 hace	más	 de	 una	 cosa.	 Incluso	 el	 Listado	 3-2	 tiene	 tres	 niveles	 de
abstracción,	 como	 ha	 demostrado	 la	 capacidad	 de	 reducirlo,	 pero	 sería
complicado	reducir	con	sentido	el	Listado	3-3.	Podríamos	extraer	la	instrucción
if	 en	 la	 función	 includeSetupsAndTeardownsIfTestPage,	 pero	 sólo
reduciríamos	el	código	sin	cambiar	el	nivel	de	abstracción.

Por	 ello,	 otra	 forma	 de	 saber	 que	 una	 función	 hace	 más	 de	 una	 cosa	 es
extraer	otra	función	de	la	misma	con	un	nombre	que	no	sea	una	reducción	de	su
implementación	[G34].

Secciones	en	funciones
Fíjese	 en	 el	 Listado	 4-7.	 Verá	 que	 la	 función	 generatePrimes	 se	 divide	 en
secciones	como	declaraciones,	inicializaciones	y	filtros.	Es	un	síntoma	evidente
de	 que	 hace	 más	 de	 una	 cosa.	 Las	 funciones	 que	 hacen	 una	 sola	 cosa	 no	 se
pueden	dividir	en	secciones.

Un	nivel	de	abstracción	por	función

Para	que	las	funciones	realicen	«una	cosa»,	asegúrese	de	que	las	instrucciones	de
la	 función	 se	 encuentran	 en	 el	 mismo	 nivel	 de	 abstracción.	 El	 Listado	 3-1
incumple	esta	regla.	Incluye	conceptos	a	un	elevado	nivel	de	abstracción,	como
getHtml();	 otros	 se	 encuentran	 en	 un	 nivel	 intermedio,	 como
StringpagePathName	=	PathParser.render(pagePath)	y	hay	otros	en	un	nivel
especialmente	bajo,	como	.append(“\n”).

La	 mezcla	 de	 niveles	 de	 abstracción	 en	 una	 función	 siempre	 resulta
confusa.	 Los	 lectores	 no	 sabrán	 si	 una	 determinada	 expresión	 es	 un	 concepto
esencial	 o	 un	 detalle.	 Peor	 todavía,	 si	 se	 mezclan	 detalles	 con	 conceptos

esenciales,	aumentarán	los	detalles	dentro	de	la	función.

Leer	código	de	arriba	a	abajo:	la	regla	descendente
El	objetivo	es	que	el	código	se	lea	como	un	texto	de	arriba	a	abajo[14].	Queremos
que	tras	todas	las	funciones	aparezcan	las	del	siguiente	nivel	de	abstracción	para
poder	 leer	el	programa,	descendiendo	un	nivel	de	abstracción	por	vez	mientras
leemos	la	lista	de	funciones.	Es	lo	que	denomino	la	regla	descendente.

Para	 decirlo	 de	 otra	 forma,	 queremos	 leer	 el	 programa	 como	 si	 fuera	 un
conjunto	 de	 párrafos	 TO,	 en	 el	 que	 cada	 uno	 describe	 el	 nivel	 actual	 de
abstracción	y	hace	referencia	a	los	párrafos	TO	posteriores	en	el	siguiente	nivel.

Para	incluir	configuraciones	y	detalles,	incluimos	configuraciones,	después
del	contenido	de	la	página	de	prueba,	y	por	último	los	detalles.
Para	incluir	las	configuraciones,	 incluimos	la	configuración	de	suite	si	se
trata	de	una	suite,	y	después	la	configuración	convencional.
Para	incluir	la	configuración	de	suite;	buscamos	la	jerarquía	principal	de
la	página	SuiteSetUp	y	añadimos	una	instrucción	include	con	la	ruta	de
dicha	página.
Para	buscar	la	jerarquía	principal…

A	 los	 programadores	 les	 resulta	 complicado	 aprender	 esta	 regla	 y	 crear
funciones	en	un	único	nivel	de	abstracción,	pero	es	un	 truco	 importante.	Es	 la
clave	para	reducir	 la	 longitud	de	las	funciones	y	garantizar	que	sólo	hagan	una
cosa.	 Al	 conseguir	 que	 el	 código	 se	 lea	 de	 arriba	 a	 abajo,	 se	 mantiene	 la
coherencia	de	los	niveles	de	abstracción.

Fíjese	 en	 el	 Listado	 3-7	 del	 final	 del	 capítulo.	 Muestra	 la	 función
testableHtml	modificada	de	acuerdo	a	estos	principios.	Cada	función	presenta	a
la	siguiente	y	se	mantiene	en	un	nivel	de	abstracción	coherente.

Instrucciones	Switch

Es	complicado	usar	una	instrucción	switch	de	tamaño	reducido[15].	Aunque	sólo
tenga	dos	casos,	es	mayor	de	lo	que	un	bloque	o	función	debería	ser.	También	es
complicado	 crear	 una	 instrucción	 switch	 que	 haga	 una	 sola	 cosa.	 Por	 su
naturaleza,	 las	 instrucciones	 switch	 siempre	 hacen	 N	 cosas.

Desafortunadamente,	no	 siempre	podemos	evitar	 las	 instrucciones	switch	pero
podemos	 asegurarnos	 de	 incluirlas	 en	 una	 clase	 de	 nivel	 inferior	 y	 de	 no
repetirlas.	Para	ello,	evidentemente,	recurrimos	al	polimorfismo.

Fíjese	 en	 el	 Listado	 3-4.	 Muestra	 una	 de	 las	 operaciones	 que	 pueden
depender	del	tipo	de	empleado.

Listado	3-4
Payroll.java.

public	Money	calculatePay(Employee	e)

throws	InvalidEmployeeType	(

switch	(e.type)	{

case	COMMISSIONED:

return	calculateCommissionedPay(e);

case	HOURLY:

return	calculateHourlyPay(e);

case	SALARIED:

return	calculateSalariedPay(e);

default:

throw	new	InvalidEmployeeType(e.type);

}

}

Esta	 función	 tiene	 varios	 problemas.	 Por	 un	 lado,	 es	 de	 gran	 tamaño	 y
cuando	se	añadan	nuevos	tipos	de	empleado,	aumentará	más.	Por	otra	parte,	hace
más	 de	 una	 cosa.	 También	 incumple	 el	 Principio	 de	 responsabilidad	 única
(Single	 Responsibility	 Principie	 o	 SRP)[16]	 ya	 que	 hay	 más	 de	 un	 motivo	 para
cambiarla.	 Además,	 incumple	 el	 Principio	 de	 abierto/cerrado	 (Open	 Closed
Principle	u	OCP)[17],	ya	que	debe	cambiar	cuando	se	añadan	nuevos	 tipos,	pero
posiblemente	 el	 peor	 de	 los	 problemas	 es	 que	 hay	 un	 número	 ilimitado	 de
funciones	que	tienen	la	misma	estructura.

Por	ejemplo,	podríamos	tener:
isPayday(Employee	e,	Date	date),

o
deliverPay(Employee	e,	Date	date),

o	muchas	otras,	todas	con	la	misma	estructura.
La	 solución	 al	 problema	 (véase	 el	 Listado	 3-5)	 consiste	 en	 ocultar	 la

instrucción	 switch	 en	 una	 factoría	 abstracta[18]	 e	 impedir	 que	 nadie	 la	 vea.	 La
factoría	 usa	 la	 instrucción	 switch	 para	 crear	 las	 instancias	 adecuadas	 de	 los
derivados	de	Employee	y	las	distintas	funciones,	como	calculatePay,	isPayday
y	 deliverPay,	 se	 entregarán	 de	 forma	 polimórfica	 a	 través	 de	 la	 interfaz
Employee.

Listado	3-5
Employee	y	Factory.

public	abstract	class	Employee	{

public	abstract	boolean	isPayday();

public	abstract	Money	calculatePay();

public	abstract	void	deliverPay(Money	pay);

}

public	interface	EmployeeFactory	{

public	Employee	makeEmployee(EmployeeRecord	r)	throws	InvalidEmployeeType;

}

public	class	EmployeeFactoryImpl	implements	EmployeeFactory	{

public	Employee	makeEmployee(EmployeeRecord	r)	throws	InvalidEmployeeType	{

switch	(r.type)	{

case	COMMISSIONED:

return	new	CommissionedEmployee(r);

case	HOURLY:

return	new	HourlyEmployee(r);

case	SALARIED:

return	new	SalariedEmployee(r);

default:

throw	new	InvalidEmployeeType(r.type);

}

}

}

Mi	regla	general	para	 las	 instrucciones	switch	es	que	se	pueden	tolerar	si
sólo	aparecen	una	vez,	se	usan	para	crear	objetos	polimórficos	y	se	ocultan	tras
una	 relación	de	herencia	para	que	el	 resto	del	 sistema	no	 las	pueda	ver	 [G23].
Evidentemente,	cada	caso	es	diferente	y	en	ocasiones	se	puede	incumplir	una	o
varias	partes	de	esta	regla.

Usar	nombres	descriptivos

En	 el	 Listado	 3-7,	 hemos	 cambiado	 el	 nombre	 de	 la	 función	 de	 ejemplo	 de
testableHtml	a	SetupTeardownIncluder.render.	Es	un	nombre	más	apropiado
ya	que	describe	mejor	el	cometido	de	la	función.	También	hemos	asignado	a	los
métodos	 privados	 un	 nombre	 descriptivo	 como	 isTestable	 o
includeSetupAndTeardownPages.	No	 hay	 que	 olvidar	 el	 valor	 de	 los	 nombres
correctos.	Recuerde	el	principio	de	Ward:	«Sabemos	que	trabajamos	con	código
limpio	cuando	cada	rutina	es	más	o	menos	lo	que	esperábamos».	Para	alcanzar
este	principio,	gran	parte	del	esfuerzo	se	basa	en	seleccionar	nombres	adecuados
para	pequeñas	 funciones	que	hacen	una	 cosa.	Cuanto	más	 reducida	y	 concreta
sea	 una	 función,	más	 sencillo	 será	 elegir	 un	 nombre	 descriptivo.	No	 tema	 los
nombres	 extensos.	 Un	 nombre	 descriptivo	 extenso	 es	 mucho	 mejor	 que	 uno
breve	pero	enigmático.	Use	una	convención	de	nombres	que	permita	leer	varias
palabras	en	 los	nombres	de	 las	 funciones	y	use	esas	palabras	para	asignar	a	 la
función	un	nombre	que	describa	su	cometido.

No	tema	dedicar	tiempo	a	elegir	un	buen	nombre.	De	hecho,	debería	probar
con	varios	nombres	y	 leer	el	código	con	 todos	ellos.	Los	 IDE	modernos	como
Eclipse	 o	 IntelliJ	 facilitan	 el	 cambio	 de	 nombres.	 Use	 uno	 de	 estos	 IDE	 y
experimente	con	diferentes	nombres	hasta	que	encuentre	uno	que	sea	lo	bastante

descriptivo.
La	elección	de	nombres	descriptivos	clarifica	el	diseño	de	los	módulos	y	le

permite	 mejorarlos.	 No	 es	 extraño	 que	 la	 búsqueda	 de	 nombres	 adecuados
genere	 una	 reestructuración	 favorable	 del	 código.	 Sea	 coherente	 con	 los
nombres.	Use	las	mismas	frases,	sustantivos	y	verbos	en	los	nombres	de	función
que	 elija	 para	 los	 módulos.	 Pruebe,	 por	 ejemplo,	 con
includeSetupAndTeardownPages,	 includeSetupPages,
includeSuiteSetupPage	 e	 includeSetupPage.	 La	 estructura	 similar	 de	 estos
nombres	 permite	 que	 la	 secuencia	 cuente	 una	 historia.	 En	 realidad,	 si	 ve	 la
secuencia	 anterior,	 seguramente	 se	 pregunte	 qué	 ha	 pasado	 con
includeTeardownPages,	includeSuiteTeardownPage	e	includeTeardownPage.

Argumentos	de	funciones

			

El	 número	 ideal	 de	 argumentos	 para	 una	 función	 es	 cero.	 Después	 uno
(monádico)	y	dos	(diádico).	Siempre	que	sea	posible,	evite	 la	presencia	de	 tres
argumentos	 (triádico).	 Más	 de	 tres	 argumentos	 (poliádico)	 requiere	 una
justificación	especial	y	no	es	muy	habitual.

Los	argumentos	son	complejos	ya	que	requieren	un	gran	poder	conceptual.
Por	 ello	 suelo	 evitarlos	 en	 los	 ejemplos.	 Fíjese	 en	 StringBuffer.	 Podríamos
haberlo	pasado	como	argumento	en	lugar	de	como	variable	de	instancia,	pero	los
lectores	 habrían	 tenido	 que	 interpretarlo	 cada	 vez	 que	 lo	 vieran.	 Al	 leer	 la

historia	 que	 cuenta	 el	 módulo,	 includeSetupPage()	 es	 más	 sencillo	 de
interpretar	 que	 includeSetupPageInto(newPageContent).	 El	 argumento	 se
encuentra	en	un	nivel	de	abstracción	diferente	que	el	nombre	de	la	función	y	nos
obliga	a	conocer	un	detalle	(StringBuffer)	que	no	es	especialmente	importante
en	ese	momento.

Los	argumentos	 son	 todavía	más	complicados	desde	un	punto	de	vista	de
pruebas.	Imagine	la	dificultad	de	crear	todos	los	casos	de	prueba	para	garantizar
el	 funcionamiento	 de	 las	 distintas	 combinaciones	 de	 argumentos.	 Si	 no	 hay
argumentos,	todo	es	más	sencillo.	Si	hay	uno,	no	es	demasiado	difícil.	Con	dos
argumentos	el	problema	es	más	complejo.	Con	más	de	dos	argumentos,	probar
cada	 combinación	 de	 valores	 adecuados	 es	 todo	 un	 reto.	 Los	 argumentos	 de
salida	 son	 más	 difíciles	 de	 entender	 que	 los	 de	 entrada.	 Al	 leer	 una	 función,
estamos	acostumbrados	al	concepto	de	información	añadida	a	la	función	a	través
de	 argumentos	 y	 extraída	 a	 través	 de	 un	 valor	 devuelto.	No	 esperamos	 que	 la
información	se	devuelva	a	través	de	los	argumentos.	Por	ello,	los	argumentos	de
salida	suelen	obligamos	a	realizar	una	comprobación	doble.

Un	 argumento	 de	 salida	 es	 la	 mejor	 opción,	 después	 de	 la	 ausencia	 de
argumentos.	 SetupTeardownIncluder.render(pageData)	 se	 entiende	 bien.
Evidentemente,	vamos	a	representar	los	datos	en	el	objeto	pageData.

Formas	monádicas	habituales
Hay	dos	motivos	principales	para	pasar	un	solo	argumento	a	una	función.	Puede
que	 realice	 una	 pregunta	 sobre	 el	 argumento,	 como	 en	 boolean

fileExists(“MyFile”),	o	que	procese	el	argumento,	lo	transforme	en	otra	cosa
y	 lo	 devuelva.	 Por	 ejemplo,	InputStream	fileOpen(“MyFile”)	 transforma	un
nombre	 de	 archivo	 String	 en	 un	 valor	 devuelto	 InputStream.	 Los	 usuarios
esperan	 estos	 dos	 usos	 cuando	 ven	 una	 función.	 Debe	 elegir	 nombres	 que
realicen	la	distinción	con	claridad	y	usar	siempre	ambas	formas	en	un	contexto
coherente	(consulte	el	apartado	sobre	separación	de	consultas	de	comandos).

Una	forma	menos	habitual	pero	muy	útil	para	un	argumento	es	un	evento.
En	esta	 forma,	hay	argumento	de	entrada	pero	no	de	 salida.	El	programa	debe
interpretar	 la	 invocación	 de	 la	 función	 como	 evento	 y	 usar	 el	 argumento	 para
alterar	 el	 estado	 del	 sistema,	 por	 ejemplo,	 void

passwordAttemptFailedNtimes(int	 attempts).	 Use	 esta	 forma	 con
precaución.	Debe	ser	claro	para	el	lector	que	se	trata	de	un	evento.	Elija	nombres
y	contextos	con	atención.	Intente	evitar	funciones	monádicas	que	no	tengan	estas
formas,	 por	 ejemplo,	void	includeSetupPageInto(StringBuffer	pageText).

El	 uso	 de	 un	 argumento	 de	 salida	 en	 lugar	 de	 un	 valor	 devuelto	 para	 realizar
transformaciones	resulta	confuso.	Si	una	función	va	a	transformar	su	argumento
de	 entrada,	 la	 transformación	 debe	 aparecer	 como	 valor	 devuelto.	 Sin	 duda
StringBuffertransform(StringBuffer	 in)	 es	 mejor	 que	 void

transform(StringBuffer	 out),	 aunque	 la	 implementación	 del	 primer	 caso
devuelva	solamente	el	argumento	de	entrada.	Al	menos	se	ajusta	a	la	forma	de	la
transformación.

Argumentos	de	indicador
Los	 argumentos	 de	 indicador	 son	 horribles.	 Pasar	 un	 valor	 Booleano	 a	 una
función	es	una	práctica	totalmente	desaconsejable.	Complica	inmediatamente	la
firma	del	método	e	indica	que	la	función	hace	más	de	una	cosa.	Hace	algo	si	el
indicador	es	true	y	otra	cosa	diferente	si	es	false.	En	el	Listado	3-7	no	se	puede
evitar,	porque	los	invocadores	ya	pasan	el	 indicador	y	el	objetivo	era	limitar	el
ámbito	a	la	función	y	después,	pero	la	invocación	de	render	(true)	es	confusa
para	 el	 lector.	 Si	 se	 desplaza	 el	 ratón	 sobre	 la	 invocación	 vemos	 que	 render
(boolean	isSuite)	puede	ayudar,	pero	no	demasiado.	Tendremos	que	dividir	la
función	en	dos:	renderForSuite()	y	renderForSingleTest().

Funciones	diádicas
Una	 función	 con	 dos	 argumentos	 es	 más	 difícil	 de	 entender	 que	 una	 función
monádica.	 Por	 ejemplo	 writeField(name)	 es	 más	 fácil	 de	 entender	 que
writeField	(outputStream,	name)[19].	Aunque	en	ambos	casos	el	 significado
es	 evidente,	 la	 primera	 se	 capta	 mejor	 visualmente.	 La	 segunda	 requiere	 una
breve	 pausa	 hasta	 que	 ignoramos	 el	 segundo	 parámetro,	 lo	 que	 en	 última
instancia	genera	problemas	ya	que	no	debemos	ignorar	esa	parte	del	código.	Las
partes	 que	 ignoramos	 son	 las	 que	 esconden	 los	 errores.	 Pero	 en	 ocasiones	 se
necesitan	 dos	 argumentos.	 Por	 ejemplo.	 Point	 p	 =	 new	 Point(0,0);	 es
totalmente	razonable.	Los	puntos	cartesianos	suelen	adoptar	dos	argumentos.	De
hecho,	sería	muy	sorprendente	ver	Point(0).	Sin	embargo,	en	este	caso	ambos
argumentos	 son	 componentes	 ordenados	 de	 un	 mismo	 valor,	 mientras	 que
outputStream	y	name	carecen	de	una	cohesión	o	un	orden	natural.

Incluso	 funciones	 diádicas	 evidentes	 como	 assertEquals(expected,

actual)	 resultan	problemáticas.	¿Cuántas	veces	ha	 incluido	el	valor	 real	en	su
posición	 esperada?	Los	 dos	 argumentos	 carecen	de	 un	orden	natural.	El	 orden
real	y	esperado	es	una	convención	que	se	adquiere	gracias	a	la	práctica.

Las	combinaciones	diádicas	no	son	el	mal	en	persona	y	tendrá	que	usarlas.
Sin	 embargo,	 recuerde	 que	 tienen	 un	 precio	 y	 que	 debe	 aprovechar	 los
mecanismos	disponibles	para	convertirlas	en	unitarias.	Por	ejemplo,	puede	hacer
que	 el	método	writeField	 sea	 un	miembro	 de	outputStream	 para	 poder	 usar
outputStream.writeField(name),	 o	 podría	 convertir	 outputStream	 en	 una
variable	miembro	 de	 la	 clase	 actual	 para	 no	 tener	 que	 pasarla.	 Incluso	 podría
extraer	 una	 nueva	 clase	 como	 FieldWriter	 que	 usara	 outputStream	 en	 su
constructor	y	tuviera	un	método	write.

Triadas
Las	funciones	que	aceptan	tres	argumentos	son	sin	duda	mucho	más	difíciles	de
entender	que	las	de	dos.	Los	problemas	a	la	hora	de	ordenar,	ignorar	o	detenerse
en	los	argumentos	se	duplican.	Piense	atentamente	antes	de	crear	una	triada.

Por	 ejemplo,	 fíjese	 en	 la	 sobrecarga	 de	 assertEquals	 que	 acepta	 tres
argumentos:	assertEquals(message,	expected,	actual).	¿Cuántas	veces	 lee
el	mensaje	y	piensa	que	es	lo	esperado?	He	visto	esta	triada	en	concreto	muchas
veces.	 De	 hecho,	 siempre	 que	 la	 veo,	 tengo	 que	 repasarla	 antes	 de	 ignorar	 el
mensaje.

Por	otra	parte,	hay	otra	triada	que	no	es	tan	negativa:	assertEquals(1.0,
amount,	.001).	Aunque	también	exija	doble	atención,	merece	la	pena.	Conviene
recordar	siempre	que	la	igualdad	de	los	valores	de	coma	flotante	es	algo	relativo.

Objeto	de	argumento
Cuando	 una	 función	 parece	 necesitar	 dos	 o	más	 argumentos,	 es	 probable	 que
alguno	de	ellos	se	 incluya	en	una	clase	propia.	Fíjese	en	 la	diferencia	entre	 las
dos	siguientes	declaraciones:

Circle	makeCircle	(double	x,	double	y,	double	radius);

Circle	makeCircle(Point	center,	double	radius);

La	 reducción	 del	 número	 de	 argumentos	mediante	 la	 creación	 de	 objetos
puede	parecer	una	trampa	pero	no	lo	es.	Cuando	se	pasan	grupos	de	variables	de
forma	conjunta,	como	x	e	y	en	el	ejemplo	anterior,	es	probable	que	formen	parte
de	un	concepto	que	se	merece	un	nombre	propio.

Listas	de	argumentos
En	 ocasiones	 tendremos	 que	 pasar	 un	 número	 variable	 de	 argumentos	 a	 una

función.	Fíjese	en	el	método	String.format:
String.format	(“%s	worked	%.2f	hours.”,	name,	hours);

Si	 los	 argumentos	 variables	 se	 procesan	 de	 la	 misma	 forma,	 como	 en	 el
ejemplo	 anterior,	 serán	 equivalentes	 a	 un	 único	 argumento	 de	 tipo	 List.	 Por
tanto,	String.format	es	en	realidad	diádico.	De	hecho,	la	siguiente	declaración
de	String.format	es	claramente	diádica.

public	String	format(String	format,	Object…	args)

Así	 pues,	 se	 aplican	 las	 mismas	 reglas.	 Las	 funciones	 que	 aceptan
argumentos	 variables	 pueden	 ser	monádicas,	 diádicas	 o	 incluso	 triádicas,	 pero
sería	un	error	asignar	más	argumentos.

void	monad(Integer…	args);

void	dyad(String	name,	Integer…	args);

void	triad(String	name,	int	count,	Integer…	args);

Verbos	y	palabras	clave
La	selección	de	nombres	correctos	para	una	función	mejora	la	explicación	de	su
cometido,	 así	 como	 el	 orden	 y	 el	 cometido	 de	 los	 argumentos.	 En	 formato
monádico,	la	función	y	el	argumento	deben	formar	un	par	de	verbo	y	sustantivo.
Por	ejemplo,	write(name)	resulta	muy	evocador.	Sea	lo	que	sea	name,	sin	duda
se	escribe	(write).

Un	nombre	más	acertado	podría	 ser	writeField(name),	 que	nos	dice	que
name	es	un	campo	(field).	Éste	es	un	ejemplo	de	palabra	clave	como	nombre
de	función.	Con	este	formato	codificamos	los	nombres	de	los	argumentos	en	el
nombre	de	la	función.	Por	ejemplo,	assertEquals	se	podría	haber	escrito	como
assertExpectedEqualsActual(expected,	actual),	 lo	que	mitiga	el	problema
de	tener	que	recordar	el	orden	de	los	argumentos.

Sin	efectos	secundarios

Los	efectos	secundarios	son	mentiras.	Su	función	promete	hacer	una	cosa,	pero
también	hace	otras	cosas	ocultas.	En	ocasiones	 realiza	cambios	 inesperados	en
las	 variables	 de	 su	 propia	 clase.	 En	 ocasiones	 las	 convierte	 en	 las	 variables
pasadas	a	 la	 función	o	a	elementos	globales	del	 sistema.	En	cualquier	caso,	 se
comete	 un	 engaño	 que	 suele	 provocar	 extrañas	 combinaciones	 temporales	 y
dependencias	de	orden.

Fíjese	 en	 la	 función	 del	 Listado	 3-6,	 aparentemente	 inofensiva.	 Usa	 un
algoritmo	 estándar	 para	 comparar	 userName	 con	 password.	 Devuelve	 true	 si

coinciden	 y	 false	 si	 hay	 algún	 problema,	 pero	 también	 hay	 un	 efecto
secundario.	¿Lo	detecta?

Listado	3-6
UserValidator.java.

public	class	UserValidator	{

private	Cryptographer	cryptographer;

public	boolean	checkPassword(String	userName,	String	password)	{

User	user	=	UserGateway.findByName(userName);

if	(user	!=	User.NULL)	{

String	codedPhrase	=	user.getPhraseEncodedByPassword();

String	phrase	=	cryptographer.decrypt(codedPhrase,	password);

if	(“Valid	Password”.equals(phrase)){

Session.initialize();

return	true;

}

}

return	false;

}

}

El	 efecto	 secundario	 es	 la	 invocación	 de	 Session.initialize().	 La
función	 checkPassword,	 por	 su	 nombre,	 afirma	 comprobar	 la	 contraseña.	 El
nombre	no	implica	que	inicialice	la	sesión.	Por	tanto,	un	invocador	que	se	crea	lo
que	dice	el	nombre	de	la	función	se	arriesga	a	borrar	los	datos	de	sesión	actuales
cuando	decida	comprobar	 la	validez	del	usuario.	Este	efecto	secundario	genera
una	 combinación	 temporal.	Es	 decir,	 sólo	 se	 puede	 invocar	checkPassword	 en
determinados	momentos	(cuando	se	pueda	inicializar	la	sesión).	Si	no	se	invoca
en	orden,	se	pueden	perder	los	datos	de	la	sesión.	Las	combinaciones	temporales
son	confusas,	en	especial	cuando	se	ocultan	como	efecto	secundario.	Si	tiene	que
realizar	 una	 combinación	 temporal,	 hágalo	 de	 forma	 clara	 en	 el	 nombre	 de	 la
función.	 En	 este	 caso,	 podríamos	 cambiar	 el	 nombre	 de	 la	 función	 por
checkPasswordAndInitializeSession,	pero	incumpliría	la	norma	de	hacer	una
sola	cosa.

Argumentos	de	salida
Los	 argumentos	 suelen	 interpretarse	 como	 entradas	 de	 una	 función.	 Si	 lleva
varios	años	programando,	estoy	seguro	de	que	habrá	visto	un	argumento	que	en
vez	de	ser	de	entrada	era	de	salida.	Por	ejemplo;

appendFooter(s);

¿Está	función	añade	s	al	final	de	algo?	¿O	añade	el	final	de	algo	a	s?	¿s	es
una	entrada	o	una	salida?	Lo	sabemos	al	ver	la	firma	de	la	función:

public	void	appendFooter(StringBuffer	report)

Esto	lo	aclara	todo,	pero	para	ello	hay	que	comprobar	la	declaración	de	la

función.	 Todo	 lo	 que	 le	 obligue	 a	 comprobar	 la	 firma	 de	 la	 función	 es	 un
esfuerzo	doble.	Es	una	pausa	cognitiva	y	debe	evitarse.

Antes	 de	 la	 programación	 orientada	 a	 objetos,	 era	 necesario	 tener
argumentos	de	salida.	Sin	embargo,	gran	parte	de	su	necesidad	desaparece	en	los
lenguajes	orientados	a	objetos,	pensados	para	actuar	como	argumento	de	salida.
Es	 decir,	 sería	 más	 indicado	 invocar	 appendFooter	 como
report.appendFooter();.

Por	lo	general,	los	argumentos	de	salida	deben	evitarse.	Si	su	función	tiene
que	cambiar	el	estado	de	un	elemento,	haga	que	cambie	el	estado	de	su	objeto
contenedor.

Separación	de	consultas	de	comando

Las	 funciones	 deben	 hacer	 algo	 o	 responder	 a	 algo,	 pero	 no	 ambas	 cosas.	 Su
función	 debe	 cambiar	 el	 estado	 de	 un	 objeto	 o	 devolver	 información	 sobre	 el
mismo,	pero	ambas	operaciones	causan	confusión.	Fíjese	en	la	siguiente	función:

public	boolean	set(String	attribute,	String	value);

Esta	función	establece	el	valor	de	un	atributo	y	devuelve	true	en	caso	de
éxito	o	false	si	el	atributo	no	existe.	Esto	provoca	la	presencia	de	una	extraña
instrucción	como	la	siguiente:

if	(set(“username”,	“unclebob”))…

Imagínelo	desde	el	punto	de	vista	del	lector.	¿Qué	significa?	¿Pregunta	si	el
atributo	 «username»	 se	 ha	 establecido	 antes	 en	 «unclebob»,	 o	 si	 el	 atributo
«username»	 se	 ha	 establecido	 correctamente	 en	 «unclebob»?	 Es	 complicado
saberlo	por	la	invocación	ya	que	no	es	evidente	si	set	es	un	verbo	o	un	adjetivo.

El	autor	pretendía	que	set	fuera	un	verbo,	pero	el	contexto	de	la	instrucción
if	parece	un	adjetivo.	La	instrucción	se	lee	como	«si	el	atributo	username	se	ha
establecido	 previamente	 en	 unclebob»,	 no	 como	 «establecer	 el	 atributo
username	 en	 unclebob	 y	 si	 funciona,	 entonces…».	 Podríamos	 solucionarlo	 si
cambiamos	 el	 nombre	 de	 la	 función	 set	 por	 setAndCheckIfExists,	 pero	 no
mejoraría	la	legibilidad	de	la	instrucción	if.	La	verdadera	solución	es	separar	el
comando	de	la	consulta	para	evitar	la	ambigüedad.

if	(attributeExists(“username”))	{

setAttribute(“username”,	“unclebob”);

…

}

Mejor	excepciones	que	devolver	códigos	de	error

Devolver	códigos	de	error	de	funciones	de	comando	es	un	sutil	incumplimiento
de	 la	 separación	 de	 comandos	 de	 consulta.	 Hace	 que	 los	 comandos	 usados
asciendan	a	expresiones	en	los	predicados	de	las	instrucciones	if.

if	(deletePage(page)	==	E_OK)

No	 padece	 la	 confusión	 entre	 verbo	 y	 adjetivo,	 pero	 genera	 estructuras
anidadas.	Al	devolver	un	código	de	error	se	crea	un	problema:	el	invocador	debe
procesar	el	error	de	forma	inmediata.

if	(deletePage(page)	==	E_OK)	{

if	(registry.deleteReference(page.name)	==	E_OK)	{

if	(configKeys.deleteKey(page.name.makeKey())	==	E_OK)	{

logger.log(“page	deleted”);

}	else	{

logger.log(“configKey	not	deleted”);

}

}	else	{

logger.log(“deleteReference	from	registry	failed”);

}

}	else	{

logger.log(“delete	failed”);

return	E_ERROR;

}

Por	otra	parte,	si	usa	excepciones	en	lugar	de	códigos	de	error,	el	código	de
procesamiento	 del	 error	 se	 puede	 separar	 del	 código	 de	 ruta	 y	 se	 puede
simplificar:

try	{

deletePage(page);

registry.deleteReference(page.name);

configKeys.deleteKey(page.name.makeKey());

}

catch	(Exception	e)	{

logger.log(e.getMessage());

}

Extraer	bloques	Try/Catch
Los	bloques	try/catch	no	son	atractivos	por	naturaleza.	Confunden	la	estructura
del	 código	 y	 mezclan	 el	 procesamiento	 de	 errores	 con	 el	 normal.	 Por	 ello,
conviene	extraer	el	cuerpo	de	los	bloques	try	y	catch	en	funciones	individuales.

public	void	delete(Page	page)	{

try	{

deletePageAndAllReferences(page);

}

catch	(Exception	e)	{

logError(e);

}

}

private	void	deletePageAndAllReferences(Page	page)	throws	Exception	{

deletePage(page);

registry.deleteReference(page.name);

configKeys.deleteKey(page.name.makeKey());

}

private	void	logError(Exception	e)	{

logger.log(e.getMessage());

}

En	este	caso,	la	función	delete	es	de	procesamiento	de	errores.	Es	fácil	de
entender	 e	 ignorar.	 La	 función	 deletePageAndAllReferences	 es	 para	 los

procesos	de	borrar	una	página.	El	procesamiento	de	errores	se	puede	ignorar.	De
este	modo,	la	separación	facilita	la	comprensión	y	la	modificación	del	código.

El	procesamiento	de	errores	es	una	cosa
Las	 funciones	 sólo	 deben	 hacer	 una	 cosa	 y	 el	 procesamiento	 de	 errores	 es	 un
ejemplo.	 Por	 tanto,	 una	 función	 que	 procese	 errores	 no	 debe	 hacer	 nada	más.
Esto	implica	(como	en	el	ejemplo	anterior)	que,	si	una	función	incluye	la	palabra
clave	 try,	 debe	 ser	 la	 primera	 de	 la	 función	 y	 que	 no	 debe	 haber	 nada	 más
después	de	los	bloques	catch/finally.

El	imán	de	dependencias	Error.java
La	 devolución	 de	 códigos	 de	 error	 suele	 implicar	 que	 existe	 una	 clase	 o
enumeración	en	la	que	se	definen	los	códigos	de	error.

public	enum	Error	{

OK,

INVALID,

NO_SUCH,

LOCKED,

OUT_OF_RESOURCES,

WAITING_FOR_EVENT;

}

Clases	como	ésta	son	un	imán	para	las	dependencias;	otras	muchas	clases
deben	importarlas	y	usarlas.	Por	ello,	cuando	cambia	la	enumeración	Error,	es
necesario	volver	a	compilar	e	implementar	dichas	clases[20].	Esto	añade	presión	a
la	 clase	 Error.	 Los	 programadores	 no	 quieren	 añadir	 nuevos	 errores	 porque
tendrán	que	volver	a	generar	e	 implementarlo	todo.	Por	ello,	reutilizan	códigos
de	error	antiguos	en	lugar	de	añadir	otros	nuevos.

Al	usar	excepciones	en	 lugar	de	códigos	de	error,	 las	nuevas	excepciones
son	derivaciones	de	la	clase	de	la	excepción.	Se	pueden	añadir	sin	necesidad	de
volver	a	compilar	o	implementar[21].

No	repetirse[22]

			

Fíjese	de	nuevo	en	el	Listado	3-1;	verá	que	hay	un	algoritmo	que	se	repite	cuatro
veces,	en	los	casos	SetUp,	SuiteSetUp,	TearDown	y	SuiteTearDown.	No	es	fácil
detectar	esta	repetición	ya	que	las	cuatro	instancias	se	mezclan	con	otro	código,
pero	 la	 duplicación	 es	 un	 problema	 ya	 que	 aumenta	 el	 tamaño	 del	 código	 y
requerirá	una	modificación	cuádruple	si	alguna	vez	cambia	el	algoritmo.

También	se	cuadriplica	el	riesgo	de	errores.
Esta	 duplicación	 se	 remedia	 gracias	 al	 método	 include	 del	 Listado	 3-7.

Vuelva	a	leer	el	código	y	fíjese	en	cómo	se	ha	mejorado	la	legibilidad	del	código
reduciendo	la	duplicación.

La	 duplicación	 puede	 ser	 la	 raíz	 de	 todos	 los	 problemas	 del	 software.
Existen	numerosos	principios	y	prácticas	para	controlarla	o	eliminarla.	Imagine
que	 todas	 las	 formas	 normales	 de	 la	 base	 de	 datos	 de	 Codd	 sirvieran	 para
eliminar	 la	 duplicación	 de	 datos.	 Imagine	 también	 cómo	 la	 programación
orientada	a	objetos	concentra	el	código	en	clases	base	que	en	otros	casos	serian
redundantes.	La	programación	estructurada,	la	programación	orientada	a	aspecto
y	la	orientada	a	componentes	son,	en	parte,	estrategias	para	eliminar	duplicados.
Parece	que,	desde	la	aparición	de	las	subrutinas,	 las	innovaciones	en	desarrollo
de	 software	 han	 sido	 un	 intento	 continuado	 por	 eliminar	 la	 duplicación	 de
nuestro	código	fuente.

Programación	estructurada

Algunos	 programadores	 siguen	 las	 reglas	 de	 programación	 estructurada	 de
Edsger	Dijkstra[23].	Dijkstra	afirma	que	todas	las	funciones	y	todos	los	bloques	de
una	función	deben	tener	una	entrada	y	una	salida.	Estas	reglas	implican	que	sólo
debe	 haber	 una	 instrucción	 return	 en	 una	 función,	 que	 no	 debe	 haber
instrucciones	 break	 o	 continue	 en	 un	 bucle	 y	 nunca,	 bajo	 ningún	 concepto,
debe	haber	instrucciones	goto.

Aunque	 apreciemos	 los	 objetivos	 y	 disciplinas	 de	 la	 programación
estructurada,	no	sirven	de	mucho	cuando	las	funciones	son	de	reducido	tamaño.
Su	verdadero	beneficio	se	aprecia	en	funciones	de	gran	tamaño.

Por	tanto,	si	sus	funciones	son	de	tamaño	reducido,	una	instrucción	return,
break	 o	 continue	 no	 hará	 daño	 alguno	 y	 en	 ocasiones	 puede	 resultar	 más
expresiva	que	la	regla	de	una	entrada	y	una	salida.	Por	otra	parte,	goto	sólo	tiene
sentido	en	funciones	de	gran	tamaño	y	debe	evitarse.

Cómo	crear	este	tipo	de	funciones

La	creación	de	software	es	como	cualquier	otro	proceso	creativo.	Al	escribir	un
informe	 o	 un	 artículo,	 primero	 se	 estructuran	 las	 ideas	 y	 después	 el	 mensaje
hasta	 que	 se	 lea	 bien.	El	 primer	 borrador	 puede	 estar	 desorganizado,	 de	modo
que	lo	retoca	y	mejora	hasta	que	se	lea	de	la	forma	adecuada.

Cuando	creo	funciones,	suelen	ser	extensas	y	complicadas,	con	abundancia
de	 sangrados	 y	 bucles	 anidados.	 Con	 extensas	 listas	 de	 argumentos,	 nombres
arbitrarios	y	código	duplicado,	pero	también	cuento	con	una	serie	de	pruebas	de
unidad	que	abarcan	todas	y	cada	una	de	las	líneas	de	código.

Por	 tanto,	 retoco	 el	 código,	 divido	 las	 funciones,	 cambio	 los	 nombres	 y
elimino	 los	 duplicados.	 Reduzco	 los	 métodos	 y	 los	 reordeno.	 En	 ocasiones,
elimino	clases	enteras,	mientras	mantengo	las	pruebas.

Al	 final,	 consigo	 funciones	 que	 cumplen	 las	 reglas	 detalladas	 en	 este
capítulo.	No	las	escribo	al	comenzar	y	dudo	que	nadie	pueda	hacerlo.

Conclusión

Todo	sistema	se	crea	a	partir	de	un	lenguaje	específico	del	dominio	diseñado	por
los	programadores	para	describir	dicho	sistema.	Las	funciones	son	los	verbos	del
lenguaje	 y	 las	 clases	 los	 sustantivos.	 No	 es	 volver	 a	 la	 noción	 de	 que	 los
sustantivos	y	verbos	de	un	documento	de	requisitos	son	las	clases	y	funciones	de
un	sistema.	Es	una	verdad	mucho	más	antigua.	El	arte	de	la	programación	es,	y
ha	sido	siempre,	el	arte	del	diseño	del	lenguaje.

Los	 programadores	 experimentados	 piensan	 en	 los	 sistemas	 como	 en
historias	 que	 contar,	 no	 como	 en	 programas	 que	 escribir.	 Recurren	 a	 las
prestaciones	del	 lenguaje	de	programación	seleccionado	para	crear	un	 lenguaje
expresivo	mejor	y	más	completo	que	poder	usar	para	contar	esa	historia.	Parte	de
ese	 lenguaje	 es	 la	 jerarquía	 de	 funciones	 que	 describen	 las	 acciones	 que	 se

pueden	realizar	en	el	sistema.	Dichas	acciones	se	crean	para	usar	el	lenguaje	de
dominio	concreto	que	definen	para	contar	su	pequeña	parte	de	la	historia.

En	 este	 capítulo	 hemos	 visto	 la	 mecánica	 de	 la	 creación	 de	 funciones
correctas.	 Si	 aplica	 estas	 reglas,	 sus	 funciones	 serán	 breves,	 con	 nombres
correctos,	y	bien	organizadas,	pero	no	olvide	que	su	verdadero	objetivo	es	contar
la	 historia	 del	 sistema	 y	 que	 las	 funciones	 que	 escriba	 deben	 encajar	 en	 un
lenguaje	claro	y	preciso	que	le	sirva	para	contar	esa	historia.

SetupTeardownIncluder

Listado	3-7
SetupTeardownIncluder.java.

package	fitnesse.html;

import	fitnesse.responders.run.SuiteResponder;

import	fitnesse.wiki.*;

public	class	SetupTeardownIncluder	{

private	PageData	pageData;

private	boolean	isSuite;

private	WikiPage	testPage;

private	StringBuffer	newPageContent;

private	PageCrawler	pageCrawler;

public	static	String	render(PageData	pageData)	throws	Exception	{

return	render(pageData,	false);

}

public	static	String	render(PageData	pageData,	boolean	isSuite)

throws	Exception	{

return	new	SetupTeardownIncluder(pageData).render(isSuite);

}

private	SetupTeardownIncluder(PageData	pageData)	{

this.pageData	=	pageData;

testPage	=	pageData.getWikiPage();

pageCrawler	=	testPage.getPageCrawler();

newPageContent	=	new	StringBuffer();

}

private	String	render(boolean	isSuite)	throws	Exception	{

this.isSuite	=	isSuite;

if	(isTestPage())

includeSetupAndTeardownPages();

return	pageData.getHtml();

}

private	boolean	isTestPage()	throws	Exception	{

return	pageData.hasAttribute(“Test”);

}

private	void	includeSetupAndTeardownPages()	throws	Exception	{

includeSetupPages();

includePageContent();

includeTeardownPages();

updatePageContent();

}

private	void	includeSetupPages()	throws	Exception	{

if	(isSuite)

includeSuiteSetupPage();

includeSetupPage();

}

private	void	includeSuiteSetupPage()	throws	Exception	{

include(SuiteResponder.SUITE_SETUP_NAME,	“-setup”);

}

private	void	includeSetupPage()	throws	Exception	{

include(“SetUp”,	“-setup”);

}

private	void	includePageContent()	throws	Exception	{

newPageContent.append(pageData.getContent());

}

private	void	includeTeardownPages()	throws	Exception	{

includeTeardownPage();

if	(isSuite)

includeSuiteTeardownPage();

}

private	void	includeTeardownPage()	throws	Exception	{

include(“TearDown”,	“-teardown”);

}

private	void	includeSuiteTeardownPage()	throws	Exception	{

include(SuiteResponder.SUITE_TEARDOWN_NAME,	“-teardown”);

}

private	void	updatePageContent()	throws	Exception	{

pageData.setContent(newPageContent.toString());

}

private	void	include(String	pageName,	String	arg)	throws	Exception	(

WikiPage	inheritedPage	=	findInheritedPage(pageName);

if	(inheritedPage	!=	null)	{

String	pagePathName	=	getPathNameForPage(inheritedPage);

buildIncludeDirective(pagePathName,	arg);

}

}

private	WikiPage	findInheritedPage(String	pageName)	throws	Exception	{

return	PageCrawlerImpl.getInheritedPage(pageName,	testPage);

}

private	String	getPathNameForPage(WikiPage	page)	throws	Exception	{

WikiPagePath	pagePath	=	pageCrawler.getFullPath(page);

return	PathParser.render(pagePath);

}

private	void	buildIncludeDirective(String	pagePathName,	String	arg)	{

newPageContent

.append(“\n!include	”)

.append(arg)

.append(“	.”)

.append(pagePathName)

.append(“\n”);

}

}

Bibliografía
	

[KP78]:	Kernighan	and	Plaugher,	The	Elements	of	Programming	Style,	2d.
ed.,	McGraw-Hill,	1978.
[PPP02]:	 Robert	 C.	 Martin,	 Agile	 Software	 Development:	 Principles,
Patterns,	and	Practices,	Prentice	Hall,	2002.

[GOF]:	Design	Patterns:	Elements	of	Reusable	Object	Oriented	Software,
Gamma	et	al.,	Addison	Wesley,	1996.
[PRAG]:	 The	 Pragmatic	 Programmer,	 Andrew	 Hunt,	 Dave	 Thomas,
Addison-Wesley,	2000.
[SP72]:	 Structured	 Programming,	 O.	 J.	 Dahl,	 E.	 W.	 Dijkstra,	 C.	 A.	 R.
Hoare,	Academic	Press,	London,	1972.

4
Comentarios

«No	comente	el	código	incorrecto,	reescríbalo».
Brian	W.	Kernighan	y	P.	J.	Plaugher[24]

No	 hay	 nada	 más	 útil	 que	 un	 comentario	 bien	 colocado.	 No	 hay	 nada	 que
colapse	más	un	módulo	que	comentarios	dogmáticos	innecesarios.	No	hay	nada
más	dañino	que	un	comentario	antiguo	que	propague	mentiras	y	desinformación.

Los	comentarios	no	son	como	la	Lista	de	Schindler.	No	son	pura	bondad.
De	hecho,	 en	 el	mejor	de	 los	 casos,	 son	un	mal	necesario.	Si	 los	 lenguajes	de
programación	fueran	más	expresivos	o	si	pudiéramos	dominarlos	para	expresar
nuestras	 intenciones,	 no	 necesitaríamos	 demasiados	 comentarios,	 puede	 que
incluso	ninguno.

El	uso	correcto	de	los	comentarios	permite	compensar	nuestra	incapacidad
para	expresarnos	en	el	código.	He	usado	la	palabra	incapacidad,	a	propósito.	Los
comentarios	 siempre	 son	 fallos.	Debemos	 usarlos	 porque	 no	 siempre	 sabemos
cómo	expresarnos	sin	ellos	pero	su	uso	no	es	motivo	de	celebración.

Cuando	tenga	que	escribir	un	comentario,	piense	si	no	existe	otra	forma	de
expresarse	en	el	código.	Siempre	que	se	exprese	en	el	código,	debe	 felicitarse.
Siempre	 que	 escriba	 un	 comentario,	 debe	 hacer	 un	 gesto	 de	 desaprobación	 y
sentir	su	incapacidad	para	expresarse.

¿Por	qué	estoy	en	contra	de	los	comentarios?	Porque	mienten.	No	siempre	y
no	 siempre	 intencionadamente,	 pero	 lo	 hacen.	 Cuando	 más	 antiguo	 es	 un
comentario	y	más	se	aleja	del	código	que	describe,	mayor	es	la	probabilidad	de
que	 sea	 equivocado.	 El	motivo	 es	 sencillo.	 Los	 programadores	 no	 los	 pueden
mantener.

El	 código	 cambia	 y	 evoluciona.	 Los	 fragmentos	 cambian	 de	 lugar,	 se
bifurcan,	 se	 reproducen	 y	 se	 vuelven	 a	 combinar	 para	 crear	 quimeras.
Desafortunadamente,	 los	 comentarios	 no	 siempre	 siguen	 el	 ritmo,	 no	 siempre
pueden	hacerlo	y	suelen	separarse	del	código	que	describen	y	se	convierten	en
huérfanos	 sin	 precisión	 alguna.	 Por	 ejemplo,	 fíjese	 en	 lo	 que	 sucede	 con	 este
comentario	y	la	línea	que	pretendía	describir:	MockRequest	request;

private	final	String	HTTP_DATE_REGEXP	=

“[SMTWF][a-z]{2}\\,\\s[0-9]{2}\\s[JFMASOND][a-z]{2}\\s”	+

“[0-9]{4}\\s[0-9]{2}\\:[0-9]{2}\\:[0-9]{2}\\sGMT”;

private	Response	response;

private	FitNesseContext	context;

private	FileResponder	responder;

private	Locale	saveLocale;

//	Ejemplo:	«Tue,	02	Apr	2003	22:18:49	GMT»

Seguramente	 se	 añadieron	 después	 otras	 variables	 de	 instancia	 entre	 la
constante	HTTP_DATE_REGEXP	y	su	comentario	explicativo.

Se	podría	afirmar	que	los	programadores	deben	ser	lo	bastante	disciplinados
como	 para	 mantener	 los	 comentarios	 actualizados,	 relevantes	 y	 precisos.	 De
acuerdo,	 debería,	 pero	 esa	 energía	 debería	 invertirse	 en	 crear	 código	 claro	 y
expresivo	que	no	necesite	comentario	alguno.

Los	 comentarios	 imprecisos	 son	 mucho	 peor	 que	 la	 ausencia	 de
comentarios.	 Suelen	 confundir	 al	 usuario.	 Generan	 expectativas	 que	 nunca	 se
cumplen.	Definen	reglas	que	no	deben	seguirse	en	absoluto.

La	verdad	sólo	se	encuentra	en	un	punto:	el	código.	Sólo	el	código	puede
contar	lo	que	hace.	Es	la	única	fuente	de	información	precisa.	Por	tanto,	aunque
los	 comentarios	 sean	 necesarios	 en	 ocasiones,	 dedicaremos	 nuestra	 energía	 a
minimizarlos.

Los	comentarios	no	compensan	el	código	incorrecto

Una	 de	 las	 principales	 motivaciones	 para	 crear	 comentarios	 es	 el	 código
incorrecto.	Creamos	un	módulo	y	sabemos	que	es	confuso	y	está	desorganizado.
Sabemos	 que	 es	 un	 desastre	 y	 entonces	 decidimos	 comentarlo.	 Error.	 Mejor

límpielo.
El	 código	 claro	 y	 expresivo	 sin	 apenas	 comentarios	 es	 muy	 superior	 al

código	enrevesado	y	complejo	con	multitud	de	comentarios.	En	lugar	de	perder
tiempo	escribiendo	comentarios	que	expliquen	el	desastre	cometido,	dedíquelo	a
solucionarlo.

Explicarse	en	el	código

En	ocasiones,	el	código	es	un	pobre	vehículo	de	expresión.	Desafortunadamente,
muchos	programadores	lo	entienden	como	que	el	código	no	es	un	buen	medio	de
expresión.	Esto	es	falso.	¿Qué	prefiere	ver?	Esto:

//	Comprobar	si	el	empleado	tiene	derecho	a	todos	los	beneficios

if	((employee.flags	&	HOURLY_FLAG)	&&

(employee.age	>	65))

o	esto	otro:
if	(employee.isEligibleForFullBenefits())

Apenas	 se	 tardan	 unos	 segundos	 en	 explicar	 nuestras	 intenciones	 en	 el
código.	En	muchos	casos,	basta	con	crear	una	función	que	diga	lo	mismo	que	el
comentario	que	pensaba	escribir.

Comentarios	de	calidad

Algunos	comentarios	son	necesarios	o	beneficiosos.	Veremos	algunos	de	los	que
considero	 válidos.	 No	 obstante,	 recuerde	 que	 el	 único	 comentario	 realmente
bueno	es	el	que	no	tiene	que	escribir.

Comentarios	legales
En	 ocasiones,	 nuestros	 estándares	 corporativos	 de	 creación	 de	 código	 nos
obligan	a	crear	determinados	comentarios	por	motivos	legales.	Por	ejemplo,	los
comentarios	de	derechos	de	autor	 son	necesarios	y	deben	 incluirse	al	 inicio	de
cada	archivo.

El	 siguiente	 encabezado	 de	 comentario	 se	 incluye	 de	 forma	 estándar	 al
inicio	 de	 todos	 los	 archivos	 fuente	 de	 FitNesse.	 Nuestro	 IDE	 evita	 que	 este
comentario	parezca	sobrante	replegándolo	de	forma	automática.

//	Copyright	(C)	2003,2004,2005	de	Object	Mentor,	Inc.	Todos	los	derechos	reservados.

//	Publicado	bajo	las	condiciones	de	la	Licencia	pública	general	GNU	versión	2	o	posterior.

Este	tipo	de	comentarios	no	deben	ser	contratos	ni	tomos	legales.	Siempre
que	 sea	 posible,	 haga	 referencia	 a	 una	 licencia	 estándar	 o	 a	 otro	 documento
externo	en	lugar	de	incluir	todos	los	términos	y	condiciones	en	el	comentario.

Comentarios	informativos
En	 ocasiones	 es	 útil	 proporcionar	 información	 básica	 con	 un	 comentario.	 Por
ejemplo,	 el	 siguiente	 comentario	 explica	 el	 valor	 devuelto	 por	 un	 método
abstracto:

//	Devuelve	una	instancia	del	elemento	Responder	probado.
protected	abstract	Responder	responderInstance();

Estos	 comentarios	 pueden	 ser	 útiles,	 pero	 es	mejor	 usar	 el	 nombre	 de	 la
función	para	transmitir	la	información	siempre	que	sea	posible.	Por	ejemplo,	en
este	caso	el	comentario	sería	redundante	si	cambiamos	el	nombre	de	la	función
por	responderBeingTested.	Veamos	un	ejemplo	mejor:	//	el	formato	coincide	con	kk:mm:ss	EEE,
MMM	dd,	yyyy

Pattern	timeMatcher	=	Pattern.compile(

“\\d*:\\d*:\\d*	\\w*,	\\w*	\\d*,	\\d*”);

En	 este	 caso,	 el	 comentario	 nos	 indica	 que	 la	 expresión	 regular	 debe
coincidir	 con	 una	 fecha	 y	 una	 hora	 con	 el	 formato	 aplicado	 por	 la	 función
SimpleDateFormat.format	con	la	cadena	de	formato	especificada.

Hubiera	resultado	mejor	y	más	claro	si	el	código	se	hubiera	cambiado	a	una
clase	 especial	 que	 convirtiera	 los	 formatos	 de	 fechas	 y	 horas.	De	 ese	modo	 el
comentario	habría	sido	superfluo.

Explicar	la	intención
En	 ocasiones,	 un	 comentario	 es	 algo	 más	 que	 información	 útil	 sobre	 la
implementación	y	proporciona	la	intención	de	una	decisión.	En	el	siguiente	caso,
vemos	 una	 interesante	 decisión	 documentada	 por	 un	 comentario.	Al	 comparar
dos	objetos,	el	autor	decidió	ordenar	 los	objetos	de	su	clase	por	encima	de	 los
objetos	de	otra.

public	int	compareTo(Object	o)

{

if	(o	instanceof	WikiPagePath)

{

WikiPagePath	p	=	(WikiPagePath)	o;

String	compressedName	=	StringUtil.join(names,	“”);

String	compressedArgumentName	=	StringUtil.join(p.names,	“”);

return	compressedName.compareTo(compressedArgumentName);

}

return	1;	//	somos	mayores	porque	somos	el	tipo	correcto.
}

Veamos	otro	ejemplo	mejor.	Puede	que	no	esté	de	acuerdo	con	la	solución
del	programador,	pero	al	menos	sabe	lo	que	intentaba	hacer.

public	void	testConcurrentAddWidgets()	throws	Exception	{

WidgetBuilder	widgetBuilder	=

new	WidgetBuilder(new	Class[](BoldWidget.class));

String	text	=	“‘‘‘bold	text’’’”;

ParentWidget	parent	=

new	BoldWidget(new	MockWidgetRoot(),	“‘‘‘bold	text’’’”);

AtomicBoolean	failFlag	=	new	AtomicBoolean();

failFlag.set(false);

//Nuestro	mejor	intento	de	obtener	una	condición	de	carrera

//creando	un	gran	número	de	procesos.

for	(int	i	=	0;	i	<	25000;	i++)	{

WidgetBuilderThread	widgetBuiIderThread	=

new	WidgetBuilderThread(WidgetBuilder,	text,	parent,	failFlag);

Thread	thread	=	new	Thread(WidgetBuilderThread);

thread.start();

}

assertEquals(false,	failFlag.get());

}

Clarificación
En	ocasiones,	basta	con	traducir	el	significado	de	un	argumento	o	valor	devuelto
en	 algo	 más	 legible.	 Por	 lo	 general,	 conviene	 buscar	 la	 forma	 de	 que	 el
argumento	 o	 el	 valor	 devuelto	 sean	 claros	 por	 sí	mismos;	 pero	 cuando	 forma
parte	 de	 una	 biblioteca	 estándar	 o	 de	 código	 que	 no	 se	 puede	 alterar,	 un
comentario	aclarativo	puede	ser	muy	útil.

public	void	testCompareTo()	throws	Exception

{

WikiPagePath	a	=	PathParser.parse(“PageA”);

WikiPagePath	ab	=	PathParser.parse(“PageA.PageB”);

WikiPagePath	b	=	PathParser.parse(“PageB”);

WikiPagePath	aa	=	PathParser.parse(“PageA.PageA”);

WikiPagePath	bb	=	PathParser.parse(“PageB.PageB”);

WikiPagePath	ba	=	PathParser.parse(“PageB.PageA”);

assertTrue(a.compareTo(a)	==	0);	//	a	==	a

assertTrue(a.compareTo(b)	!=	0);	//	a	!=	b

assertTrue(ab.compareTo(ab)	==	0);	//	ab	==	ab

assertTrue(a.compareTo(b)	==	-1);	//	a	<	b

assertTrue(aa.compareTo(ab)	==	-1);	//	aa	<	ab

assertTrue(ba.compareTo(bb)	==	-1);	//	ba	<	bb

assertTrue(b.compareTo(a)	==	1);	//	b	>	a

assertTrue(ab.compareTo	(aa)	==	1);	//	ab	>	aa

assertTrue(bb.compareTo(ba)	==	1);	//	bb	>	ba

}

Pero	 también	 existe	 el	 riesgo	 de	 que	 un	 comentario	 aclarativo	 sea
incorrecto.	En	el	ejemplo	anterior,	compruebe	lo	difícil	que	resulta	comprobar	si
los	comentarios	son	correctos.	Esto	explica	por	qué	la	clarificación	es	necesaria
y	también	arriesgada.	Por	ello,	antes	de	escribir	estos	comentarios,	asegúrese	de
que	no	hay	una	solución	mejor	y	también	de	que	sean	precisos.

Advertir	de	las	consecuencias

			

En	 ocasiones	 es	 muy	 útil	 advertir	 a	 otros	 programadores	 de	 determinadas
consecuencias.	 Por	 ejemplo,	 el	 siguiente	 comentario	 explica	 por	 qué	 un
determinado	caso	de	prueba	está	desactivado:

//	No	ejecutar	a	menos
//	que	le	sobre	tiempo.
public	void	_testWithReallyBigFile()

{

writeLinesToFile(10000000);

response.setBody(testFile);

response.readyToSend(this);

String	responseString	=	output.toString();

assertSubString(“Content-Length:	1000000000”,	responseString);

assertTrue(bytesSent	>	1000000000);

}

En	 la	 actualidad,	 evidentemente,	desactivaríamos	 la	prueba	por	medio	del
atributo	 @Ignore	 con	 la	 correspondiente	 cadena	 explicativa:	 @Ignore(“Takes
too	long	to	run”),	pero	antes	de	la	aparición	de	JUnit	4,	era	habitual	añadir	un
guion	bajo	delante	del	nombre	del	método.	El	comentario	realizaba	su	cometido.
Veamos	otro	ejemplo:	public	static	SimpleDateFormat	makeStandardHttpDateFormat()

{

//SimpleDataFormat	no	es	compatible	con	procesos,
//por	lo	que	debe	crear	cada	instancia	de	forma	independiente.
SimpleDateFormat	df	=	new	SimpleDateFormat(“EEE,	dd	MMM	yyyy	HH:mm:ss	z”);

df.setTimeZone	(TimeZone.getTimeZone	(“GMT”));

return	df;

}

Seguramente	 conozca	 soluciones	 mejores	 para	 este	 problema.	 Estoy	 de
acuerdo,	 pero	 el	 comentario	 es	 perfectamente	 razonable.	 Evita	 que	 un
programador	use	un	inicializador	estático	por	motivos	de	eficacia.

Comentarios	TODO
En	 ocasiones	 conviene	 usar	 notas	 con	 forma	 de	 comentarios	 //TODO.	 En	 el
siguiente	 caso,	 el	 comentario	 TODO	 explica	 por	 qué	 la	 función	 tiene	 una
implementación	incorrecta	y	cuál	debe	ser	su	futuro.

//	TODO-MdM	no	son	necesarios
//	Esperamos	que	desaparezca	en	el	modelo	definitivo

protected	VersionInfo	makeVersion()	throws	Exception

{

return	null;

}

TODO	 son	 tareas	 que	 el	 programador	 piensa	 que	 debería	 haber	 hecho	 pero
que	no	es	así.	Pueden	ser	un	recordatorio	para	eliminar	una	función	obsoleta	o
una	petición	para	resolver	un	problema.

Pueden	 ser	 una	 solicitud	 para	 buscar	 un	 nombre	 más	 adecuado	 o	 para
realizar	 un	 cambio	 que	 dependa	de	 un	 evento	 planeado.	Sea	 lo	 que	 sea,	 no	 es
excusa	para	mantener	código	incorrecto	en	el	sistema.

En	 la	 actualidad,	 muchos	 IDE	 cuentan	 con	 funciones	 especiales	 para
localizar	comentarios	TODO,	por	 lo	que	seguramente	no	se	pierda.	Sin	embargo,
no	colapse	el	código	con	estos	comentarios.	Examínelos	y	elimine	todos	los	que
pueda.

Amplificación
Se	puede	usar	un	comentario	para	amplificar	la	importancia	de	algo	que,	en	caso
contrario,	parecería	irrelevante.

String	listItemContent	=	match.group(3).trim();

//	el	recorte	es	importante.	Elimina	los	espacios	iniciales
//	que	harían	que	el	elemento	se	reconociera	como
//	otra	lista.
new	ListItemWidget(this,	listItemContent,	this.level	+	1);

return	buildList(text.substring(match.end()));

Javadoc	en	API	públicas
No	 hay	 nada	 más	 útil	 y	 satisfactorio	 que	 una	 API	 pública	 bien	 descrita.	 Los
javadoc	de	la	biblioteca	estándar	de	Java	son	un	ejemplo.	Sería	muy	complicado
crear	programas	de	Java	sin	ellos.

Si	usa	una	API	pública,	debe	crear	javadoc	de	calidad	para	la	misma,	pero
recuerde	el	siguiente	consejo	a	lo	largo	del	capítulo:	los	javadoc	pueden	ser	tan
ambiguos,	amplios	y	descorteses	como	cualquier	otro	tipo	de	documento.

Comentarios	incorrectos

Muchos	comentarios	pertenecen	a	esta	categoría.	Suelen	ser	excusas	de	código
pobre	 o	 justificaciones	 de	 decisiones	 insuficientes,	 algo	 así	 como	 si	 el
programador	se	hablara	a	sí	mismo.

Balbucear
Añadir	un	comentario	sin	razón	o	porque	el	proceso	lo	requiere	es	un	error.	Si
decide	 escribir	 un	 comentario,	 tómese	 el	 tiempo	 necesario	 para	 asegurarse	 de
que	sea	el	mejor	que	puede	redactar.

El	siguiente	ejemplo	es	de	FitNesse,	donde	un	comentario	sin	duda	sería	de
utilidad,	pero	el	autor	 tenía	prisa	o	no	prestó	demasiada	atención.	Su	balbuceo
generó	un	enigma:

public	void	loadProperties()

{

try

{

String	propertiesPath	=	propertiesLocation	+	“/”	+	PROPERTIES_FILE;

FileInputStream	propertiesStream	=	new	FileInputStream(propertiesPath);

loadedProperties.load(propertiesStream);

}

catch(IOException	e)

{

//	Si	no	hay	archivos	de	propiedades	significan	que	cargan	las	predeterminadas
}

}

¿Qué	 significa	 el	 comentario	 del	 bloque	 catch?	 Seguro	 que	 algo	 para	 el
autor,	 pero	 el	 significado	 no	 está	 claro.	 Aparentemente,	 si	 se	 genera
IOException,	 significa	 que	 no	 hay	 archivo	 de	 propiedades	 y,	 en	 ese	 caso,	 se
cargan	 los	 valores	 predeterminados.	 ¿Pero	 quién	 carga	 los	 valores
predeterminados?	¿Se	cargan	antes	de	la	invocación	de	loadProperties.load	o
loadProperties.load	captura	la	excepción,	carga	los	valores	predeterminados	y
después	 nos	 pasa	 la	 excepción	 para	 que	 la	 ignoremos?	 ¿O	 será	 que
loadProperties.load	carga	todos	los	valores	predeterminados	antes	de	intentar
abrir	el	archivo?	¿Intentaba	el	autor	consolarse	por	dejar	el	bloque	catch	vacío?
Ésta	 es	 la	 posibilidad	más	 temida,	 ¿se	 estaba	 diciendo	 que	 volviera	más	 tarde
para	crear	el	código	para	cargar	los	valores	predeterminados?

Nuestro	 único	 recurso	 es	 examinar	 el	 código	 en	 otras	 partes	 del	 sistema
para	 determinar	 qué	 sucede.	 Cualquier	 comentario	 que	 le	 obligue	 a	 buscar	 su
significado	 en	 otro	 módulo	 ha	 fallado	 en	 su	 intento	 de	 comunicación	 y	 no
merece	los	bits	que	consume.

Comentarios	redundantes
El	Listado	4-1	muestra	una	 sencilla	 función	con	un	comentario	de	encabezado
totalmente	redundante.	Seguramente	se	tarde	más	en	leer	que	el	propio	código.

Listado	4-1
waitForClose.

//	Método	de	utilidad	devuelto	cuando	this.closed	es	true.	Genera	una	excepción

//	si	se	alcanza	el	tiempo	de	espera.
public	synchronized	void	waitForClose(final	long	timeoutMillis)

throws	Exception

{

if	(!closed)

{

wait(timeoutMillis);

if(!closed)

throw	new	Exception	(“MockResponseSender	could	not	be	closed”);

}

}

¿Para	qué	sirve	este	comentario?	No	es	más	informativo	que	el	código.	No
lo	justifica	ni	transmite	la	intención	ni	la	lógica.	No	es	más	fácil	de	leer	que	el
código.	 De	 hecho,	 es	 menos	 preciso	 y	 obliga	 al	 lector	 a	 aceptar	 la	 falta	 de
precisión	en	lugar	de	a	entenderlo.	Es	como	un	vendedor	de	coches	de	segunda
menos	que	le	asegura	que	no	hace	falta	revisar	el	motor.

Fíjese	ahora	en	la	legión	de	javadoc	inútiles	y	redundantes	del	Listado	4-2,
obtenido	 de	 Tomcat.	 Estos	 comentarios	 únicamente	 ensucian	 y	 oscurecen	 el
código.	No	tienen	ninguna	función	documental.	Para	empeorar	las	cosas,	sólo	le
mostramos	algunos.	El	módulo	tiene	muchos	más.

Listado	4-2
ContainerBase.java	(Tomcat).

public	abstract	class	ContainerBase

implements	Container,	Lifecycle,	Pipeline,

MBeanRegistration,	Serializable	{

/**

*	Retardo	del	procesador	para	este	componente.

*/

protected	int	backgroundProcessorDelay	=	-1;

/**

*	Compatibilidad	con	eventos	de	ciclo	vital	de	este	componente.

*/

protected	LifecycleSupport	lifecycle	=

new	LifecycleSupport(this);

/**

*	Escuchadores	de	eventos	de	contenedor	de	este	contenedor.

*/

protected	ArrayList	listeners	=	new	ArrayList();

/**

*	Implementación	Loader	a	la	que	se	asocia	este	contenedor.

*/

protected	Loader	loader	=	null;

/**

*	Implementación	Logger	a	la	que	se	asocia	este	contenedor.

*/

protected	Log	logger	=	null;

/**

*	Nombre	de	registrador	asociado.

*/

protected	String	logName	=	null;

/**

*	Implementación	Manager	a	la	que	se	asocia	este	contenedor.

*/

protected	Manager	manager	=	null;

/**

*	Clúster	al	que	se	asocia	este	contenedor.

*/

protected	Cluster	cluster	=	null;

/**

*	Nombre	legible	de	este	contenedor.

*/

protected	String	name	=	null;

/**

*	Contenedor	principal	de	este	contenedor.

*/

protected	Container	parent	=	null;

/**

*	Cargador	de	clase	principal	que	configurar	al	instalar	un	elemento

*	Loader.

*/

protected	ClassLoader	parentClassLoader	=	null;

/**

*	Objeto	Pipeline	al	que	se	asocia	este	contenedor.

*/

protected	Pipeline	pipeline	=	new	StandardPipeline(this);

/**

*	Objeto	Realm	al	que	se	asocia	este	contenedor.

*/

protected	Realm	realm	=	null;

/**

*	Objeto	DirContext	de	recursos	al	que	se	asocia	este	contenedor.

*/

protected	DirContext	resources	=	null;

Comentarios	confusos
En	 ocasiones,	 a	 pesar	 de	 las	 buenas	 intenciones,	 un	 programador	 realiza	 una
afirmación	en	sus	comentarios	que	no	es	del	 todo	precisa.	Fíjese	otra	vez	en	el
comentario	redundante	y	confuso	del	Listado	4-1.

¿Sabe	 por	 qué	 es	 confuso?	 El	 método	 no	 devuelve	 nada	 cuando
this.closed	 se	 convierte	 en	true.	Devuelve	 algo	 si	this.closed	 es	true;	 en
caso	contrario,	espera	y	genera	una	excepción	si	this.closed	no	es	true.

Este	 sutil	 fragmento,	 oculto	 en	 un	 comentario	 más	 difícil	 de	 leer	 que	 el
cuerpo	del	código,	puede	hacer	que	otro	programador	invoque	la	función	con	la
esperanza	 de	 que	 devuelva	 algo	 cuando	 this.closed	 sea	 true.	 Ese	 pobre
programador	 se	 encontrará	 en	 una	 sesión	 de	 depuración	 intentando	 determinar
por	qué	el	código	se	ejecuta	tan	lentamente.

Comentarios	obligatorios
Es	una	locura	tener	una	regla	que	afirme	que	todas	las	funciones	deben	tener	un
javadoc	 o	 que	 todas	 las	 variables	 deben	 tener	 un	 comentario.	 Este	 tipo	 de
comentarios	 ensucian	 el	 código	 y	 generan	 confusión	 y	 desorganización.	 Por
ejemplo,	los	javadoc	obligatorios	para	todas	las	funciones	crean	abominaciones
como	 el	 Listado	 4-3.	 No	 sirven	 de	 nada,	 complican	 el	 código	 y	 constituyen

posibles	engaños	y	desorientaciones.

Listado	4-3

/**

*

*	@param	title	El	título	del	CD

*	@param	author	El	autor	del	CD

*	@param	tracks	El	número	de	pistas	del	CD

*	@param	durationInMinutes	La	duración	del	CD	en	minutos

*/

public	void	addCD(String	title,	String	author,

int	tracks,	int	durationInMinutes)	{

CD	cd	=	new	CD();

cd.title	=	title;

cd.author	=	author;

cd.tracks	=	tracks;

cd.duration	=	duration;

cdList.add(cd);

}

Comentarios	periódicos
En	ocasiones,	 se	añade	un	comentario	al	 inicio	de	un	módulo	cada	vez	que	 se
edita.	Estos	comentarios	acumulan	una	especie	de	registro	de	todos	los	cambios
realizados.	He	visto	módulos	con	decenas	de	páginas	con	estas	entradas.
	*	Cambios	(11-Oct-2001)	

	*	-----------------------------	

	*	11-Oct-2001	 	:	 	Reorganización	de	la	clase	y	cambio	a	un	nuevo	paquete	

	*	 		 	com.jrefinery.date	(DG);	

	*	05-Nov-2001	 	:	 	Se	añade	un	método	getDescription()	y	se	elimina	la	clase	NotableDate	(DG);	

	*	12-Nov-2001	 	:	 	IBD	requiere	el	método	setDescription(),	una	vez	eliminada	la	clase	NotableDate	

	*	 		 	(DG);	se	cambian	getPreviousDayOfWeek(),	getFollowingDayOfWeek()	

	*	 		 	y	getNearestDayOfWeek()	para	corregir	errores	(DG);	

	*	05-Dic-2001	 	:	 	Error	corregido	en	la	clase	SpreadsheetDate	(DG);	

	*	29-May-2002	 	:	 	Se	transfieren	todas	las	constantes	de	mes	a	una	interfaz	

	*	 		 	independiente	(MonthConstants)	(DG);	

	*	27-Ago-2002	 	:	 	Error	corregido	en	el	método	addMonths(),	gracias	a	Nálevka	Petr	(DG);	

	*	03-Oct-2002	 	:	 	Errores	indicados	por	Checkstyle	(DG)	corregidos;	

	*	13-Mar-2003	 	:	 	Implementación	de	Serializable	(DG);	

	*	29-May-2003	 	:	 	Error	corregido	en	el	método	addMonths	(DG);	

	*	04-Sep-2003	 	:	 	Implementación	de	Comparable.	Actualización	de	los	javadoc	isInRange	(DG);	

	*	05-Ene-2005	 	:	 	Error	corregido	en	el	método	addYears()	(1096202)	(DG);	

Hace	tiempo	hubo	una	buena	razón	para	crear	y	mantener	estas	entradas	de
registro	al	inicio	de	cada	módulo.	Carecíamos	de	sistemas	de	control	de	código
fuente	 que	 se	 encargaran	 de	 ello,	 pero	 en	 la	 actualidad,	 estas	 entradas	 son
elementos	sobrantes	que	complican	los	módulos.	Debe	eliminarlas	totalmente.

Comentarios	sobrantes
En	ocasiones	vemos	comentarios	que	simplemente	sobran.	Restan	importancia	a
lo	evidente	y	no	ofrecen	información	nueva.

/**

*	Constructor	predeterminado.

*/

protected	AnnualDateRule()	{

}

¿En	serio?	¿Y	este	otro?:
/**	Día	del	mes.	*/

private	int	dayOfMonth;

Y	aquí	el	parangón	de	la	redundancia:
/**

*	Devuelve	el	día	del	mes.

*

*	@return	el	día	del	mes.

*/

public	int	getDayOfMonth()	{

return	dayOfMonth;

}

Estos	comentarios	son	tan	inservibles	que	aprendemos	a	ignorarlos.	Al	leer
el	código,	 la	vista	 los	salta.	Con	el	 tiempo,	 los	comentarios	empiezan	a	mentir
cuando	cambia	el	código	que	les	rodea.

El	primer	comentario	del	Listado	4-4	parece	correcto[25].	Explica	por	qué	se
ignora	 el	 bloque	 catch,	 pero	 el	 segundo	 comentario	 sobra.	 Parece	 que	 el
programador	estaba	tan	frustrado	con	crear	bloques	try/catch	en	la	función	que
necesitaba	explotar.

Listado	4-4
startSending.

private	void	startSending()

{

try

{

doSending();

}

catch(SocketException	e)

{

//	normal,	alguien	ha	detenido	la	solicitud.
}

catch(Exception	e)

{

try

{

response.add(ErrorResponder.makeExceptionString(e));

response.closeAll();

}

catch(Exception	e1)

{

//¡Un	respiro!
}

}

}

En	lugar	de	explotar	en	un	comentario	sin	sentido,	el	programador	debería
haber	 sabido	 que	 su	 frustración	 se	 podría	 aliviar	 mejorando	 la	 estructura	 del
código.	 Tendría	 que	 haber	 centrado	 su	 energía	 en	 extraer	 el	 último	 bloque
try/catch	en	una	función	independiente,	como	muestra	el	Listado	4-5.

Listado	4-5
startSending	(refactorizado).

private	void	startSending()

{

try

{

doSending();

}

catch(SocketException	e)

{

//	normal.	Alguien	ha	detenido	la	solicitud.

}

catch(Exception	e)

{

addExceptionAndCloseResponse(e);

}

}

private	void	addExceptionAndCloseResponse(Exception	e)

{

try

{

response.add(ErrorResponder.makeExceptionString(e));

response.closeAll();

}

catch(Exception	e1)

{

}

}

Cambie	 la	 tentación	de	crear	elementos	sobrantes	por	 la	determinación	de
limpiar	su	código.	Mejorará	como	programador	y	será	más	fácil.

Comentarios	sobrantes	espeluznantes
Los	 javadoc	 también	 pueden	 ser	 innecesarios.	 ¿Para	 qué	 sirven	 los	 siguientes
javadoc	(de	una	conocida	biblioteca)	de	código	abierto?	La	respuesta:	para	nada.
Son	 comentarios	 redundantes	 creados	 en	 un	 intento	 equivocado	 de	 redactar
documentación.

/**	El	nombre.	*/

private	String	name;

/**	La	versión.	*/

private	String	version;

/**	El	licenceName.	*/

private	String	licenceName;

/**	La	versión.	*/

private	String	info;

Vuelva	 a	 leer	 los	 comentarios.	 ¿Detecta	 el	 error	 de	 corta	 y	 pega?	 Si	 los
autores	no	prestan	atención	al	escribir	sus	comentarios	(o	al	pegarlos),	¿por	qué
se	espera	que	sean	de	utilidad	para	los	lectores?

No	usar	comentarios	si	se	puede	usar	una	función	o	una	variable
Fíjese	en	el	siguiente	código:

//	¿el	módulo	de	la	lista	global	<mod>	depende	del

//	subsistema	del	que	formamos	parte?

if	(smodule.getDependSubsystems().contains(subSysMod.getSubsystem()))

Se	podría	cambiar	sin	el	comentario	de	esta	forma:

ArrayList	moduleDependees	=	smodule.getDependSubsystems();

String	ourSubSystem	=	subSysMod.getSubSystem();

if	(moduleDependees.contains(ourSubSystem))

El	 autor	 del	 código	 original	 seguramente	 escribió	 primero	 el	 comentario
(improbable)	y	después	el	código	para	ajustarlo	al	comentario.	Sin	embargo,	el
autor	 tendría	 que	 haber	 refactorizado	 el	 código,	 como	 hice	 yo,	 para	 poder
eliminar	el	comentario.

Marcadores	de	posición
En	 ocasiones	 los	 programadores	 marcan	 una	 determinada	 posición	 en	 un
archivo.	Por	ejemplo,	recientemente	encontré	esto	en	un	programa:

//	Acciones	//////////////////////////////////

Son	escasas	 las	ocasiones	en	 las	que	 tiene	 sentido	agrupar	 funciones	bajo
esta	estructura.	Por	 lo	general,	debe	eliminarse,	sobre	 todo	la	molesta	hilera	de
barras	al	final.

Piénselo	 de	 esta	 forma.	 Estas	 estructuras	 son	 atractivas	 si	 no	 las	 usa
demasiado.	 Por	 ello,	 úselas	 esporádicamente	 y	 sólo	 cuando	 el	 beneficio	 sea
significativo.	Si	las	usa	en	exceso,	acabarán	por	ser	ignoradas.

Comentarios	de	llave	de	cierre
En	 ocasiones,	 los	 programadores	 incluyen	 comentarios	 especiales	 en	 llaves	 de
cierre,	 como	 en	 el	 Listado	 4-6.	 Aunque	 pueda	 tener	 sentido	 en	 funciones
extensas	 con	 estructuras	 anidadas,	 únicamente	 estorba	 a	 las	 funciones
encapsuladas	y	de	pequeño	tamaño	que	nos	gustan.	Por	ello,	si	siente	el	deseo	de
marcar	sus	llaves	de	cierre,	pruebe	a	reducir	el	tamaño	de	sus	funciones.

Listado	4-6
wc.java.

public	class	wc	{

public	static	void	main(String[]	args)	{

BufferedReader	in	=	new	BufferedReader(new	InputstreamReader(System.in));

String	line;

int	lineCount	=	0;

int	charCount	=	0;

int	wordCount	=	0;

try	{

while	((line	=	in.readLine())	!=	null)	{

lineCount++;

charCount	+=	line.length();

String	words[]	=	line.split(“\\W”);

wordCount	+=	words.length;

}	//while
System.out.println(“wordCount	=	”	+	wordCount);

System.out.println(“lineCount	=	”	+	lineCount);

System.out.println(“charCount	=	”	+	charCount);

}	//	try
catch	(IOException	e)	{

System.err.println(“Error:	”	+	e.getMessage());

}	//catch
}	//main

}

Asignaciones	y	menciones
/*	Añadido	por	Rick	*/

Los	 sistemas	 de	 control	 de	 código	 fuente	 recuerdan	 a	 la	 perfección	 quién	 ha
añadido	 qué	 y	 cuándo.	 No	 es	 necesario	 plagar	 el	 código	 con	 pequeñas
menciones.	Puede	pensar	que	estos	comentarios	son	útiles	y	que	ayudan	a	otros	a
hablar	sobre	el	código,	pero	en	realidad	sobreviven	durante	años	y	cada	vez	son
menos	precisos	y	relevantes.	El	sistema	de	control	de	código	fuente	es	el	punto
idóneo	para	este	tipo	de	información.

Código	comentado
No	hay	nada	más	odioso	que	el	código	comentado.	¡No	lo	haga!

InputStreamResponse	response	=	new	inputStreamResponse();

response.setBody(formatter.getResultStream(),	formatter.getByteCount());

//	InputStream	resultsStream	=	formatter.getResultStream();
//	StreamReader	reader	=	new	StreamReader(resultsStream);
//	response.setContent(reader.read(formatter.getByteCount()));

Los	 lectores	 que	 vean	 código	 comentado	 no	 tendrán	 el	 valor	 de	 borrarlo.
Pensarán	que	está	ahí	por	algo	y	que	es	demasiado	importante	para	borrarlo.	Por
ello,	 el	 código	 comentado	 se	 acumula	 como	 los	 sedimentos	 en	 una	 botella	 de
vino	malo.

Fíjese	en	este	fragmento	de	apache	commons:
this.bytePos	=	writeBytes(pngIdBytes,	0);

//hdrPos	=	bytePos;
writeHeader();

writeResolution();

//dataPos	=	bytePos;
if	(writeImageData())	{

writeEnd();

this.pngBytes	=	resizeByteArray(this.pngBytes,	this.maxPos);

}

else	{

this.pngBytes	=	null;

}

return	this.pngBytes;

¿Por	 qué	 hay	 dos	 líneas	 comentadas?	 ¿Son	 importantes?	 ¿Se	 han
conservado	 como	 recordatorio	 de	 un	 cambio	 inminente	 o	 es	 algo	 que	 alguien
comentó	hace	 años	y	 no	 se	 ha	 preocupado	de	 limpiar?	Hubo	una	 época,	 en	 la
década	de	1960,	en	la	que	el	código	comentado	pudo	ser	útil,	pero	hace	tiempo
que	 contamos	 con	 buenos	 sistemas	 de	 control	 de	 código	 fuente,	 sistemas	 que
recuerdan	el	código	por	nosotros.	Ya	no	tenemos	que	comentarlo.	Elimínelo.	No
lo	perderá.	Se	lo	aseguro.

Comentarios	HTML
El	 HTML	 en	 comentarios	 de	 código	 fuente	 es	 una	 aberración,	 como	 puede
apreciar	en	el	siguiente	fragmento.	Dificulta	la	lectura	de	los	comentarios	donde
debería	 ser	más	 fácil;	 el	 editor	o	 IDE.	Si	 los	comentarios	 se	van	a	extraer	con
una	herramienta	 (como	Javadoc)	para	mostrarlos	en	una	página	Web,	debe	 ser
responsabilidad	 de	 dicha	 herramienta	 y	 no	 del	 programador	 el	 adornar	 los
comentarios	con	el	correspondiente	HTML.
	/**	

	*	 	Tarea	para	ejecutar	pruebas	de	aceptación.	

	*	 	Esta	tarea	ejecuta	pruebas	de	aceptación	y	publica	los	resultados.	

	*	 	<p/>	

	*	 	<pre>	

	*	 	Uso:	

	*	 	<taskdef	name="execute-fitnesse-tests"	

	*	 	classname="fitnesse.ant.ExecuteFitnesseTestsTask"	

	*	 	classpathref="classpath"	/>	

	*	 	OR	

	*	 	<taskdef	classpathref="classpath"	

	*	 	resource="tasks.properties"	/>	

	*	 	<p/>	

	*	 	<execute-fitnesse-tests	

	*	 	suitepage="FitNesse.SuiteAcceptanceTests"	

	*	 	fitnesseport="8082"	

	*	 	resultsdir="$(results.dir)"	

	*	 	resultshtmlpage="fit-results.html"	

	*	 	classpathref="classpath"	/>	

	*	 	</pre>	

	*/	

Información	no	local
Si	tiene	que	escribir	un	comentario,	asegúrese	de	que	describa	el	código	que	le
rodea.	 No	 ofrezca	 información	 global	 del	 sistema	 en	 el	 contexto	 de	 un
comentario	local.	Fíjese	en	el	siguiente	comentario	javadoc.	Aparte	de	su	terrible
redundancia,	 también	 ofrece	 información	 sobre	 el	 puerto	 predeterminado	 y	 la
función	no	 tiene	control	alguno	sobre	el	puerto	predeterminado.	El	comentario
no	describe	la	función	sino	otra	parte	distinta	del	sistema.	Evidentemente,	no	hay
garantías	de	que	el	comentario	cambie	cuando	lo	haga	el	código	que	contiene	el
valor	predeterminado.

/**

*	Puerto	para	ejecutar	fitnesse.	El	predeterminado	es	8082.

*

*	@param	fitnessePort

*/

public	void	setFitnessePort(int	fitnessePort)

{

this.fitnessePort	=	fitnessePort;

}

Demasiada	información
No	incluya	en	sus	comentarios	interesantes	reflexiones	históricas	ni	irrelevantes
descripciones	de	detalles.	El	siguiente	comentario	se	ha	extraído	de	un	módulo
diseñado	 para	 probar	 que	 una	 función	 puede	 codificar	 y	 descodificar	 base64.
Aparte	 del	 número	 RFC,	 el	 lector	 de	 este	 código	 no	 necesita	 la	 información
obsoleta	que	contiene	el	comentario.

/*

RFC	2045	-	Extensiones	Multipropósito	de	correo	de	Internet	(MIME)

Primera	parte:	Formato	del	Cuerpo	de	los	Mensajes	de	Internet

sección	6.8.	Codificación	de	transferencia	de	contenidos	Base64

El	proceso	de	codificación	representa	grupos	de	24	bits	de	la	entrada

como	cadenas	de	salida	de	4	caracteres	codificados.	Procediendo	de

izquierda	a	derecha,	se	forma	un	grupo	de	24	bits	de	entrada

concatenando	3	grupos	de	8	bits	de	entrada.	Estos	24	bits	se	tratan

como	4	grupos	concatenados	de	6	bits,	cada	uno	de	los	cuales	se

traduce	en	un	solo	dígito	del	alfabeto	base64.	Cuando	se	codifica	un

flujo	de	bits	mediante	la	codificación	base64,	el	flujo	de	bits	se

debe	considerar	ordenado	con	el	bit	más	significativo	primero.	Esto

es,	el	primer	bit	del	flujo	será	el	bit	de	orden	más	alto	en	el

primer	byte	de	8	bits,	y	el	octavo	bit	será	el	de	orden	más	bajo	en

el	primer	byte	de	8	bits,	y	así	sucesivamente.

*/

Conexiones	no	evidentes
La	conexión	entre	un	comentario	y	el	código	que	describe	debe	ser	evidente.	Si
se	ha	preocupado	de	escribir	un	comentario,	 lo	mínimo	es	que	el	 lector	que	 lo
vea	 entienda	 a	 qué	 se	 refiere.	 Fíjese	 en	 este	 comentario	 obtenido	 de	 apache
commons:

/*

*	comienza	con	una	matriz	de	tamaño	suficiente	para	albergar	todos	los	pixeles

*	(más	bytes	de	filtro),	y	200	bytes	adicionales	para	la	información	de	encabezado

*/

this.pngBytes	=	new	byte[((this.width	+	1)	*	this.height	*	3)	+	200];

¿Qué	 es	 un	 byte	 de	 filtro?	 ¿Está	 relacionado	 con	 +1?	 ¿O	 con	 *3?	 ¿Con
ambos?	 ¿Es	 un	pixel	 un	byte?	 ¿Por	 qué	 200?	La	 función	de	 un	 comentario	 es
explicar	 código	 que	 no	 se	 explica	 por	 sí	 mismo.	 Es	 una	 lástima	 que	 un
comentario	requiera	su	propia	explicación.

Encabezados	de	función
Las	funciones	breves	apenas	requieren	explicación.	Un	nombre	bien	elegido	para
una	 función	 que	 hace	 una	 cosa	 suele	 ser	 mejor	 que	 un	 encabezado	 de
comentario.

Javadocs	en	código	no	público

A	pesar	de	la	utilidad	de	los	javadoc	para	las	API	públicas,	no	sirven	para	código
no	dirigido	a	consumo	público.	La	generación	de	páginas	javadoc	para	clases	y
funciones	 de	 un	 sistema	 no	 suele	 ser	 útil	 y	 la	 formalidad	 adicional	 de	 los
comentarios	javadoc	no	es	más	que	una	distracción.

Ejemplo
Escribí	 el	 módulo	 del	 Listado	 4-7	 para	 la	 primera	 versión	 de	XP	 Immersion.
Debía	ser	un	ejemplo	de	estilo	incorrecto	de	creación	de	código	y	comentarios.
Después,	Kent	Beck	refactorizó	este	código	en	algo	mucho	más	atractivo	delante
de	 varios	 alumnos.	 Posteriormente,	 adapté	 el	 ejemplo	 para	 mi	 libro	 Agile
Software	Development,	Principles,	Patterns,	and	Practices	y	para	el	primero	de
mis	artículos	Craftsman	publicados	en	la	revista	Software	Development.

Lo	que	me	fascina	de	este	módulo	es	que	hubo	un	tiempo	en	que	muchos	lo
hubiéramos	 considerado	 bien	 documentado.	Ahora	 vemos	 que	 es	 un	 auténtico
desastre.	A	ver	cuántos	problemas	detecta	en	los	comentarios.

Listado	4-7
GeneratePrimes.java.

/**

*	Esta	clase	genera	números	primos	hasta	la	cantidad	máxima	especificada	por	el

*	usuario.	El	algoritmo	usado	es	la	Criba	de	Eratóstenes.

*	<p>

*	Eratóstenes	de	Cirene,	276	a.	C.,	Cirene,	Libia	-

*	194	a.	C.,	Alejandría.	El	primer	hombre	en	calcular	la

*	circunferencia	de	la	Tierra.	También	trabajó	con	calendarios

*	con	años	bisiestos	y	fue	responsable	de	la	Biblioteca	de	Alejandría.

*	<p>

*	El	algoritmo	es	muy	simple.	Dada	una	matriz	de	enteros

*	empezando	por	el	2,	se	tachan	todos	los	múltiplos	de	2.	Se	busca	el	siguiente

*	entero	sin	tachar	y	se	tachan	todos	sus	múltiplos.

*	Repetir	hasta	superar	la	raíz	cuadrada	del	valor

*	máximo.

*

*	©author	Alphonse

*	©version	13	Feb	2002	atp

*/

import	java.util.*;

public	class	GeneratePrimes

{

/**

*	@param	maxValue	es	el	límite	de	generación.

*/

public	static	int[]	generatePrimes(int	maxValue)

{

if	(maxValue	>=	2)	//el	único	caso	válido

{

//	declaraciones

int	s	=	maxValue	+	1;	//	tamaño	de	la	matriz

boolean[]	f	=	new	boolean[s];

int	i;

//	inicializar	la	matriz	en	true.

for	(i	=	0;	i	<	s;	i++)

f[i]	=	true;

//	eliminar	los	números	no	primos	conocidos

f[0]	=	f[1]	=	false;

//	cribar

int	j;

for	(i	=	2;	i	<	Math.sqrt(s)	+	1;	i++)

{

if	(f[i])	//	si	no	está	tachado,	tachar	sus	múltiplos.

{

for	(j	=	2	*	i;	j	<	s;	j	+=	i)

f[j]	=	false;	//	el	múltiplo	no	es	primo

}

}

//	¿cuántos	primos	hay?

int	count	=	0;

for	(i	=	0;	i	<	s;	i++)

{

if	(f[i])

count++;	//	contador.

}

int[]	primes	=	new	int[count];

//	enviar	primos	al	resultado

for	(i	=	0,	j	=	0;	i	<	s;	i++)

{

if	(f[i])	//	si	es	primo

primes[j++]	=	i;

}

return	primes;	//	devolver	los	primos

}

else	//	maxValue	<	2

return	new	int[0];	//	devolver	matriz	null	si	la	entrada	no	es	correcta.

}

}

En	el	Listado	4-8	puede	ver	una	versión	refactorizada	del	mismo	módulo.
Se	ha	limitado	considerablemente	el	uso	de	comentarios.	Hay	sólo	dos	en	todo	el
módulo	y	ambos	claramente	descriptivos.

Listado	4-8
PrimeGenerator.java	(refactorizado).

/**

*	Esta	clase	genera	números	primos	hasta	la	cantidad	máxima	especificada	por	el

*	usuario.	El	algoritmo	usado	es	la	Criba	de	Eratóstenes.	Dada	una	matriz	de	enteros

*	empezando	por	el	2:	buscar	el	primer	entero	sin	tachar	y	tachar	todos	sus

*	múltiplos.	Repetir	hasta	que	no	haya	más	múltiplos	en	la	matriz.

*/

public	class	PrimeGenerator

{

private	static	boolean[]	crossedOut;

private	static	int[]	result;

public	static	int[]	generatePrimes(int	maxValue)

{

if	(maxValue	<	2)

return	new	int[0];

else

{

uncrossIntegersUpTo(maxValue);

crossOutMultiples();

putUncrossedIntegersIntoResult();

return	result;

}

}

private	static	void	uncrossIntegersUpTo(int	maxValue)

{

crossedOut	=	new	boolean[maxValue	+	1];

for	(int	i	=	2;	i	<	crossedOut.length;	i++)

crossedOut[i]	=	false;

}

private	static	void	crossOutMultiples()

{

int	limit	=	determineIterationLimit();

for	(int	i	=	2;	i	<=	limit;	i++)

if	(notCrossed(i))

crossOutMultiplesOf(i);

}

private	static	int	determineIterationLimit()

{

//	Cada	múltiplo	en	la	matriz	tiene	un	factor	primordial	que

//	es	menor	o	igual	que	la	raíz	del	tamaño	de	la	matriz,

//	entonces	no	tenemos	que	tachar	múltiplos	de	números

//	más	grande	que	esa	raíz.

double	iterationLimit	=	Math.sqrt(crossedOut.length);

return	(int)	iterationLimit;

}

private	static	void	crossOutMultiplesOf	(int	i)

{

for	(int	multiple	=	2	*	i;

multiple	<	crossedOut.length;

multiple	+=	i)

crossedOut[multiple]	=	true;

}

private	static	boolean	notCrossed(int	i)

{

return	crossedOut[i]	==	false;

}

private	static	void	putUncrossedIntegersIntoResult()

{

result	=	new	int[numberOfUncrossedIntegers()];

for	(int	j	=	0,	i	=	2;	i	<	crossedOut.length;	i++)

if	(notCrossed(i))

result[j++]	=	i;

}

private	static	int	numberOfUncrossedIntegers()

{

int	count	=	0;

for	(int	i	=	2;	i	<	crossedOut.length;	i++)

if	(notCrossed(i))

count++;

return	count;

}

}

Se	 podría	 decir	 que	 el	 primer	 comentario	 es	 redundante	 ya	 que	 es	 muy
similar	a	la	función	generatePrimes,	pero	creo	que	muestra	mejor	el	algoritmo
al	lector,	motivo	por	el	que	lo	he	mantenido.	El	segundo	argumento	es	sin	duda
necesario.	Explica	 la	 lógica	del	uso	de	 la	 raíz	cuadrada	como	 límite	del	bucle.
No	encontré	otro	nombre	de	variable	más	 sencillo	ni	otra	estructura	de	código
que	 lo	 aclarara	más.	 Por	 otra	 parte,	 el	 uso	 de	 la	 raíz	 cuadrada	 podría	 resultar
presuntuoso.	¿Realmente	se	ahorra	 tanto	 tiempo	limitando	 la	 iteración	a	 la	 raíz
cuadrada?	¿El	cálculo	de	la	raíz	cuadrada	llevaría	más	tiempo	del	que	se	ahorra?
Conviene	analizarlo.	El	uso	de	la	raíz	cuadrada	como	límite	de	iteración	satisface
al	viejo	hacker	de	C	y	de	lenguajes	de	ensamblado	de	mi	interior,	pero	no	estoy
convencido	 de	 que	 merezca	 el	 tiempo	 y	 el	 esfuerzo	 que	 los	 demás	 puedan
dedicar	a	entenderlo.

Bibliografía
	

[KP78]:	Kernighan	and	Plaugher,	The	Elements	of	Programming	Style,	2d.
ed.,	McGraw-Hill,	1978.

5
Formato

Cuando	 los	 usuarios	 miran	 entre	 bastidores,	 queremos	 que	 queden
impresionados	 por	 el	 atractivo,	 la	 coherencia	 y	 la	 atención	 al	 detalle	 que
perciben.	Queremos	que	el	orden	les	sorprenda,	que	abran	los	ojos	con	asombro
cuando	se	desplacen	por	los	módulos.	Queremos	que	aprecien	que	se	trata	de	un
trabajo	de	profesionales.	Si	ven	una	masa	amorfa	de	código	que	parece	escrito
por	un	grupo	de	marineros	borrachos,	es	probable	que	piensen	que	sucederá	 lo
mismo	en	otros	aspectos	del	proyecto.

Debe	 preocuparse	 por	 el	 formato	 de	 su	 código.	 Debe	 elegir	 una	 serie	 de
reglas	 sencillas	 que	 controlen	 el	 formato	 del	 código	 y	 después	 aplicarlas	 de
forma	coherente.	Si	trabaja	en	equipo,	debe	acordar	una	serie	de	reglas	que	todos
los	 miembros	 deben	 cumplir.	 También	 es	 muy	 útil	 usar	 una	 herramienta
automatizada	que	se	encargue	de	aplicar	las	reglas.

La	función	del	formato

En	primer	lugar,	debe	ser	claro.	El	formato	de	código	es	importante,	demasiado
importante	 como	 para	 ignorarlo	 y	 también	 demasiado	 importante	 como	 para
tratarlo	de	forma	religiosa.	El	formato	del	código	se	basa	en	la	comunicación	y
la	comunicación	debe	ser	el	principal	pilar	de	un	desarrollador	profesional.

Puede	 que	 piense	 que	 conseguir	 que	 algo	 funcione	 es	 la	 principal
preocupación	 de	 un	 programador	 profesional.	 Espero	 que	 este	 libro	 le	 haga
cambiar	de	idea.	La	funcionalidad	que	cree	hoy	es	muy	probable	que	cambie	en
la	 siguiente	versión,	pero	 la	 legibilidad	de	 su	código	afectará	profundamente	a
todos	los	cambios	que	realice.	El	estilo	del	código	y	su	legibilidad	establecen	los
precedentes	que	 afectan	a	 la	 capacidad	de	mantenimiento	y	 ampliación	mucho
después	de	que	el	código	cambie.	Su	estilo	y	su	disciplina	sobrevivirán,	aunque
el	código	no	lo	haga.

Veamos	qué	aspectos	del	formato	nos	permiten	comunicarnos	mejor.

Formato	vertical

Comencemos	por	el	tamaño	vertical.	¿Qué	tamaño	debe	tener	un	archivo	fuente?
En	Java,	el	tamaño	de	los	archivos	está	relacionado	con	el	tamaño	de	las	clases,
como	veremos	más	adelante.	Por	el	momento,	nos	detendremos	en	el	tamaño	de
los	archivos.

¿Qué	 tamaño	 tienen	 la	 mayoría	 de	 archivos	 fuente	 de	 Java?	 Existe	 una
amplia	gama	de	tamaños	e	importantes	diferencias	de	estilo,	como	se	aprecia	en
la	figura	5.1.

Figura	5.1.	Escala	LOG	de	distribuciones	de	longitud	de	archivos	(altura	del	cuadro	=	sigma).

Se	 describen	 siete	 proyectos:	 Junit,	 FitNesse,	 testNG,	 Time	 and	 Money,
JDepend,	Ant	y	Tomcat.	Las	líneas	que	cruzan	los	cuadros	muestran	la	longitud
máxima	 y	 mínima	 de	 cada	 proyecto.	 El	 cuadro	 muestra	 aproximadamente	 un
tercio	(una	desviación	estándar[26])	de	los	archivos.	La	parte	central	del	cuadro	es
la	media.	Por	tanto,	el	tamaño	de	archivo	medio	del	proyecto	FitNesse	es	de	65
líneas	y	un	tercio	de	los	archivos	ocupan	entre	40	y	100+	líneas.

El	mayor	archivo	de	FitNesse	tiene	unas	400	líneas	y	el	de	menor	tamaño,
6.	 Es	 una	 escala	 de	 registro,	 de	 modo	 que	 la	 pequeña	 diferencia	 de	 posición
vertical	supone	una	gran	diferencia	en	tamaño	absoluto.

Junit,	FitNesse	y	Time	and	Money	tienen	archivos	relativamente	pequeños.
Ninguno	supera	las	500	líneas	y	la	mayoría	tienen	menos	de	200.	Tomcat	y	Ant,
por	su	parte,	tienen	archivos	con	varios	miles	de	líneas	de	longitud	y	más	de	la
mitad	superan	las	200.

¿Qué	 significa	 todo	 esto?	 Aparentemente	 se	 pueden	 crear	 sistemas
(FitNesse	se	aproxima	a	las	50	000	líneas)	a	partir	de	archivos	de	unas	200	líneas
de	longitud,	con	un	límite	máximo	de	500.	Aunque	no	debería	ser	una	regla,	es
un	 intervalo	 aconsejable.	Los	 archivos	 de	 pequeño	 tamaño	 se	 entienden	mejor
que	los	grandes.

La	metáfora	del	periódico
Piense	 en	un	 artículo	de	periódico	bien	 escrito.	En	 la	 parte	 superior	 espera	 un
titular	que	 indique	de	qué	 se	 trata	 la	historia	y	 le	permita	determinar	 si	 quiere
leerlo	 o	 no.	 El	 primer	 párrafo	 ofrece	 una	 sinopsis	 de	 la	 historia,	 oculta	 los

detalles	 y	 muestra	 conceptos	 generales.	 Al	 avanzar	 la	 lectura,	 aumentan	 los
detalles	junto	con	todas	las	fechas,	nombres,	citas	y	otros	elementos.

Un	archivo	de	código	debe	 ser	 como	un	artículo	de	periódico.	El	nombre
debe	 ser	 sencillo	 pero	 claro.	 Por	 sí	 mismo,	 debe	 bastar	 para	 indicarnos	 si
estamos	o	no	en	el	módulo	correcto.	Los	elementos	superiores	del	archivo	deben
proporcionar	 conceptos	 y	 algoritmos	 de	 nivel	 superior.	 Los	 detalles	 deben
aumentar	 según	 avanzamos,	 hasta	 que	 en	 la	 parte	 final	 encontremos	 las
funciones	de	nivel	inferior	del	archivo.

Un	 periódico	 se	 compone	 de	 varios	 artículos,	 algunos	 muy	 reducidos	 y
otros	de	gran	tamaño.	No	hay	muchos	que	ocupen	toda	la	página	con	texto,	para
que	el	periódico	 sea	manejable.	Si	 el	periódico	 fuera	un	único	y	extenso	 texto
con	 una	 aglomeración	 desorganizada	 de	 hechos,	 fechas	 y	 nombres,	 no	 lo
leeríamos.

Apertura	vertical	entre	conceptos
La	práctica	totalidad	del	código	se	lee	de	izquierda	a	derecha	y	de	arriba	a	abajo.
Cada	 línea	 representa	 una	 expresión	 o	 una	 cláusula,	 y	 cada	 grupo	 de	 líneas
representa	 un	 pensamiento	 completo.	 Estos	 pensamientos	 deben	 separarse
mediante	líneas	en	blanco.

Fíjese	 en	 el	Listado	5-1.	Hay	 líneas	 en	blanco	que	 separan	 la	declaración
del	paquete,	las	importaciones	y	las	funciones.	Es	una	regla	muy	sencilla	con	un
profundo	efecto	en	el	diseño	visual	del	código.	Cada	línea	en	blanco	es	una	pista
visual	que	identifica	un	nuevo	concepto	independiente.	Al	avanzar	por	el	listado,
la	vista	se	fija	en	la	primera	línea	que	aparece	tras	una	línea	en	blanco.

Listado	5-1
BoldWidget.java

package	fitnesse.wikitext.widgets;

import	java.util.regex.*;

public	class	BoldWidget	extends	ParentWidget	{

public	static	final	String	REGEXP	=	“‘‘‘.+?’’’”;

private	static	final	Pattern	pattern	=	Pattern.compile	(“‘‘‘(.+?)’’’”,

Pattern.MULTILINE	+	Pattern.DOTALL

);

public	BoldWidget(ParentWidget	parent,	String	text)	throws	Exception	{

super(parent);

Matcher	match	=	pattern.matcher(text);

match.find();

addChildWidgets(match.group(1));

}

public	String	render()	throws	Exception	{

StringBuffer	html	=	new	StringBuffer(“”);

html.append(childHtml()).append	(“”);

return	html.toString();

}

}

Si	eliminamos	las	líneas	en	blanco,	como	en	el	Listado	5-2,	se	oscurece	la
legibilidad	del	código.

Listado	5-2
BoldWidget.java

package	fitnesse.wikitext.widgets;

import	java.util.regex.*;

public	class	BoldWidget	extends	ParentWidget	{

public	static	final	String	REGEXP	=	“‘‘‘.+?’’’”;

private	static	final	Pattern	pattern	=	Pattern.compile(“‘‘‘(.+?)’’’”,

Pattern.MULTILINE	+	Pattern.DOTALL);

public	BoldWidget(ParentWidget	parent,	String	text)	throws	Exception	{

super(parent);

Matcher	match	=	pattern.matcher(text);

match.find();

addChildWidgets(match.group(1));}

public	String	render()	throws	Exception	{

StringBuffer	html	=	new	StringBuffer(“”);

html.append(childHtml()).append(“”);

return	html.toString();

}

}

Este	 efecto	 aumenta	 todavía	 más	 si	 no	 centramos	 la	 vista.	 En	 el	 primer
ejemplo,	 los	 distintos	 grupos	 de	 líneas	 saltan	 a	 la	 vista,	 mientras	 que	 en	 el
segundo	es	una	mezcla	amorfa.	La	diferencia	entre	ambos	listados	es	una	ligera
apertura	vertical.

Densidad	vertical
Si	 la	 apertura	 separa	 los	 conceptos,	 la	 densidad	 vertical	 implica	 asociaciones.
Por	 tanto,	 las	 líneas	 de	 código	 con	 una	 relación	 directa	 deben	 aparecer
verticalmente	densas.	Fíjese	en	cómo	los	comentarios	sin	sentido	del	Listado	5-3
anulan	la	asociación	entre	las	dos	variables	de	instancia.

Listado	5-3

public	class	ReporterConfig	{

/**

*	Nombre	de	clase	del	escuchador

*/

private	String	m_className;

/**

*	Propiedades	del	escuchador

*/

private	List<Property>	m_properties	=	new	ArrayList<Property>();

public	void	addProperty(Property	property)	{

m_properties.add(property);

}

El	Listado	5-4	es	mucho	más	fácil	de	leer.	Lo	apreciamos	a	simple	vista	o	al
menos	 yo	 lo	 hago.	 Al	 mirarlo,	 veo	 que	 es	 una	 clase	 con	 dos	 variables	 y	 un
método,	sin	tener	que	mover	la	cabeza	ni	la	vista.	El	listado	anterior	nos	obliga	a
forzar	la	vista	y	a	mover	la	cabeza	para	alcanzar	el	mismo	nivel	de	comprensión.

Listado	5-4

public	class	ReporterConfig	{

private	String	m_className;

private	List<Property>	m_properties	=	new	ArrayList<Property>();

public	void	addProperty(Property	property)	{

m_properties.add(property);

}

Distancia	vertical
¿Alguna	 vez	 ha	 tenido	 que	 recorrer	 una	 clase,	 saltando	 de	 una	 función	 a	 otra,
desplazándose	 por	 el	 código	 para	 intentar	 adivinar	 la	 relación	 y	 el
funcionamiento	de	las	funciones,	y	acabar	totalmente	confundido?	¿Alguna	vez
ha	escudriñado	 la	cadena	de	herencia	buscando	 la	definición	de	una	variable	o
función?	Resulta	 frustrante	 porque	 intenta	 comprender	 lo	 que	 hace	 el	 sistema,
pero	 pierde	 el	 tiempo	 y	 su	 energía	mental	 en	 intentar	 localizar	 y	 recordar	 sus
elementos.

Los	conceptos	relacionados	entre	sí	deben	mantenerse	juntos	verticalmente
[G10].	Esta	regla	no	funciona	con	conceptos	de	archivos	independientes.	Por	lo
tanto,	 no	 debe	 separar	 conceptos	 relacionados	 en	 archivos	 independientes	 a
menos	que	tenga	un	motivo	de	peso.	De	hecho,	es	uno	de	los	motivos	por	los	que
se	debe	evitar	el	uso	de	variables	protegidas.

Para	 los	 conceptos	 relacionados	 que	 pertenecen	 al	 mismo	 archivo,	 su
separación	vertical	debe	medir	 su	 importancia	con	 respecto	a	 la	 legibilidad	del
otro.	Debe	evitar	que	el	lector	deambule	entre	archivos	y	clases.

Declaraciones	de	variables

Las	variables	deben	declararse	de	la	forma	más	aproximada	a	su	uso.	Como	las
funciones	 son	 muy	 breves,	 las	 variables	 locales	 deben	 aparecer	 en	 la	 parte
superior	de	cada	función,	como	en	este	ejemplo	de	Junit4.3.1.

private	static	void	readPreferences()	{

InputStream	is	=	null;
try	{

is	=	new	FileInputStream(getPreferencesFile());

setPreferences(new	Properties(getPreferences()));

getPreferences().load(is);

}	catch	(IOException	e)	{

try	{

if	(is	!=	null)

is.close();

}	catch	(IOException	e1)	{

}

}

}

Las	 variables	 de	 control	 de	 bucles	 deben	 declararse	 en	 la	 instrucción	 del
bucle,	como	en	esta	pequeña	función	del	mismo	código	fuente:

public	int	countTestCases()	{

int	count=	0;

for	(Test	each	:	tests)
count	+=	each.countTestCases();

return	count;

}

En	casos	excepcionales,	una	variable	puede	declararse	en	la	parte	superior
de	un	bloque	o	antes	de	un	bucle	en	una	función	extensa.	Puede	ver	este	tipo	de
variable	en	la	siguiente	función	de	TestNG.

…

for	(XmlTest	test:	m_suite.getTests())	{

TestRunner	tr	=	m_runnerFactory.newTestRunner(this,	test);
tr.addListener(m_textReporter);

m_testRunners.add(tr);

invoker	=	tr.getInvoker();

for	(ITestNGMethod	m	:	tr.getBeforeSuiteMethods())	{

beforeSuiteMethods.put(m.getMethod(),	m);

}

for	(ITestNGMethod	m	:	tr.getAfterSuiteMethods())	{

afterSuiteMethods.put(m.getMethod(),	m);

}

}

…

Variables	de	instancia

Las	variables	de	instancia,	por	su	parte,	deben	declararse	en	la	parte	superior	de
la	clase.	Esto	no	debe	aumentar	la	distancia	vertical	de	las	variables,	ya	que	en
una	clase	bien	diseñada	se	usan	en	muchos	sino	en	todos	sus	métodos.

Existen	 discrepancias	 sobre	 la	 ubicación	 de	 las	 variables	 de	 instancia.
En	C++	 suele	 aplicarse	 la	 denominada	 regla	 de	 las	 tijeras,	 que	 sitúa	 todas	 las
variables	 de	 instancia	 en	 la	 parte	 inferior.	 En	 Java,	 sin	 embargo,	 es	 habitual
ubicarlas	 en	 la	parte	 superior	de	 la	 clase.	No	veo	motivos	para	no	hacerlo.	Lo
importante	es	declarar	las	variables	de	instancia	en	un	punto	conocido	para	que
todo	el	mundo	sepa	dónde	buscarlas.

Fíjese	en	el	extraño	caso	de	la	clase	TestSuite	de	JUnit	4.3.1.	He	atenuado
considerablemente	esta	clase	para	ilustrar	este	concepto.	Si	se	fija	en	la	mitad	del
listado,	 verá	 dos	 variables	 de	 instancia	 declaradas.	 Resultaría	 complicado
ocultarlas	en	un	punto	mejor.	Cualquiera	que	lea	este	código	tendría	que	toparse
con	las	declaraciones	por	casualidad	(como	me	pasó	a	mí).

public	class	TestSuite	implements	Test	{

static	public	Test	createTest(Class<?	extends	TestCase>	theClass,

String	name)	{

…

}

public	static	Constructor<?	extends	TestCase>

getTestConstructor(Class<?	extends	TestCase>	theClass)

throws	NoSuchMethodException	{

…

}

public	static	Test	warning(final	String	message)	{

…

}

private	static	String	exceptionToString(Throwable	t)	{

…

}

private	String	fName;

private	Vector<Test>	fTests	=	new	Vector<Test>(10);

public	TestSuite()	{

}

public	TestSuite(final	Class<?	extends	TestCase>	theClass)	{

…

}

public	TestSuite(Class<?	extends	TestCase>	theClass,	String	name)	{

…

}

…	…	…	…

}

Funciones	dependientes

Si	una	función	invoca	otra,	deben	estar	verticalmente	próximas,	y	la	función	de
invocación	 debe	 estar	 por	 encima	 de	 la	 invocada	 siempre	 que	 sea	 posible.	De
este	modo	el	programa	fluye	con	normalidad.	Si	la	convención	se	sigue	de	forma
fiable,	los	lectores	sabrán	que	las	definiciones	de	función	aparecen	después	de	su
uso.	Fíjese	en	el	fragmento	de	FitNesse	del	Listado	5-5.

La	función	superior	invoca	las	situadas	por	debajo	que,	a	su	vez,	invocan	a
las	 siguientes.	 Esto	 facilita	 la	 detección	 de	 las	 funciones	 invocadas	 y	 mejora
considerablemente	la	legibilidad	del	módulo	completo.

Listado	5-5
WikiPageResponder.java.

public	class	WikiPageResponder	implements	SecureResponder	{

protected	WikiPage	page;

protected	PageData	pageData;

protected	String	pageTitle;

protected	Request	request;

protected	PageCrawler	crawler;

public	Response	makeResponse(FitNesseContext	context,	Request	request)

throws	Exception	{

String	pageName	=	getPageNameOrDefault(request,	“Frontpage”);

LoadPage(pageName,	context);

if	(page	==	null)

return	notFoundResponse(context,	request);

else

return	makePageResponse(context);

}

private	String	getPageNameOrDefault(Request	request,	String	defaultPageName)

{

String	pageName	=	request.getResource();

if	(StringUtil.isBlank(pageName))

pageName	=	defaultPageName;

return	pageName;

}

protected	void	loadPage(String	resource,	FitNesseContext	context)

throws	Exception	{

WikiPagePath	path	=	PathParser.parse(resource);

crawler	=	context.root.getPageCrawler();

crawler.setDeadEndStrategy(new	VirtualEnabledPageCrawler());

page	=	crawler.getPage(context.root,	path);

if	(page	!=	null)

pageData	=	page.getData();

}

private	Response	notFoundResponse(FitNesseContext	context,	Request	request)

throws	Exception	{

return	new	NotFoundResponder().makeResponse(context,	request);

}

private	SimpleResponse	makePageResponse(FitNesseContext	context)

throws	Exception	{

pageTitle	=	PathParser.render(crawler.getFullPath(page));

String	html	=	makeHtml(context);

SimpleResponse	response	=	new	SimpleResponse();

response.setMaxAge(0);

response.setContent(html);

return	response;

}

…

Además,	este	fragmento	es	un	buen	ejemplo	de	ubicación	de	constantes	en
un	nivel	correcto	[G35].	La	constante	FrontPage	se	podría	haber	ocultado	en	la
función	 getPageNameOrDefault,	 pero	 eso	 habría	 ocultado	 una	 constante
conocida	 y	 esperada	 en	 una	 función	 de	 nivel	 inferior	 de	 forma	 incorrecta.	 Es
mejor	pasar	la	constante	desde	un	punto	en	el	que	tiene	sentido	a	la	posición	en
la	que	realmente	se	usa.

Afinidad	conceptual

			

Determinados	 conceptos	 de	 código	 deben	 estar	 próximos	 a	 otros.	 Tienen	 una
afinidad	 conceptual	 concreta.	Cuanto	mayor	 sea	 esta	 afinidad,	menor	distancia
vertical	debe	existir	entre	ellos.

Como	 hemos	 visto,	 esta	 afinidad	 se	 puede	 basar	 en	 una	 dependencia
directa,	como	cuando	una	función	invoca	a	otra,	o	cuando	usa	una	variable.	Pero
hay	 otras	 causas	 de	 afinidad.	 Puede	 generarse	 porque	 un	 grupo	 de	 funciones
realice	una	operación	similar.	Fíjese	en	este	fragmento	de	código	de	Junit	4.3.1:
public	class	Assert	{

static	public	void	assertTrue(String	message,	boolean	condition)	{

if	(!condition)

fail(message);

}

static	public	void	assertTrue(boolean	condition)	{

assertTrue	(null,	condition);

}

static	public	void	assertFalse(String	message,	boolean	condition)	{

assertTrue(message,	!condition);

}

static	public	void	assertFalse(boolean	condition)	{

assertFalse(null,	condition);

}

…

Estas	 funciones	 tienen	una	 elevada	 afinidad	 conceptual	 ya	que	 comparten
un	sistema	de	nombres	común	y	realizan	variantes	de	la	misma	tarea	básica.	El
hecho	 de	 que	 se	 invoquen	 unas	 a	 otras	 es	 secundario.	Aunque	 no	 lo	 hicieran,
deberían	seguir	estando	próximas	entre	ellas.

Orden	vertical
Por	 lo	 general,	 las	 dependencias	 de	 invocaciones	 de	 funciones	 deben	 apuntar
hacia	 abajo.	 Es	 decir,	 la	 función	 invocada	 debe	 situarse	 por	 debajo	 de	 la	 que

realice	la	invocación[27].	Esto	genera	un	agradable	flujo	en	el	código	fuente,	de	los
niveles	superiores	a	los	inferiores.

Como	 sucede	 en	 los	 artículos	del	 periódico,	 esperamos	que	 los	 conceptos
más	 importantes	 aparezcan	 antes	 y	 que	 se	 expresen	 con	 la	menor	 cantidad	 de
detalles	sobrantes.	Esperamos	que	los	detalles	de	nivel	inferior	sean	los	últimos.
De	este	modo,	podemos	ojear	los	archivos	de	código	y	captar	el	mensaje	en	las
primeras	funciones	sin	necesidad	de	sumergirnos	en	los	detalles.	El	Listado	5-5
se	organiza	de	 esta	 forma.	Puede	que	otros	 ejemplos	mejores	 sean	 los	 listados
15-5	y	3-7.

Formato	horizontal

¿Qué	ancho	debe	 tener	una	 línea?	Para	responderlo,	 fíjese	en	 la	anchura	de	 las
líneas	 de	 un	 programa	 convencional.	 De	 nuevo,	 examinamos	 siete	 proyectos
diferentes.	En	la	figura	5.2	puede	ver	la	distribución	de	longitud	de	todos	ellos.
La	 regularidad	 es	 impresionante,	 en	 especial	 en	 tomo	 a	 los	 45	 caracteres.	 De
hecho,	los	tamaños	entre	20	y	60	representan	un	uno	por	cien	del	número	total	de
líneas.	 ¡Eso	 es	 un	 40	 por	 100!	 Puede	 que	 otro	 30	 por	 100	 sea	 menos	 de	 10
caracteres	 de	 ancho.	 Recuerde	 que	 es	 una	 escala	 de	 registro,	 de	modo	 que	 la
apariencia	 lineal	 es	 muy	 significativa.	 Es	 evidente	 que	 los	 programadores
prefieren	líneas	menos	anchas.

Figura	5.2.	Distribución	de	anchura	de	líneas	en	Java.

Esto	sugiere	que	debemos	intentar	reducir	 las	líneas	de	código.	El	antiguo
límite	Hollerith	de	80	es	un	tanto	arbitrario	y	no	me	opongo	a	líneas	que	tienen
100	o	incluso	120,	pero	no	más.

Como	 norma,	 no	 debe	 tener	 que	 desplazarse	 hacia	 la	 derecha.	 Los
monitores	 modernos	 son	 más	 anchos	 y	 los	 programadores	 noveles	 pueden
reducir	la	fuente	para	encajar	hasta	200	caracteres	en	la	pantalla.	No	lo	haga.	Mi
límite	personal	es	de	120.

Apertura	y	densidad	horizontal
Usamos	 el	 espacio	 en	 blanco	 horizontal	 para	 asociar	 elementos	 directamente
relacionados	 y	 separar	 otros	 con	 una	 relación	 menos	 estrecha.	 Fíjese	 en	 la
siguiente	función:

private	void	measureLine(String	line)	{

lineCount++;

int	lineSize	=	line.length();

totalChars	+=	lineSize;

lineWidthHistogram.addLine(lineSize,	lineCount);

recordWidestLine(lineSize);

}

Hemos	rodeado	 los	operadores	de	asignación	con	espacios	en	blanco	para
destacarlos.	Las	instrucciones	de	asignación	tienen	dos	elementos	principales:	el
lado	izquierdo	y	el	derecho.	Los	espacios	acentúan	esta	separación.

Por	 otra	 parte,	 no	 hemos	 incluido	 espacios	 entre	 los	 nombres	 de	 las
funciones	y	el	paréntesis	de	apertura,	ya	que	la	función	y	sus	argumentos	están
estrechamente	 relacionados.	 Su	 separación	 los	 desconectaría.	 Separo	 los
argumentos	en	los	paréntesis	de	invocación	de	la	función	para	acentuar	la	coma
e	indicar	que	los	argumentos	son	independientes.	El	espacio	en	blanco	también
se	usa	para	acentuar	la	precedencia	de	los	operadores:	public	class	Quadratic	{

public	static	double	root1(double	a,	double	b,	double	c)	{

double	determinant	=	determinant(a,	b,	c);

return	(-b	+	Math.sqrt(determinant))	/	(2*a);

}

public	static	double	root2(int	a,	int	b,	int	c)	{

double	determinant	=	determinant(a,	b,	c);

return	(-b	-	Math.sqrt(determinant))	/	(2*a);

}

private	static	double	determinant(double	a,	double	b,	double	c)	{

return	b*b	-	4*a*c;

}

}

Fíjese	 en	 lo	 bien	 que	 se	 leen	 las	 ecuaciones.	 Los	 factores	 carecen	 de
espacios	 en	 blanco	 ya	 que	 tienen	 una	 mayor	 precedencia.	 Los	 términos	 se
separan	 mediante	 espacios	 en	 blanco	 ya	 que	 la	 suma	 y	 la	 resta	 son	 de
precedencia	inferior.

Desafortunadamente,	muchas	herramientas	de	formato	de	código	ignoran	la
precedencia	 de	 los	 operadores	 e	 imponen	 un	 espaciado	 uniforme.	 Por	 ello,

separaciones	 sutiles	 como	 las	 anteriores	 suelen	 perderse	 tras	 modificar	 el
formato	del	código.

Alineación	horizontal
Cuando	 era	 programador	 de	 lenguajes	 de	 ensamblado[28],	 usaba	 la	 alineación
horizontal	para	acentuar	determinadas	estructuras.	Cuando	comencé	a	programar
en	 C,	 C++	 y	 Java,	 seguía	 intentando	 alinear	 los	 nombres	 de	 variables	 en	 un
conjunto	de	declaraciones	o	 todos	 los	valores	 en	un	grupo	de	 instrucciones	de
asignación.	El	aspecto	de	mi	código	era	el	siguiente:
	public	class	FitNesseExpediter	implements	ResponseSender	

	{	

	private	 	Socket	 	socket;	

	private	 	InputStream	 	input;	

	private	 	OutputStream	 	output;	

	private	 	Request	 	request;	

	private	 	Response	 	response;	

	private	 	FitNesseContext	 	context;	

	protected	 	long	 	requestParsingTimeLimit;	

	private	 	long	 	requestProgress;	

	private	 	long	 	requestParsingDeadline;	

	private	 	boolean	 	hasError;	

		

	public	FitNesseExpediter(Socket	s,	

		 	FitNesseContext	context)	throws	Exception	

	{	

	this.context	=	 	context;	

	socket	=	 	s;	

	input	=	 	s.getInputStream();	

	output	=	 	s.getOutputStream();	

	requestParsingTimeLimit	=	 	10000;	

	}	

Sin	 embargo,	 este	 tipo	 de	 alineación	 no	 es	 útil.	 Parece	 enfatizar	 los
elementos	incorrectos	y	aleja	la	vista	de	la	verdadera	intención.	Por	ejemplo,	en
la	lista	anterior	de	declaraciones,	nos	vemos	tentados	a	leer	la	lista	de	nombres
de	 variables	 sin	 fijarnos	 en	 sus	 tipos.	 Del	 mismo	 modo,	 en	 la	 lista	 de
instrucciones	de	asignación,	nos	fijamos	en	los	valores	sin	ver	el	operador.	Para
empeorarlo	 todo,	 las	herramientas	 automáticas	de	 formato	 suelen	 eliminar	 este
tipo	de	alineación.	Por	tanto,	al	final,	ya	no	lo	uso.	Ahora	prefiero	declaraciones
y	asignaciones	sin	alinear,	como	se	muestra	a	continuación,	ya	que	resaltan	una
deficiencia	importante.	Si	tengo	listas	extensas	que	deben	alinearse,	el	problema
es	la	longitud	de	las	listas,	no	la	falta	de	alineación.	La	longitud	de	la	siguiente
lista	 de	 declaraciones	 de	 FitNesseExpediter	 sugiere	 que	 esta	 clase	 debe
dividirse.

public	class	FitNesseExpediter	implements	ResponseSender

{

private	Socket	socket;

private	InputStream	input;

private	OutputStream	output;

private	Request	request;

private	Response	response;

private	FitNesseContext	context;

protected	long	requestParsingTimeLimit;

private	long	request	Progress;

private	long	requestParsingDeadline;

private	boolean	hasError;

public	FitNesseExpediter(Socket	s,	FitNesseContext	context)	throws	Exception

{

this.context	=	context;

socket	=	s;

input	=	s.getInputStream();

output	=	s.getOutputStream();

requestParsingTimeLimit	=	10000;

}

Sangrado
Un	archivo	de	código	es	una	jerarquía	más	que	un	contorno.	Incluye	información
que	pertenece	a	la	totalidad	del	archivo,	a	sus	clases	individuales,	a	los	métodos
de	las	clases,	a	los	bloques	de	los	métodos	y	a	los	bloques	de	los	bloques.	Cada
nivel	de	esta	jerarquía	es	un	ámbito	en	el	que	se	pueden	declarar	nombres	y	en	el
que	se	interpretan	declaraciones	e	instrucciones	ejecutables.

Para	 que	 esta	 jerarquía	 de	 ámbitos	 sea	 visible,	 sangramos	 las	 líneas	 de
código	fuente	de	acuerdo	a	su	posición	en	la	jerarquía.	Las	instrucciones	al	nivel
del	 archivo,	 como	 las	 declaraciones	 de	 clases,	 no	 se	 sangran.	 Los	métodos	 de
una	clase	se	sangran	un	nivel	a	la	derecha	de	la	clase.	Las	implementaciones	de
dichos	métodos	 se	 implementan	un	nivel	 a	 la	derecha	de	 la	declaración	de	 los
métodos.	Las	implementaciones	de	bloques	se	implementan	un	nivel	a	la	derecha
de	su	bloque	contenedor	y	así	sucesivamente.

Los	 programadores	 dependen	 de	 este	 sistema	 de	 sangrado.	 Alinean
visualmente	las	líneas	a	la	izquierda	para	ver	el	ámbito	al	que	pertenece.	De	este
modo	 pueden	 acceder	 rápidamente	 a	 los	 ámbitos,	 como	 por	 ejemplo	 a
implementaciones	 de	 instrucciones	 if	 o	 while,	 que	 no	 son	 relevantes	 para	 la
situación	 actual.	 Buscan	 en	 la	 izquierda	 nuevas	 declaraciones	 de	 métodos,
variables	e	 incluso	clases.	Sin	el	 sangrado,	 los	programas	 serian	prácticamente
ilegibles.

Fíjese	en	los	siguientes	programas,	sintáctica	y	semánticamente	idénticos:
public	class	FitNesseServer	implements	SocketServer	{	private	FitNesseContext

context;	public	FitNesseServer(FitNesseContext	context)	{	this.context	=

context;	}	public	void	serve(Socket	s)	{	serve(s,	10000);	}	public	void

serve(Socket	s,	long	requestTimeout)	{	try	{	FitNesseExpediter	sender	=	new

FitNesseExpediter(s,	context);

sender.setRequestParsingTimeLimit(requestTimeout);	sender.start();	}

catch(Exception	e)	{	e.printStackTrace();	}	}	}

public	class	FitNesseServer	implements	SocketServer	{

private	FitNesseContext	context;

public	FitNesseServer(FitNesseContext	context)	{

this.context	=	context;

}

public	void	serve(Socket	s)	{

serve	(s,	10000);

}

public	void	serve(Socket	s,	long	requestTimeout)	{

try	{

FitNesseExpediter	sender	=	new	FitNesseExpediter(s,	context);

sender.setRequestParsingTimeLimit(requestTimeout);

sender.start();

}

catch	(Exception	e)	{

e.printStackTrace();

}

}

}

A	 la	 vista	 puede	 incluso	 apreciar	 la	 estructura	 del	 archivo	 sangrado.
Detectamos	 inmediatamente	 las	 variables,	 constructores	 y	 métodos	 de	 acceso.
En	cuestión	de	segundos	vemos	que	es	una	especie	de	interfaz	de	conexión,	con
un	 tiempo	 de	 espera.	 La	 versión	 sin	 sangrar,	 por	 su	 parte,	 es	 prácticamente
impenetrable.

Romper	el	sangrado

En	 ocasiones	 tenemos	 la	 tentación	 de	 romper	 la	 regla	 de	 sangrado	 con
instrucciones	if	breves,	bucles	while	breves	o	funciones	breves.	Siempre	que	he
sucumbido	 a	 esta	 tentación,	 he	 acabado	 por	 volver	 a	 aplicar	 el	 sangrado.	 Por
ello,	evito	replegar	ámbitos	a	una	línea,	como	en	este	ejemplo:	 public	 class	 CommentWidget
extends	TextWidget

{

public	static	final	String	REGEXP	=	“^#[^\r\n]*(?:(?:\r\n)|\n|\r)?”;

public	CommentWidget(ParentWidget	parent,	String	text){super	(parent,	text);}

public	String	render()	throws	Exception	{	return	“”;	}

}

Prefiero	desplegar	y	sangrar	los	ámbitos:
public	class	CommentWidget	extends	TextWidget	{

public	static	final	String	REGEXP	=	“^#[^\r\n]*(?:(?:\r\n)|\n|\r)?”;

public	CommentWidget(ParentWidget	parent,	String	text)	{

super(parent,	text);

}

public	String	render()	throws	Exception	{

return	“”;

}

}

Ámbitos	ficticios
En	 ocasiones,	 el	 cuerpo	 de	 una	 instrucción	 while	 o	 for	 es	 ficticio,	 como	 se
muestra	a	continuación.	No	me	gustan	estas	estructuras	y	prefiero	evitarlas.	En
caso	de	no	poder	hacerlo,	me	aseguro	de	sangrar	el	cuerpo	ficticio	y	de	incluirlo
entre	paréntesis.	No	sabría	decir	cuántas	veces	me	ha	engañado	un	punto	y	coma

situado	 al	 final	 de	 un	 bucle	 while	 en	 la	 misma	 línea.	 A	 menos	 que	 lo	 haga
visible	y	lo	sangre	en	una	línea	propia,	es	difícil	de	ver.

while	(dis.read(buf,	0,	readBufferSize)	!=	-1)

;

Reglas	de	equipo

			

Todo	programador	tiene	sus	reglas	de	formato	preferidas,	pero	si	forma	parte	de
un	equipo,	el	equipo	manda.

Un	 equipo	 de	 programadores	 debe	 acordar	 un	 único	 estilo	 de	 formato	 y
todos	los	 integrantes	del	equipo	deben	aplicarlo.	El	objetivo	es	que	el	software
tenga	 un	 estilo	 coherente.	 No	 queremos	 que	 parezca	 escrito	 por	 individuos
enfrentados.

Cuando	comencé	el	proyecto	FitNesse	en	2002,	me	reuní	con	el	equipo	para
definir	un	estilo	de	código.	Tardamos	10	minutos.	Decidimos	dónde	añadir	 las
llaves,	 qué	 tamaño	 de	 sangrado	 utilizar,	 los	 nombres	 de	 clases,	 variables	 y
métodos,	y	demás.	Tras	ello,	codificamos	las	reglas	en	el	IDE	y	las	cumplimos
desde	entonces.	No	son	las	reglas	que	prefiero,	son	las	que	el	equipo	decidió.	Y
como	miembro	de	ese	equipo,	las	apliqué	cuando	creamos	el	código	del	proyecto
FitNesse.

Recuerde	 que	 un	 buen	 sistema	 de	 software	 se	 compone	 de	 una	 serie	 de
documentos	que	se	leen	fácilmente.	Deben	tener	un	estilo	coherente	y	dinámico.
El	lector	debe	confiar	en	que	los	formatos	que	ve	en	nuestro	archivo	de	código
significarán	 lo	 mismo	 para	 otros.	 Lo	 último	 que	 queremos	 es	 aumentar	 la
complejidad	del	código	creando	una	mezcla	de	estilos	diferentes.

Reglas	de	formato	de	Uncle	Bob

Las	 reglas	 que	 uso	 personalmente	 son	 sencillas	 y	 se	 ilustran	 en	 el	 código	 del

Listado	5-6.	Considérelo	un	ejemplo	de	documento	estándar	de	código	óptimo.

Listado	5-6
CodeAnalyzer.java.

public	class	CodeAnalyzer	implements	JavaFileAnalysis	{

private	int	lineCount;

private	int	maxLineWidth;

private	int	widestLineNumber;

private	LineWidthHistogram	lineWidthHistogram;

private	int	totalChars;

public	CodeAnalyzer()	{

lineWidthHistogram	=	new	LineWidthHistogram();

}

public	static	List<File>	findJavaFiles(File	parentDirectory)	{

List<File>	files	=	new	ArrayList<File>();

findJavaFiles(parentDirectory,	files);

return	files;

}

private	static	void	findJavaFiles(File	parentDirectory,	List<File>	files)	{

for	(File	file	:	parentDirectory.listFiles())	{

if	(file.getName().endsWith(“.java”))

files.add(file);

else	if	(file.isDirectory())

findJavaFiles(file,	files);

}

}

public	void	analyzeFile(File	javaFile)	throws	Exception	{

BufferedReader	br	=	new	BufferedReader(new	FileReader(javaFile));

String	line;

while	((line	=	br.readLine())	!=	null)

measureLine(line);

}

private	void	measureLine(String	line)	{

lineCount++;

int	lineSize	=	line.length();

totalChars	+=	lineSize;

lineWidthHistogram.addLine(lineSize,	lineCount);

recordWidestLine(lineSize);

}

private	void	recordWidestLine(int	lineSize)	{

if	(lineSize	>	maxLineWidth)	{

maxLineWidth	=	lineSize;

widestLineNumber	=	lineCount;

}

}

public	int	getLineCount()	{

return	lineCount;

}

public	int	getMaxLineWidth()	{

return	maxLineWidth;

}

public	int	getWidestLineNumber()	{

return	widestLineNumber;

}

public	LineWidthHistogram	getLineWidthHistogram()	{

return	lineWidthHistogram;

}

public	double	getMeanLineWidth()	{

return	(double)totalChars/lineCount;

}

public	int	getMedianLineWidth()	{

Integer[]	sortedwidths	=	getSortedWidths();

int	cumulativeLineCount	=	0;

for	(int	width	:	sortedwidths)	{

cumulativeLineCount	+=	lineCountForWidth(width);

if	(cumulativeLineCount	>	lineCount/2)

return	width;

}

throw	new	Error	(“Cannot	get	here”);

}

private	int	lineCountForWidth(int	width)	{

return	lineWidthHistogram.getLinesforWidth(width).size();

}

private	Integer[]	getSortedWidths()	{

Set<Integer>	widths	=	lineWidthHistogram.getWidths();

Integer[]	sortedwidths	=	(widths.toArray(new	Integer[0]));

Arrays.sort(sortedwidths);

return	sortedwidths;

}

}

6
Objetos	y	estructuras	de	datos

Hay	una	razón	para	que	las	variables	sean	privadas.	No	queremos	que	nadie	más
dependa	 de	 ellas.	 Queremos	 poder	 cambiar	 su	 tipo	 o	 implementación	 cuando
deseemos.	 Entonces,	 ¿por	 qué	 tantos	 programadores	 añaden	 automáticamente

métodos	de	establecimiento	y	recuperación	que	muestran	sus	variables	privadas
como	si	fueran	públicas?

Abstracción	de	datos

Fíjese	en	la	diferencia	entre	los	listados	6-1	y	6-2.	Ambos	representan	los	datos
de	 un	 punto	 cartesiano,	 pero	 uno	muestra	 su	 implementación	 y	 otro	 la	 oculta
totalmente.

Listado	6-1
Punto	concreto.

public	class	Point	{

public	double	x;

public	double	y;

}

Listado	6-2
Punto	abstracto.

public	interface	Point	{

double	getX();

double	getY();

void	setCartesian(double	x,	double	y);

double	getR();

double	getTheta();

void	set	Polar(double	r,	double	theta);

}

Lo	mejor	del	Listado	6-2	es	que	no	hay	forma	de	saber	si	la	implementación
está	en	coordenadas	rectangulares	o	polares.	¡Puede	que	en	ninguna!	Y	aun	así	la
interfaz	representa	sin	lugar	a	dudas	una	estructura	de	datos.

Pero	 representa	 algo	 más	 que	 una	 estructura	 de	 datos.	 Los	 métodos
refuerzan	 una	 política	 de	 acceso.	 Puede	 leer	 las	 coordenadas	 de	 forma
independiente,	 pero	 debe	 establecerlas	 de	 forma	 conjunta	 como	 operación
atómica.

El	 Listado	 6-1,	 por	 su	 parte,	 se	 implementa	 claramente	 en	 coordenadas
rectangulares	 y	 nos	 obliga	 a	 manipularlas	 de	 forma	 independiente,	 lo	 que
muestra	 la	 implementación.	 De	 hecho,	 la	 mostraría	 igualmente,	 aunque	 las
variables	 fueran	 privadas	 y	 usáramos	 métodos	 variables	 de	 establecimiento	 y
recuperación.	Para	 ocultar	 la	 implementación	 no	basta	 con	 añadir	 una	 capa	 de
funciones	entre	las	variables.	Se	basa	en	la	abstracción.	Una	clase	no	fuerza	sus
variables	 a	 través	 de	 métodos	 de	 establecimiento	 y	 recuperación.	 Por	 el
contrario,	muestra	interfaces	abstractas	que	permiten	a	sus	usuarios	manipular	la
esencia	de	los	datos	sin	necesidad	de	conocer	su	implementación.

Fíjese	 en	 los	 listados	 6-3	 y	 6-4.	 El	 primero	 usa	 términos	 concretos	 para
indicar	el	nivel	de	combustible	de	un	vehículo	mientras	que	el	segundo	lo	hace
con	la	abstracción	del	porcentaje.	En	el	caso	concreto,	podemos	estar	seguros	de
que	 se	 trata	 de	 métodos	 de	 acceso	 de	 variables.	 En	 el	 caso	 abstracto,
desconocemos	la	forma	de	los	datos.

Listado	6-3
Vehículo	concreto.

public	interface	Vehicle	{

double	getFuelTankCapacityInGallons();

double	getGallonsOfGasoline();

}

Listado	6-4
Vehículo	abstracto.

public	interface	Vehicle	{

double	getPercentFuelRemaining();

}

En	ambos	casos,	la	segunda	opción	es	preferible.	No	queremos	mostrar	los
detalles	 de	 los	 datos,	 sino	 expresarlos	 en	 términos	 abstractos.	 Esto	 no	 se
consigue	 simplemente	 mediante	 interfaces	 o	 métodos	 de	 establecimiento	 y
recuperación.	 Hay	 que	meditar	 seriamente	 la	 forma	 óptima	 de	 representar	 los
datos	 que	 contiene	 un	 objeto.	 La	 peor	 opción	 es	 añadir	 métodos	 de
establecimiento	y	recuperación	a	ciegas.

Antisimetría	de	datos	y	objetos

Estos	dos	ejemplos	ilustran	la	diferencia	entre	objetos	y	estructuras	de	datos.	Los
objetos	ocultan	sus	datos	tras	abstracciones	y	muestran	funciones	que	operan	en
dichos	datos.	La	estructura	de	datos	muestra	sus	datos	y	carece	de	funciones	con
significado.	Vuelva	a	leerlos.	Fíjese	en	la	naturaleza	complementaria	de	las	dos
definiciones.	 Son	 virtualmente	 opuestas.	 Puede	 parecer	 una	 diferencia	 menor,
pero	tiene	importantes	implicaciones.

Fíjese	 en	 el	 ejemplo	del	Listado	6-5.	La	 clase	Geometry	 opera	 en	 las	 tres
clases	 de	 formas,	 que	 son	 sencillas	 estructuras	 de	 datos	 sin	 comportamiento.
Todo	el	comportamiento	se	encuentra	en	la	clase	Geometry.

Listado	6-5
Forma	mediante	procedimientos.

public	class	Square	{

public	Point	topLeft;

public	double	side;

}

public	class	Rectangle	{

public	Point	topLeft;

public	double	height;

public	double	width;

}

public	class	Circle	{

public	Point	center;

public	double	radius;

}

public	class	Geometry	{

public	final	double	PI	=	3.141592653589793;

public	double	area(Object	shape)	throws	NoSuchShapeException

{

if	(shape	instanceof	Square)	{

Square	s	=	(Square)shape;

return	s.side	*	s.side;

}

else	if	(shape	instanceof	Rectangle)	{

Rectangle	r	=	(Rectangle)shape;

return	r.height	*	r.width;

}

else	if	(shape	instanceof	Circle)	{

Circle	c	=	(Circle)shape;

return	PI	c.radius	c.radius;

}

throw	new	NoSuchShapeException();

}

}

Los	programadores	orientados	a	objetos	se	quejarán	de	que	es	un	ejemplo
de	 procedimiento,	 y	 tienen	 razón.	 Imagine	 qué	 pasaría	 si	 añadimos	 la	 función
perimeter()	 a	Geometry.	 ¡Las	clases	de	 formas	no	se	verían	afectadas!	 ¡Y	 las
demás	clases	que	dependieran	de	 las	 formas	 tampoco!	Por	otra	parte,	 si	 añado
una	nueva	forma,	tendría	que	cambiar	todas	las	funciones	de	Geometry.	Vuélvalo
a	leer.	Comprobará	que	las	dos	condiciones	son	diametralmente	opuestas.

Fíjese	 ahora	 en	 la	 solución	 orientada	 a	 objetos	 del	 Listado	 6-6.	 Aquí,	 el
método	area()	es	polimórfico.	No	se	necesita	una	clase	Geometry.	Por	tanto,	si
añado	 una	 nueva	 forma,	 ninguna	 de	 las	 funciones	 existentes	 se	 ven	 afectadas,
pero	si	añado	otra	función,	habrá	que	cambiar	todas	las	formas[29].

Listado	6-6
Formas	polimórficas.

public	class	Square	implements	Shape	{

private	Point	topLeft;

private	double	side;

public	double	area()	{

return	side*side;

}

public	class	Rectangle	implements	Shape	{

private	Point	topLeft;

private	double	height;

private	double	width;

public	double	area()	{

return	height	*	width;

}

}

public	class	Circle	implements	Shape	{

private	Point	center;

private	double	radius;

public	final	double	PI	=	3.141592653589793;

public	double	area()	{

return	PI	*	radius	*	radius;

}

}

De	nuevo,	vemos	 la	naturaleza	 complementaria	de	 estas	dos	definiciones;
totalmente	 contrarias.	 Esto	 ilustra	 la	 dicotomía	 fundamental	 entre	 objetos	 y
estructuras	de	datos:

El	código	por	procedimientos	 (el	que	usa	estructuras	de	datos)	 facilita	 la
inclusión	 de	 nuevas	 funciones	 sin	 modificar	 las	 estructuras	 de	 datos
existentes.	El	código	orientado	a	objetos,	por	su	parte,	facilita	la	inclusión
de	nuevas	clases	sin	cambiar	las	funciones	existentes.

El	complemento	también	es	cierto:

El	 código	por	procedimientos	dificulta	 la	 inclusión	de	nuevas	 estructuras
de	 datos	 ya	 que	 es	 necesario	 cambiar	 todas	 las	 funciones.	 El	 código
orientado	 a	 objetos	 dificulta	 la	 inclusión	 de	 nuevas	 funciones	 ya	 que	 es
necesario	cambiar	todas	las	clases.

Por	tanto,	lo	que	es	difícil	para	la	programación	orientada	a	objetos	es	fácil
para	los	procedimientos,	y	viceversa.

En	cualquier	sistema	complejo	habrá	ocasiones	en	las	que	queramos	añadir
nuevos	tipos	de	datos	en	lugar	de	nuevas	funciones.	En	dichos	casos,	los	objetos
y	 la	 programación	 orientada	 a	 objetos	 es	 lo	más	 adecuado.	 Por	 otra	 parte,	 en
ocasiones	 tendremos	 que	 añadir	 nuevas	 funciones	 en	 lugar	 de	 tipos	 de	 datos,
para	 lo	que	resulta	más	adecuado	usar	código	por	procedimientos	y	estructuras
de	datos.

Los	 programadores	 experimentados	 saben	 que	 la	 idea	 de	 que	 todo	 es	 un
objeto	 es	 un	 mito.	 En	 ocasiones	 solamente	 queremos	 sencillas	 estructuras	 de
datos	con	procedimientos	que	operen	en	las	mismas.

La	ley	de	Demeter

Existe	una	conocida	heurística	denominada	Ley	de	Demeter[30]	que	afirma	que	un
módulo	no	debe	conocer	los	entresijos	de	los	objetos	que	manipula.	Como	vimos
en	el	apartado	anterior,	los	objetos	ocultan	sus	datos	y	muestran	operaciones,	lo
que	 significa	 que	 un	 objeto	 no	 debe	mostrar	 su	 estructura	 interna	 a	 través	 de
métodos	 de	 acceso	 ya	 que,	 si	 lo	 hace,	 mostraría,	 no	 ocultaría,	 su	 estructura
interna.

En	concreto,	 la	 ley	de	Demeter	afirma	que	un	método	de	una	clase	C	sólo
debe	invocar	los	métodos	de:
	

C.
Un	objeto	creado	por	f.
Un	objeto	pasado	como	argumento	a	f.
Un	objeto	en	una	variable	de	instancia	de	C.

El	método	no	debe	invocar	métodos	de	objetos	devueltos	por	ninguna	de	las
funciones	permitidas.	Es	decir,	no	hable	con	desconocidos,	sólo	con	amigos.

El	 siguiente	 código[31]	 parece	 incumplir	 la	 Ley	 de	 Demeter	 (entre	 otras
cosas)	 ya	 que	 invoca	 la	 función	 getScratchDir()	 en	 el	 valor	 devuelto	 de
getOptions()	 y	 después	 invoca	 getAbsolutePath()	 en	 el	 valor	 devuelto	 de
getScratchDir().

final	String	outputDir	=	ctxt.getOptions().getScratchDir().getAbsolutePath();

Choque	de	trenes
Ese	tipo	de	código	suele	denominarse	choque	de	trenes	ya	que	se	asemeja	a	un
grupo	de	vagones	de	tren.	Estas	cadenas	de	invocaciones	suelen	considerarse	un
estilo	descuidado	y	deben	evitarse	[G36].	Conviene	dividirlas	de	esta	forma:

Options	opts	=	ctxt.getOptions();

File	scratchDir	=	opts.getScratchDir();

final	String	outputDir	=	scratchDir.getAbsolutePath();

			

¿Incumplen	estos	dos	fragmentos	de	código	la	Ley	de	Demeter?	Sin	duda	el
módulo	contenedor	sabe	que	el	objeto	ctxt	contiene	opciones,	que	contienen	un

directorio	scratch,	que	tiene	una	ruta	absoluta.	La	función	sabe	demasiado.	La
función	que	realiza	la	invocación	sabe	cómo	desplazarse	por	numerosos	objetos
diferentes.

Si	 incumple	 o	 no	 la	 Ley	 de	 Demeter	 depende	 de	 si	 ctxt,	 Options	 y
ScratchDir	son	objetos	o	estructuras	de	datos.	Si	son	objetos,	debería	ocultarse
su	estructura	interna,	no	mostrarse,	y	conocer	sus	detalles	internos	sería	un	claro
incumplimiento	 de	 la	 Ley	 de	 Demeter.	 Por	 otra	 parte,	 si	 ctxt,	 Options	 y
ScratchDir	son	simples	estructuras	de	datos,	mostrarán	su	estructura	interna	con
naturalidad	y	la	Ley	de	Demeter	no	se	aplica.

El	uso	de	funciones	de	acceso	complica	el	problema.	Si	el	código	se	hubiera
escrito	 de	 esta	 otra	 forma,	 probablemente	 no	 nos	 preocuparíamos	 de	 si	 se
incumple	la	Ley	de	Demeter	o	no.

final	String	outputDir	=	ctxt.options.ScratchDir.absolutePath;

El	 problema	 sería	 menos	 confuso	 si	 las	 estructuras	 de	 datos	 tuvieran
variables	 públicas	 y	 no	 funciones,	 y	 los	 objetos	 tuvieran	 variables	 privadas	 y
funciones	 públicas.	 Sin	 embargo,	 existen	 estructuras	 y	 estándares	 (como	 los
bean)	que	exigen	que	incluso	una	sencilla	estructura	de	datos	tenga	elementos	de
acceso	y	mutación.

Híbridos
Esta	confusión	genera	ocasionalmente	desafortunadas	estructuras	híbridas	mitad
objeto	 y	 mitad	 estructura	 de	 datos.	 Tienen	 funciones	 que	 realizan	 tareas
significativas	 y	 también	 variables	 públicas	 o	 método	 públicos	 de	 acceso	 y
mutación	que	hacen	que	 las	 variables	 privadas	 sean	públicas,	 y	 tientan	 a	 otras
funciones	externas	a	usar	dichas	variables	de	la	misma	forma	que	un	programa
por	procedimientos	usaría	una	estructura	de	datos[32].	Estos	híbridos	dificultan	la
inclusión	de	nuevas	funciones	y	también	de	nuevas	estructuras	de	datos.	Son	lo
peor	 de	 ambos	mundos.	 Evítelos.	 Indican	 un	 diseño	 descuidado	 cuyos	 autores
dudan,	o	peor	todavía,	desconocen,	si	necesitan	protegerse	de	funciones	o	tipos.

Ocultar	la	estructura
¿Qué	 pasaría	 si	 ctxt,	 options	 y	 scratchDir	 fueran	 objetos	 con	 un
comportamiento	real?	Como	los	objetos	deben	ocultar	su	estructura	 interna,	no
podríamos	desplazarnos	por	los	mismos.	Entonces,	¿cómo	obtendríamos	la	ruta
absoluta	del	directorio	scratch?

ctxt.getAbsolutePathOfScratchDirectoryOption();

o
ctxt.getScratchDirectoryOption().getAbsolutePath()

La	primera	opción	provocaría	una	explosión	de	métodos	en	el	objeto	ctxt.
La	segunda	asume	que	getScratchDirectoryOption()	devuelve	una	estructura
de	datos,	no	un	objeto.	Ninguna	de	las	opciones	parece	correcta.	Si	ctxt	es	un
objeto,	 deberíamos	 indicarle	 que	 hiciera	 algo,	 no	 preguntar	 sobre	 sus	 detalles
internos.	Entonces,	¿para	qué	queremos	la	ruta	absoluta	del	directorio	scratch?
¿Cómo	vamos	a	usarla?	Fíjese	en	este	código	del	mismo	módulo	(muchas	líneas
después):	String	outFile	=	outputDir	+	“”	+	className.replace(‘.’,	‘’)	+	“.class”;

FileOutputStream	fout	=	new	FileOutputStream(outFile);

BufferedOutputStream	bos	=	new	BufferedOutputStream(fout);

La	mezcla	de	distintos	niveles	de	detalle	[G34][G6]	es	preocupante.	Puntos,
guiones,	 extensiones	 de	 archivo	 y	 objetos	 File	 no	 deben	 mezclarse	 de	 esta
forma,	 junto	al	código	contenedor.	Si	 lo	 ignoramos,	vemos	que	 la	 intención	de
obtener	la	ruta	absoluta	del	directorio	scratch	es	crear	un	archivo	de	borrador	de
un	nombre	concreto.

¿Y	si	le	dijéramos	al	objeto	ctxt	que	hiciera	esto?
BufferedOutputStream	bos	=	ctxt.createScratchFileStream(classFileName);

Parece	 algo	 razonable	 para	 un	 objeto.	 Permite	 a	ctxt	 ocultar	 sus	 detalles
internos	 e	 impide	 que	 la	 función	 actual	 incumpla	 la	 Ley	 de	 Demeter	 y	 se
desplace	por	objetos	que	no	debería	conocer.

Objetos	de	transferencia	de	datos

La	quintaesencia	de	una	estructura	de	datos	es	una	clase	con	variables	públicas	y
sin	funciones.	En	ocasiones	se	denomina	Objeto	de	transferencia	de	datos	(Data
Transfer	Object	u	OTD).	Los	OTD	son	estructuras	muy	útiles,	en	especial	para
comunicarse	con	bases	de	datos	o	analizar	mensajes	de	conexiones,	etc.	Suelen
ser	 los	 primeros	 de	 una	 serie	 de	 fases	 de	 traducción	 que	 convierten	 datos	 sin
procesar	 en	 objetos	 en	 el	 código	 de	 la	 aplicación.	Más	 común	 es	 la	 forma	 de
bean	mostrada	en	el	Listado	6-7.	Los	bean	tienen	variables	privadas	manipuladas
por	métodos	de	establecimiento	y	recuperación.	La	cuasi-Encapsulación	de	bean
hace	 que	 algunos	 puristas	 de	 la	 programación	 orientada	 a	 objetos	 se	 sientan
mejor	pero	no	ofrece	ningún	otro	beneficio.

Listado	6-7
address.java

public	class	Address	{

private	String	street;

private	String	streetExtra;

private	String	city;

private	String	state;

private	String	zip;

public	Address(String	Street,	String	streetExtra,

String	city,	String	state,	String	zip)	{

this.street	=	street;

this.streetExtra	=	streetExtra;

this.city	=	city;

this.state	=	state;

this.zip	=	zip;

}

public	String	getStreet()	{

return	street;

}

public	String	getStreetExtra()	{

return	streetExtra;

}

public	String	getCity()	{

return	city;

}

public	String	getState()	{

return	getState;

}

public	String	getZip()	{

return	zip;

}

}

Registro	activo
Los	registros	activos	son	una	forma	especial	de	OTD.	Son	estructuras	de	datos
con	 variables	 públicas	 (o	 de	 acceso	 por	 bean)	 pero	 suelen	 tener	 métodos	 de
navegación	 como	 save	 y	 find.	 Por	 lo	 general,	 estos	 registros	 activos	 son
traducciones	 directas	 de	 tablas	 de	 base	 de	 datos	 u	 otros	 orígenes	 de	 datos.
Desafortunadamente,	muchos	programadores	intentan	procesar	estas	estructuras
de	datos	como	si	 fueran	objetos	y	 les	añaden	métodos	de	reglas	empresariales.
Es	algo	extraño	ya	que	crea	un	híbrido	entre	una	estructura	de	datos	y	un	objeto.

La	 solución,	 evidentemente,	 consiste	 en	 considerar	 al	 registro	 activo	 una
estructura	 de	 datos	 y	 crear	 objetos	 independientes	 que	 contengan	 las	 reglas
empresariales	 y	 que	 oculten	 sus	 datos	 internos	 (que	 probablemente	 sean
instancias	del	propio	registro	activo).

Conclusión

Los	objetos	muestran	comportamiento	y	ocultan	datos.	Esto	facilita	la	inclusión
de	 nuevos	 tipos	 de	 objetos	 sin	 necesidad	 de	 cambiar	 los	 comportamientos
existentes.	También	dificulta	la	inclusión	de	nuevos	comportamientos	en	objetos

existentes.	Las	estructuras	de	datos	muestran	datos	y	carecen	de	comportamiento
significativo.	 Esto	 facilita	 la	 inclusión	 de	 nuevos	 comportamientos	 en	 las
estructuras	de	datos	existentes,	pero	dificulta	la	 inclusión	de	nuevas	estructuras
de	datos	en	funciones	existentes.

En	un	sistema,	en	ocasiones	necesitaremos	la	flexibilidad	de	añadir	nuevos
tipos	de	datos,	por	lo	que	preferimos	objetos	para	esa	parte	del	sistema.	En	otros
casos,	querremos	añadir	nuevos	comportamientos,	para	 lo	que	preferimos	 tipos
de	datos	y	procedimientos	en	esa	parte	del	sistema.	Los	buenos	programadores
de	 software	 entienden	 estos	 problemas	 sin	 prejuicios	 y	 eligen	 el	 enfoque	más
adecuado	para	cada	tarea	concreta.

Bibliografía
	

[Refactoring]:	Refactoring:	Improving	the	Design	of	Existing	Code,	Martin
Fowler	et	al.,	Addison-Wesley,	1999.

7
Procesar	errores

por	Michael	Feathers

Le	parecerá	extraño	encontrar	una	sección	de	control	de	errores	en	un	libro	sobre
código	 limpio.	 El	 control	 de	 errores	 es	 algo	 que	 todos	 tenemos	 que	 hacer	 al
programar.	Las	entradas	pueden	ser	incorrectas	y	los	dispositivos	pueden	fallar,
y	cuando	lo	hacen,	los	programadores	somos	responsables	de	comprobar	que	el
código	hace	lo	que	debe	hacer.

No	obstante,	 la	conexión	con	el	código	 limpio	debe	ser	evidente.	Muchas
bases	de	 código	 están	 totalmente	dominadas	por	 el	 control	 de	 errores.	Cuando
digo	que	 están	dominadas,	 no	quiero	decir	 que	únicamente	 realicen	 control	 de
código,	sino	que	es	prácticamente	imposible	ver	lo	que	el	código	hace	debido	a
todo	ese	control	de	errores.	El	control	de	errores	es	importante,	pero	si	oscurece
la	lógica,	es	incorrecto.

En	este	capítulo	detallaremos	diversas	técnicas	y	consideraciones	que	puede
usar	 para	 crear	 código	 limpio	 y	 robusto,	 código	 que	 procese	 los	 errores	 con
elegancia	y	estilo.

Usar	excepciones	en	lugar	de	códigos	devueltos

En	 el	 pasado,	 muchos	 lenguajes	 carecían	 de	 excepciones.	 Las	 técnicas	 para
procesar	e	informar	de	errores	eran	limitadas.	Se	definía	un	indicador	de	error	o
se	devolvía	un	código	de	error	que	el	invocador	podía	comprobar.	El	código	del
Listado	7-1	ilustra	estos	enfoques.

Listado	7-1
DeviceController.java.

public	class	DeviceController	{

…

public	void	sendShutDown()	{

DeviceHandle	handle	=	getHandle(DEV1);

//	Comprobar	el	estado	del	dispositivo

if	(handle	!=	DeviceHandle.INVALID)	{

//	Guardar	el	estado	del	dispositivo	en	el	campo	de	registro

retrieveDeviceRecord(handle);

//	Si	no	está	suspendido,	cerrarlo

if	{	record.getStatus()	!=	DEVICE_SUSPENDED)	{

pauseDevice(handle);

clearDeviceWorkQueue(handle);

closeDevice(handle);

}	else	{

logger.log(“Device	suspended.	Unable	to	shut	down”);

}

}	else	{

logger.log(“Invalid	handle	for:	”	+	DEV1.toString());

}

}

…

}

El	problema	de	estos	enfoques	es	que	confunden	al	invocador.	El	invocador
debe	 comprobar	 inmediatamente	 los	 errores	 después	 de	 la	 invocación.
Desafortunadamente,	es	algo	que	se	suele	olvidar.	Por	ello,	es	más	recomendable
generar	 una	 excepción	 al	 detectar	 un	 error.	 El	 código	 de	 invocación	 es	 más
limpio.	Su	lógica	no	se	oscurece	por	el	control	de	errores.

El	Listado	7-2	muestra	el	código	tras	generar	una	excepción	en	los	métodos
que	pueden	detectar	errores.

Listado	7-2
DeviceController.java	(con	excepciones).

public	class	DeviceController	{

…

public	void	sendShutDown()	{

try	{

tryToShutDown();

}	catch	(DeviceShutDownError	e)	{

logger.log(e);

}

}

private	void	tryToShutDown()	throws	DeviceShutDownError	{

DeviceHandle	handle	=	getHandle(DEV1);

DeviceRecord	record	=	retrieveDeviceRecord(handle);

pauseDevice(handle);

clearDeviceWorkQueue(handle);

closeDevice(handle);

}

private	DeviceHandle	getHandle(DeviceID	id)	{

…

throw	new	DeviceShutDownError(“Invalid	handle	for:	”	-	id.toString());

…

}

…

}

Comprobará	 que	 es	 mucho	 más	 limpio.	 No	 es	 cuestión	 de	 estética.	 El
código	 es	 mejor	 porque	 se	 solventan	 dos	 preocupaciones:	 el	 algoritmo	 para
apagar	 el	 dispositivo	 y	 el	 control	 de	 errores	 ahora	 se	 encuentran	 separados.
Puede	ver	cada	uno	de	ellos	y	entenderlos	de	forma	independiente.

Crear	primero	la	instrucción	try-catch-finally

Uno	 de	 los	 aspectos	 más	 interesantes	 de	 las	 excepciones	 es	 que	 definen	 un
ámbito	 en	 el	 programa.	Al	 ejecutar	 código	 en	 la	 parte	 try	 de	 una	 instrucción
try-catch-finally,	indicamos	que	la	ejecución	se	puede	cancelar	en	cualquier
momento	y	después	retomar	en	catch.

Los	bloques	try	son	como	las	transacciones,	catch	debe	salir	del	programa
en	un	estado	coherente,	 independientemente	de	 lo	que	 suceda	en	try.	Por	este
motivo,	es	aconsejable	iniciar	con	una	instrucción	try-catch-finally	el	código
que	genere	excepciones.	De	este	modo	define	lo	que	debe	esperar	el	usuario	del
código,	independientemente	de	que	se	produzca	un	error	en	el	código	ejecutado
en	la	cláusula	try.

Veamos	un	ejemplo.	Imagine	que	tiene	que	crear	un	código	que	acceda	a	un
archivo	y	lea	objetos	serializados.

Comenzamos	con	una	prueba	de	unidad	que	muestra	que	obtendremos	una
excepción	cuando	el	archivo	no	exista:

@Test(expected	=	StorageException.class)

public	void	retrieveSectionShouldThrowOnInvalidFileName()	{

sectionStore.retrieveSection(“invalid	-	file”);

}

La	prueba	nos	lleva	a	crear	lo	siguiente:
public	List<RecordedGrip>	retrieveSection(String	sectionName)	{

//	se	devuelve	un	resultado	ficticio	hasta	tener	una	implementación	real

return	new	ArrayList<RecordedGrip>();

}

Nuestra	prueba	falla	ya	que	no	genera	una	excepción.	Tras	ello,	cambiamos
la	 implementación	 para	 que	 intente	 acceder	 a	 un	 archivo	 no	 válido.	 Esta
operación	genera	una	excepción:

public	List<RecordedGrip>	retrieveSection	(String	sectionName)	{

try	{

FileInputstream	stream	=	new	FileInputStream(sectionName)

}	catch	(Exception	e)	{

throw	new	StorageException(“retrieval	error”,	e);

}

return	new	ArrayList<RecordedGrip>();

}

Ahora	la	prueba	es	correcta	ya	que	capturamos	la	excepción	y	ya	podemos
refactorizar.	 Podemos	 reducir	 el	 tipo	 de	 la	 excepción	 capturada	 para	 que
coincida	 con	 el	 tipo	 generado	 desde	 el	 constructor	 FileInputStream:

FileNotFoundException:	public	List<RecordedGrip>	retrieveSection(String	sectionName)	{
try	{

FileInputStream	stream	=	new	FileInputStream(sectionName);

stream.close();

}	catch	(FileNotFoundException	e)	{

throw	new	StorageException(“retrieval	error”,	e);

}

return	new	ArrayList<RecordedGrip>();

}

Ahora	 que	 hemos	 definido	 el	 ámbito	 con	 una	 estructura	 try-catch,
podemos	usar	TDD	para	diseñar	el	resto	de	la	lógica	necesaria.	Dicha	lógica	se
añade	 entre	 la	 creación	 de	FileInputStream	 y	 el	 cierre,	 y	 podemos	 pretender
que	no	pasa	nada	incorrecto.

Intente	 crear	 pruebas	 que	 fuercen	 las	 excepciones,	 para	 después	 añadir	 al
controlador	 un	 comportamiento	 que	 satisfaga	 dichas	 pruebas.	 De	 este	 modo
primero	 creará	 el	 ámbito	 de	 transacción	 del	 bloque	 try	 y	 podrá	 mantener	 la
naturaleza	de	transacción	del	ámbito.

Usar	excepciones	sin	comprobar

El	debate	ha	terminado.	Durante	años,	los	programadores	de	Java	han	debatido
las	 ventajas	 y	 los	 problemas	 de	 las	 excepciones	 comprobadas.	 Cuando
aparecieron	en	la	primera	versión	de	Java,	parecían	una	gran	idea.	La	firma	de
todos	 los	métodos	 enumeraría	 todas	 las	 excepciones	 que	 se	 podían	 pasar	 a	 su
invocador.	 Es	 más,	 estas	 excepciones	 formaban	 parte	 del	 tipo	 del	 método.	 El
código	no	se	compilaría	si	la	firma	no	coincidía	con	lo	que	el	código	iba	a	hacer.

En	aquel	momento,	pensábamos	que	las	excepciones	comprobadas	eran	una
gran	idea	y	sí,	ofrecían	ciertas	ventajas.	Sin	embargo,	ahora	es	evidente	que	no
se	necesitan	para	crear	software	robusto.	C#	carece	de	excepciones	comprobadas
y,	a	pesar	de	los	intentos,	C++	tampoco,	como	sucede	en	Python	o	Ruby.	Y	en
todos	estos	lenguajes	se	puede	crear	software	robusto.	Por	ello,	debemos	decidir
si	las	excepciones	comprobadas	valen	su	precio.

¿Qué	 precio?	 El	 precio	 de	 las	 excepciones	 comprobadas	 es	 un
incumplimiento	 del	 principio	 abierto/cerrado[33].	 Si	 genera	 una	 excepción
comprobada	desde	un	método	de	su	código	y	la	cláusula	catch	se	encuentra	tres
niveles	 por	 debajo,	 debe	 declarar	 dicha	 excepción	 en	 la	 firma	 de	 todos	 los
métodos	comprendidos	entre	su	posición	y	catch.	Esto	significa	que	un	cambio

en	 un	 nivel	 inferior	 del	 software	 puede	 forzar	 cambios	 de	 firma	 en	 muchos
niveles	 superiores.	Será	necesario	volver	 a	generar	 e	 implementar	 los	módulos
cambiados,	aunque	no	cambien	los	elementos	a	los	que	hacen	referencia.

Piense	 en	 la	 jerarquía	 de	 invocación	 de	 un	 sistema.	 Las	 funciones	 de	 la
parte	 superior	 invocan	 a	 las	 funciones	 situadas	 debajo,	 que	 invocan	 a	 otras
funciones	 inferiores	y	 así	 sucesivamente.	 Imagine	que	una	de	 las	 funciones	de
nivel	 inferior	 se	 modifica	 de	 forma	 que	 debe	 generar	 una	 excepción.	 Si	 la
excepción	se	comprueba,	 la	 firma	de	 la	función	 tendrá	que	añadir	una	cláusula
throws.	Pero	esto	significa	que	todas	las	funciones	que	invoquen	nuestra	función
modificada	 también	 tendrán	que	cambiarse	para	capturar	 la	nueva	excepción	o
para	 añadir	 la	 correspondiente	 cláusula	 throws	 en	 su	 firma.	 Y	 así
indefinidamente.	El	resultado	final	es	una	cascada	de	cambios	que	pasan	desde
los	 niveles	 inferiores	 del	 software	 hasta	 los	 superiores.	 La	 encapsulación	 se
rompe	ya	que	todas	las	funciones	en	la	ruta	de	throw	deben	conocer	detalles	de
la	 excepción	 de	 nivel	 inferior.	 Como	 el	 cometido	 de	 las	 excepciones	 es
permitimos	 procesar	 errores	 a	 distancia,	 es	 una	 lástima	 que	 las	 excepciones
comprobadas	rompan	la	encapsulación	de	esta	forma.

Las	 excepciones	 comprobadas	 pueden	 ser	 útiles	 si	 tiene	 que	 crear	 una
biblioteca	 crítica:	 tendrá	 que	 capturarlas.	 Pero	 en	 el	 desarrollo	 de	 aplicaciones
generales,	los	costes	de	dependencia	superan	las	ventajas.

Ofrecer	contexto	junto	a	las	excepciones

Las	 excepciones	 que	 genere	 deben	 proporcionar	 el	 contexto	 adecuado	 para
determinar	 el	 origen	 y	 la	 ubicación	 de	 un	 error.	 En	 Java,	 puede	 obtener	 un
rastreo	de	pila	de	cualquier	excepción;	sin	embargo,	no	le	indicará	el	cometido
de	la	función	fallida.

Redacte	mensajes	de	error	informativos	y	páselos	junto	a	sus	excepciones.
Mencione	 la	 operación	 fallida	 y	 el	 tipo	 de	 fallo.	 Si	 guarda	 registros	 en	 su
aplicación,	 incluya	 información	 suficiente	 para	 poder	 registrar	 el	 error	 en	 la
cláusula	catch.

Definir	clases	de	excepción	de	acuerdo	a	las
necesidades	del	invocador

Existen	 varias	 formas	 de	 clasificar	 los	 errores.	 Podemos	 hacerlo	 por	 origen

(¿provienen	de	uno	u	otro	componente?)	o	por	tipo	(¿son	fallos	del	dispositivo,
de	 la	 red	 o	 errores	 de	 programación?).	 Sin	 embargo,	 al	 definir	 clases	 de
excepción	en	una	aplicación,	debemos	preocuparnos	principalmente	en	cómo	se
capturan.

Veamos	 un	 pobre	 ejemplo	 de	 clasificación	 de	 excepciones.	 Es	 una
instrucción	try-catch-finally	de	 la	 invocación	de	una	biblioteca	de	 terceros.
Abarca	todas	las	excepciones	que	las	invocaciones	pueden	generar:

ACMEPort	port	=	new	ACMEPort(12);

try	{

port.open();

}	catch	(DeviceResponseException	e)	{

reportPortError(e);

logger.log{“Device	response	exception”,	e);

}	catch	(ATM1212UnlockedException	e)	{

reportPortError(e);

logger.log(“Unlock	exception”,	e);

}	catch	(GMXError	e)	{

reportPortError(e);

logger.log(“Device	response	exception”);

}	finally	{

…

}

Esta	 instrucción	 contiene	 elementos	 duplicados,	 algo	 que	 no	 debería
sorprendernos.	 En	 muchos	 casos	 de	 control	 de	 excepciones,	 el	 trabajo	 que
realizamos	 es	 relativamente	 estándar	 independientemente	 de	 la	 causa	 real.
Debemos	registrar	un	error	y	asegurarnos	de	poder	continuar.

En	este	caso,	como	sabemos	que	el	trabajo	es	el	mismo	independientemente
de	la	excepción,	podemos	simplificar	el	código	si	 incluimos	la	API	invocada	y
nos	aseguramos	de	que	devuelve	un	tipo	de	excepción	común:

LocalPort	port	=	new	LocalPort(12);

try	{

port.open();

}	catch	(PortDeviceFailure	e)	{

reportError(e);

logger.log(e.getMessage(),	e);

}	finally	{

…

}

Nuestra	 clase	 LocalPort	 es	 un	 simple	 envoltorio	 que	 captura	 y	 traduce
excepciones	generadas	por	la	clase	ACMEPort:

public	class	LocalPort	{

private	ACMEPort	innerPort;

public	LocalPort(int	portNumber)	{

innerPort	=	new	ACMEPort(portNumber);

}

public	void	open()	{

try	{

innerPort.open();

}	catch	(DeviceResponseException	e)	{

throw	new	PortDeviceFailure(e);

}	catch	(ATM1212UnlockedException	e)	{

throw	new	PortDeviceFailure(e);

}	catch	(GMXError	e)	{

throw	new	PortDeviceFailure(e);

}

}

…

}

Los	envoltorios	como	el	definido	para	ACMEPort	pueden	ser	muy	útiles.	De
hecho,	es	recomendable	envolver	API	de	terceros.	Al	hacerlo,	se	minimizan	las
dependencias:	puede	cambiar	a	otra	biblioteca	diferente	sin	apenas	problemas	y
el	envoltorio	también	facilita	imitar	invocaciones	de	terceros	cuando	se	prueba	el
código.	 Una	 última	 ventaja	 es	 que	 no	 estamos	 limitados	 a	 las	 decisiones	 de
diseño	 de	 API	 de	 un	 determinado	 fabricante.	 Puede	 definir	 una	 API	 que	 le
resulte	 cómoda.	En	 el	 ejemplo	 anterior,	 definimos	 un	 único	 tipo	 de	 excepción
para	 el	 fallo	 de	 puertos	 y	 podemos	 escribir	 un	 código	 mucho	 más	 limpio.	 A
menudo,	una	única	clase	de	excepción	es	suficiente	para	una	zona	concreta	del
código.	La	 información	 enviada	 con	 la	 excepción	 puede	 distinguir	 los	 errores.
Use	clases	diferentes	sólo	para	capturar	una	excepción	y	permitir	el	paso	de	otra
distinta.

Definir	el	flujo	normal

			

Si	 sigue	 los	 consejos	 de	 apartados	 anteriores,	 realizará	 una	 importante
separación	entre	la	lógica	empresarial	y	el	control	de	errores.	La	mayoría	de	su
código	 parecerá	 un	 algoritmo	 limpio	 y	 sin	 adornos.	 Sin	 embargo,	 el	 proceso
desplaza	 la	detección	de	errores	hacia	 los	bordes	del	programa.	Debe	envolver
API	 externas	 para	 poder	 generar	 sus	 propias	 excepciones	 y	 definir	 un
controlador	por	encima	del	código	para	poder	procesar	cálculos	cancelados.	En
muchos	 casos	 es	 el	 enfoque	 más	 acertado,	 pero	 en	 ocasiones	 conviene	 no
cancelar.

Veamos	un	ejemplo,	un	código	extraño	que	suma	gastos	en	una	aplicación
de	facturación:

try	{

MealExpenses	expenses	=	expenseReportDAO.getMeals(employee.getID());

m_total	+=	expenses.getTotal();

}	catch(MealExpensesNotFound	e)	{

m_total	+=	getMealPerDiem();

}

En	esta	empresa,	si	las	comidas	son	gastos,	pasan	a	formar	parte	del	total.

Si	 no	 lo	 son,	 los	 trabajadores	 reciben	 una	 cantidad	 diaria	 para	 la	 comida.	 La
excepción	entorpece	la	lógica.	Sería	más	adecuado	no	tener	que	procesar	el	caso
especial	 y	 el	 código	 sería	 mucho	 más	 sencillo:	 MealExpenses	 expenses	 =

expenseReportDAO.getMeals(employee.getID());

m_total	+=	expenses.getTotal();

¿De	verdad	que	el	código	puede	ser	tan	simple?	Pues	sí.	Podemos	cambiar
ExpenseReportDAO	para	que	siempre	devuelva	un	objeto	MealExpense.	Si	no	hay
gastos	de	comida,	devuelve	un	objeto	MealExpense	que	devuelve	la	dieta	diaria
como	total:	public	class	PerDiemMealExpenses	implements	MealExpenses	{

public	int	getTotal()	{

//	devolver	la	dieta	diaria	predeterminada

}

}

Es	lo	que	se	denomina	Patrón	de	Caso	Especial	[Fowler].	Se	crea	una	clase
o	 se	 configura	 un	 objeto	 que	 procese	 un	 caso	 especial.	 Al	 hacerlo,	 el	 código
cliente	 no	 tiene	 que	 procesar	 comportamientos	 excepcionales.	 Dichos
comportamientos	se	encapsulan	en	un	objeto	de	caso	especial.

No	devolver	Null

Creo	que	toda	descripción	del	control	de	errores	debe	mencionar	los	elementos
proclives	 a	 errores.	 El	 primero	 es	 devolver	 null.	 He	 perdido	 la	 cuenta	 de	 la
cantidad	de	aplicaciones	en	que	 las	que	 línea	 sí	y	 línea	 también	 se	comprueba
null:

public	void	registerItem(Item	item)	{

if	(item	!=	null)	{

ItemRegistry	registry	=	peristentStore.getItemRegistry();

if	(registry	!=	null)	{

Item	existing	=	registry.getItem(item.getID());

if	(existing.getBillingPeriod().hasRetailOwner())	{

existing.register(item);

}

}

}

}

Si	 trabaja	 en	una	base	de	 código	 como	ésta,	 puede	que	no	 le	 parezca	 tan
mala,	 pero	 lo	 es.	 Al	 devolver	 null,	 básicamente	 nos	 creamos	 trabajo	 y
generamos	 problemas	 para	 los	 invocadores.	 Basta	 con	 que	 falte	 una
comprobación	de	null	para	que	la	aplicación	pierda	el	control.

¿Se	ha	fijado	en	que	no	hay	una	comprobación	de	null	en	la	segunda	línea
de	 la	 instrucción	 if	 anidada?	 ¿Qué	 sucedería	 en	 tiempo	 de	 ejecución	 si
persistentStore	 fuera	 null?	 Se	 generaría	 NullPointerException	 en	 tiempo
de	ejecución	y	se	capturaría	NullPointerException	en	el	nivel	superior	o	no.	En
ambos	casos	es	incorrecto.	¿Qué	debería	hace	como	respuesta	a	la	generación	de
NullPointerException	desde	el	interior	de	su	aplicación?	Se	puede	afirmar	que
el	problema	de	este	código	es	la	ausencia	de	una	comprobación	de	null	pero	en

realidad	el	problema	es	su	exceso.	Si	siente	la	tentación	de	devolver	null	desde
un	 método,	 pruebe	 a	 generar	 una	 excepción	 o	 a	 devolver	 un	 objeto	 de	 caso
especial.	 Si	 invoca	 un	método	 que	 devuelva	 null	 desde	 una	API	 de	 terceros,
envuélvalo	 en	 un	método	 que	 genere	 una	 excepción	 o	 devuelva	 un	 objeto	 de
caso	 especial.	 En	muchos	 casos,	 los	 objetos	 de	 caso	 especial	 son	 un	 remedio
sencillo.	Imagine	que	tiene	el	siguiente	código:	List<Employee>	employees	=	getEmployees();

if	(employees	!=	null)	{

for(Employee	e	:	employees)	{

totalPay	+=	e.getPay();

}

}

Ahora,	 getEmployees	 puede	 devolver	 null,	 ¿pero	 es	 necesario?	 Si
cambiamos	getEmployee	para	que	devuelva	una	lista	vacía,	podremos	limpiar	el
código:

List<Employee>	employees	=	getEmployees();

for(Employee	e	:	employees)	{

totalPay	+=	e.getPay();

}

Afortunadamente,	 Java	 dispone	 de	Collections.emptyList()	 y	 devuelve
una	lista	inmutable	predefinida	que	podemos	usar	para	este	cometido:

public	List<Employee>	getEmployees()	{

if	(…	there	are	no	employees	…)

return	Collections.emptyList();

}

Si	 usa	 este	 tipo	 de	 código,	 minimizará	 la	 presencia	 de
NullPointerException	y	su	código	será	más	limpio.

No	pasar	Null

Devolver	null	desde	métodos	es	incorrecto,	pero	es	peor	pasar	null	a	métodos.
A	 menos	 que	 trabaje	 con	 una	 API	 que	 espere	 que	 pase	 null,	 debe	 evitarlo
siempre	que	sea	posible.	Veamos	otro	ejemplo,	un	sencillo	método	que	calcula
una	métrica	para	dos	puntos:	public	class	MetricsCalculator

{

public	double	xProjection(Point	p1,	Point	p2)	{

return	(p2.x	–	p1.x)	*	1.5;

}

…

}

¿Qué	sucede	cuando	alguien	pasa	null	como	argumento?
calculator.xProjection(null,	new	Point	(12,	13));

Se	genera	NullPointerException,	evidentemente.
¿Cómo	 solucionarlo?	 Podríamos	 crear	 un	 nuevo	 tipo	 de	 excepción	 y

generarla:
public	class	MetricsCalculator

{

public	double	xProjection(Point	p1,	Point	p2)	{

if	(p1==null	||	p2==null)	{

throw	InvalidArgumentException(

“Invalid	argument	for	MetricsCalculator.xProjection”);

}

return	(p2.x	–	p1.x)	*	1.5;	}

}

}

¿Mejor?	 Puede	 que	 sea	 mejor	 que	 una	 excepción	 de	 puntero	 nulo,	 pero
recuerde	 que	 debe	 definir	 un	 controlador	 para	 InvalidArgumentException.
¿Qué	debe	hacer	el	controlador?	¿Hay	alguna	forma	correcta	de	hacerlo?

Existe	otra	alternativa,	usar	un	grupo	de	afirmaciones:
public	class	MetricsCalculator	(

public	double	xProjection{Point	p1,	Point	p2)	{

assert	p1	!=	null	:	“p1	should	not	be	null”;

assert	p2	!=	null	:	“p2	should	not	be	null”;

return	(p2.x	-	pl.x)	*	1.5;

}

}

Es	documentación	correcta	pero	no	soluciona	el	problema.	Si	alguien	pasa
null,	seguirá	produciéndose	un	error	de	tiempo	de	ejecución.

En	la	mayoría	de	lenguajes	de	programación	no	hay	una	forma	correcta	de
procesar	un	null	pasado	por	accidente.	Como	éste	es	el	caso,	el	enfoque	racional
es	impedir	que	se	pase	null	de	forma	predeterminada.	Si	lo	hace,	puede	diseñar
código	sabiendo	que	null	en	una	lista	de	argumentos	indica	un	problema	y	los
errores	serán	menores.

Conclusión

El	 código	 limpio	 es	 legible	 pero	 también	 debe	 ser	 robusto.	 No	 son	 objetivos
opuestos.	Podemos	crear	código	limpio	y	robusto	si	consideramos	el	control	de
errores	 una	 preocupación	 diferente,	 algo	 que	 vemos	 de	 forma	 independiente
desde	 nuestra	 lógica	 principal.	 Si	 somos	 capaces	 de	 lograrlo,	 razonaremos	 de
forma	 independiente	 y	 podemos	 aumentar	 la	 capacidad	 de	 mantenimiento	 de
nuestro	código.

Bibliografía
	

[Martin]:	 Agile	 Software	 Development:	 Principles,	 Patterns,	 and
Practices,	Robert	C.	Martin,	Prentice	Hall,	2002.

8
Límites

por	James	Grenning

No	 es	 habitual	 que	 controlemos	 todo	 el	 software	 de	 nuestros	 sistemas.	 En
ocasiones,	 adquirimos	 paquetes	 de	 terceros	 o	 usamos	 código	 abierto.	 En	 otros
casos,	 dependemos	 de	 equipos	 de	 nuestra	 propia	 empresa	 para	 producir
componentes	 o	 subsistemas	 que	 utilizamos.	 De	 algún	modo	 debemos	 integrar
este	código	externo	con	el	nuestro.	En	este	capítulo	veremos	prácticas	y	técnicas
para	definir	con	claridad	los	límites	de	nuestro	software.

Utilizar	código	de	terceros

Existe	una	 tensión	natural	entre	el	proveedor	de	una	 interfaz	y	el	usuario	de	 la
misma.	Los	 proveedores	 de	 paquetes	 y	 estructuras	 de	 terceros	 abogan	por	 una
capacidad	de	aplicación	global	para	poder	trabajar	en	diversos	entornos	y	atraer
a	un	público	más	amplio.	Los	usuarios,	por	su	parte,	desean	una	interfaz	centrada
en	 sus	 necesidades	 concretas.	 Esta	 tensión	 puede	 provocar	 problemas	 en	 los
límites	de	nuestros	sistemas.

Analicemos	 java.util.Map	 como	 ejemplo.	 Como	 puede	 apreciar	 en	 la
siguiente	 lista.	Map	 tiene	una	 amplia	 interfaz	 con	numerosas	 prestaciones.	Esta
potencia	 y	 flexibilidad	 es	muy	 útil,	 pero	 también	 puede	 ser	 un	 problema.	 Por
ejemplo,	 nuestra	 aplicación	 puede	 generar	 un	 Map	 y	 compartirlo.	 Nuestra
intención	 puede	 que	 sea	 que	 ninguno	 de	 los	 receptores	 del	 mapa	 borre	 sus
elementos.	Pero	en	la	parte	superior	de	la	lista	encontramos	el	método	clear().
Cualquier	usuario	del	mapa	puede	borrarlo.	O	puede	que	nuestra	convención	de
diseño	determine	 que	 sólo	 se	 puedan	 almacenar	 objetos	 concretos	 en	 el	mapa,
pero	Map	 no	 limita	 de	 forma	 fiable	 los	 tipos	 de	 objetos	 que	 admite.	Cualquier
usuario	puede	añadir	elementos	de	cualquier	tipo	a	cualquier	mapa.
	

clear()	void	-	Map

containsKey	(Object	key)	boolean	-	Map

containsValue	(Object	value)	boolean	-	Map

entrySet()	Set	-	Map

equals(Object	o)	boolean	-	Map

get(Object	key)	Object	-	Map

getClass()	Class<?	extends	Object>	-	Object

hashCode()	int	-	Map

isEmpty()	boolean	-	Map

keySet()	Set	-	Map

notify()	void	-	Object

notifyAll()	void	-	Object

put(Object	key,	Object	value)	Object	-	Map

putAll(Map	t)	void	-	Map

remove(Object	key)	Object	-	Map

size()	int	-	Map

toString()	String	-	Object

values()	Collection	-	Map

wait()	void	-	Object

wait(long	timeout)	void	-	Object

wait(long	timeout,	int	nanos)	void	-	Object

Figura	8.1.	Los	métodos	de	Map

Si	 nuestra	 aplicación	 necesita	 un	 mapa	 de	 Sensor,	 comprobará	 que	 los
sensores	se	definen	de	esta	forma:

Map	sensors	=	new	HashMap();

Tras	 ello,	 cuando	 otra	 parte	 del	 código	 necesite	 acceder	 a	 sensor,	 vemos
este	código:

Sensor	s	=	(Sensor)sensors.get(sensorId);

No	 lo	 vemos	 una	 sola	 vez,	 sino	 repetidamente	 a	 lo	 largo	 del	 código.	 El
cliente	de	este	código	es	responsable	de	obtener	un	objeto	de	Map	y	convertirlo	al
tipo	 correcto.	 Funciona,	 pero	 no	 es	 código	 limpio.	 Además,	 este	 código	 no
cuenta	 su	 historia	 como	 debería.	 La	 legibilidad	 del	 código	 se	 podría	 mejorar
mediante	 el	 uso	 de	 genéricos,	 como	 se	 indica	 a	 continuación:	 Map<Sensor>	 sensors	 =	 new

HashMap<Sensor>();

…

Sensor	s	=	sensors.get(sensorId);

Sin	 embargo,	 esto	 no	 soluciona	 el	 problema	 de	 que	Map<Sensor>	 ofrezca
más	prestaciones	de	las	que	necesitamos	o	deseamos.

Al	 pasar	 una	 instancia	 de	Map<Sensor>	 en	 el	 sistema,	 significa	 que	 habrá
muchos	 puntos	 que	 corregir	 si	 la	 interfaz	 de	 Map	 cambia.	 Seguramente	 piense
que	 son	 cambios	 improbables,	 pero	 recuerde	 que	 se	 han	 producido	 al	 añadir
compatibilidad	 con	 genéricos	 en	 Java	 5.	 Sin	 duda	 hemos	 visto	 sistemas	 que
impiden	 el	 uso	 de	 genéricos	 debido	 a	 la	 gran	 cantidad	 de	 cambios	 necesarios
para	compensar	el	uso	liberal	de	Map.

Una	 forma	 más	 limpia	 de	 usar	 Map	 sería	 la	 siguiente.	 A	 ningún	 usuario
Sensor	 le	 importa	 si	 se	 usan	 genéricos	 o	 no.	 Esa	 opción	 se	 ha	 convertido	 (y
siempre	debería	serlo)	en	un	detalle	de	implementación.

public	class	Sensors	{

private	Map	sensors	=	new	HashMap();

public	Sensor	getById(String	id)	{

return	(Sensor)	sensors.get(id);

}

//corte

}

La	 interfaz	 en	 el	 límite	(Map)	 está	 oculta.	Ha	 conseguido	 evolucionar	 sin
apenas	 impacto	 en	 el	 resto	 de	 la	 aplicación.	 El	 uso	 de	 genéricos	 ya	 no	 es	 un
problema	ya	que	la	conversión	y	la	administración	de	tipos	se	procesa	dentro	de
la	clase	Sensors.

Esta	 interfaz	 también	 se	 ha	 ajustado	 y	 limitado	 a	 las	 necesidades	 de	 la
aplicación.	Genera	 código	más	 fácil	 de	 entender	 y	 con	menor	 probabilidad	 de
errores.	La	clase	Sensors	puede	aplicar	las	reglas	empresariales	y	de	diseño.

No	sugerimos	que	se	encapsulen	de	esta	forma	todos	los	usos	de	Map,	sino

que	no	 se	pase	Map	 (ni	otras	 interfaces	en	el	 límite)	por	 el	 sistema.	Si	usa	una
interfaz	de	límite	como	Map,	manténgala	dentro	de	la	clase	o	la	familia	de	clases
en	la	que	se	use.	Evite	devolverla	o	aceptarla	como	argumento	de	API	públicas.

Explorar	y	aprender	límites

El	 código	 de	 terceros	 nos	 permite	 obtener	 mayor	 funcionalidad	 en	 menos
tiempo.	 ¿Por	 dónde	 empezamos	 cuando	 queremos	 utilizar	 un	 paquete	 de
terceros?	 Nuestra	 labor	 no	 es	 probar	 el	 código,	 pero	 sí	 crear	 pruebas	 para	 el
código	de	terceros	que	utilicemos.

Imagine	 que	 no	 es	 evidente	 cómo	 usar	 una	 biblioteca	 de	 terceros.
Podríamos	 perder	 uno	 o	 varios	 días	 en	 leer	 la	 documentación	 y	 decidir	 cómo
usarla.	Tras	ello,	podríamos	escribir	el	código	para	usar	el	código	de	terceros	y
comprobar	 si	 se	comporta	de	 la	 forma	esperada.	No	deberíamos	sorprendernos
por	 tener	 que	 realizar	 extensas	 sesiones	 de	 depuración	 intentando	 localizar
errores	en	nuestro	código	o	en	el	suyo.

Aprender	el	código	de	terceros	es	complicado,	y	también	integrarlo.	Hacer
ambas	 cosas	 al	 mismo	 tiempo	 es	 el	 doble	 de	 complicado.	 Necesitamos	 un
enfoque	 diferente.	 En	 lugar	 de	 experimentar	 y	 probar	 el	 nuevo	 material	 en
nuestro	 código	 de	 producción,	 podríamos	 crear	 pruebas	 que	 analicen	 nuestro
entendimiento	 del	 código	 de	 terceros.	 Jim	 Newkirk	 las	 denomina	 pruebas	 de
aprendizaje[34].

En	 las	 pruebas	 de	 aprendizaje,	 invocamos	 la	 API	 de	 terceros	 como
supuestamente	 la	 usaríamos	 en	 nuestra	 aplicación.	 Básicamente	 realizamos
experimentos	 controlados	 para	 comprobar	 si	 la	 entendemos.	 Las	 pruebas	 se
centran	en	lo	que	queremos	obtener	de	la	API.

Aprender	log4j

Imagine	 que	 desea	 usar	 el	 paquete	 de	 Apache	 log4j	 en	 lugar	 de	 su	 propio
dispositivo	de	registro	personalizado.	Lo	descarga	y	abre	la	página	inicial	de	la
documentación.	Sin	una	lectura	exhaustiva,	crea	el	primer	caso	de	prueba	con	la
esperanza	de	que	escriba	hello	en	la	consola.

@Test

public	void	testLogCreate()	{

Logger	logger	=	Logger.getLogger(“MyLogger”);

logger.info(“hello”);

}

Al	ejecutarlo,	el	registrador	genera	un	error	que	nos	indica	que	necesitamos

algo	denominado	Appender.	Tras	investigar,	descubrimos	que	existe	un	elemento
ConsoleAppender.	 Creamos	 ConsoleAppender	 y	 comprobamos	 si	 hemos
conseguido	revelar	los	secretos	del	registro	en	la	consola.

@Test

public	void	testLogAddAppender()	{

Logger	logger	=	Logger.getLogger	(“MyLogger”);

ConsoleAppender	appender	=	new	ConsoleAppender();

logger.addAppender(appender);

logger.info(“hello”);

}

En	esta	ocasión	descubrimos	que	Appender	carece	de	flujo	de	salida,	algo
extraño,	ya	que	parece	lógico	que	lo	tuviera.	Tras	recurrir	a	Google,	probamos	lo
siguiente:

@Test

public	void	testLogAddAppender()	{

Logger	logger	=	Logger.getLogger(“MyLogger”);

logger.removeAllAppenders();

logger.addAppender(new	ConsoleAppender(

new	PatternLayout(“%p	%t	%m%n”),

ConsoleAppender.SYSTEM_OUT));

logger.info(“hello”);

}

Funciona;	en	la	consola	aparece	un	mensaje	con	la	palabra	hello.	Resulta
extraño	tener	que	indicarle	a	ConsoleAppender	que	escriba	en	la	consola.

Al	eliminar	el	argumento	ConsoleAppender.SystemOut,	vemos	que	hello
sigue	impreso.	Pero	al	eliminar	PatternLayout,	de	nuevo	vemos	la	queja	de	la
falta	de	un	flujo	de	salida.	Es	un	comportamiento	muy	extraño.

Si	 nos	 fijamos	 en	 la	 documentación,	 vemos	 que	 el	 constructor
ConsoleAppender	 predeterminado	 no	 está	 configurado,	 lo	 que	 no	 parece
demasiado	obvio	ni	útil.	Parece	más	bien	un	error	o	una	incoherencia	de	log4j.

Tras	nuevas	búsquedas	en	Google,	investigaciones	y	pruebas,	conseguimos
el	 Listado	 8-1.	 Hemos	 descubierto	 cómo	 funciona	 log4j	 y	 hemos	 codificado
esos	conocimientos	en	un	grupo	de	sencillas	pruebas	de	unidad.

Listado	8-1
LogTest.java.

public	class	LogTest	(

private	Logger	logger;

@Before

public	void	initialize()	{

logger	=	Logger.getLogger(“logger”);

logger.removeAllAppenders();

Logger.getRootLogger().removeAllAppenders();

}

@Test

public	void	basicLogger()	{

BasicConfigurator.configure();

logger.info(“basicLogger”);

}

@Test

public	void	addAppenderWithStream()	{

logger.addAppender(new	ConsoleAppender(

new	PatternLayout	(“%p	%t	%m%n”),

ConsoleAppender.SYSTEM_OUT));

logger.info(“addAppenderWithStream”);

}

@Test

public	void	addAppenderWithoutStream()	{

logger.addAppender(new	ConsoleAppender(

new	PatternLayout(“%p	%t	%m%n”)));

logger.info(“addAppenderWithoutStream”);

}

}

Ahora	 sabemos	 cómo	 inicializar	 un	 sencillo	 registrador	 de	 consola	 y
encapsular	ese	conocimiento	en	nuestra	propia	clase	de	registro	para	que	el	resto
de	la	aplicación	se	aísle	de	la	interfaz	de	límite	log4j.

Las	pruebas	de	aprendizaje	son	algo	más	que
gratuitas

Las	pruebas	de	aprendizaje	no	cuestan	nada.	De	todas	formas,	hemos	tenido	que
aprender	la	API	y	crear	las	pruebas	fue	una	forma	sencilla	y	aislada	de	adquirir
esos	 conocimientos.	 Las	 pruebas	 de	 aprendizaje	 fueron	 experimentos	 precisos
que	permitieron	aumentar	nuestros	conocimientos.

Las	 pruebas	 no	 sólo	 son	 gratuitas,	 sino	 también	 rentables.	 Cuando
aparezcan	nuevas	versiones	del	paquete	de	 terceros,	 ejecutamos	 las	pruebas	de
aprendizaje	para	comprobar	si	hay	diferencias	de	comportamiento.

Las	 pruebas	 de	 aprendizaje	 demuestran	 que	 los	 paquetes	 de	 terceros	 que
usamos	funcionan	de	la	forma	esperada.	Una	vez	integrados,	no	hay	garantía	de
que	el	código	de	terceros	sea	compatible	con	nuestras	necesidades.	Los	autores
originales	se	verán	presionados	para	cambiar	el	código	y	ajustarlo	a	sus	propias
necesidades.	 Corregirán	 errores	 y	 añadirán	 nuevas	 funciones.	 En	 cada	 versión
surgirán	 nuevos	 riesgos.	 Si	 el	 paquete	 de	 terceros	 cambia	 de	 una	 forma
incompatible	con	nuestras	pruebas,	lo	sabremos	al	instante.

Independientemente	de	que	necesite	los	conocimientos	proporcionados	por
las	pruebas	de	aprendizaje,	un	límite	claro	debe	estar	respaldado	por	un	conjunto
de	 pruebas	 que	 ejerciten	 la	 interfaz	 de	 la	misma	 forma	 que	 hace	 el	 código	 de
producción.	Sin	 estas	 pruebas	de	 límites	 para	 facilitar	 la	 transición,	 podríamos
conservar	la	versión	antigua	más	tiempo	del	necesario.

Usar	código	que	todavía	no	existe

Existe	 otro	 tipo	 de	 límite,	 que	 separa	 lo	 conocido	 de	 lo	 desconocido.	 En
ocasiones,	nuestro	conocimiento	del	código	parece	desvanecerse.	Lo	que	hay	al
otro	 lado	del	 límite	 es	desconocido	 (al	menos	por	 el	momento).	En	ocasiones,

decidimos	no	mirar	más	allá	del	límite.
Hace	 años	 formé	 parte	 de	 un	 equipo	 de	 desarrollo	 de	 software	 para	 un

sistema	 de	 comunicación	 por	 radio.	 Había	 un	 subsistema,	 el	 Transmisor,	 que
apenas	 conocíamos	 y	 cuya	 interfaz	 todavía	 no	 se	 había	 diseñado.	 Como	 no
queríamos	 quedarnos	 parados,	 comenzamos	 a	 trabajar	 alejándonos	 de	 la	 parte
desconocida	del	código.

Sabíamos	 perfectamente	 dónde	 acababa	 nuestro	 mundo	 y	 comenzaba	 el
nuevo.	 Mientras	 avanzábamos,	 en	 ocasiones	 nos	 topábamos	 con	 este	 límite.
Aunque	la	ignorancia	ocultaba	nuestra	visión	más	allá	del	límite,	sabíamos	cómo
queríamos	que	 fuera	 la	 interfaz.	Queríamos	decirle	 al	 transmisor	 algo	como	 lo
siguiente:

Ajustar	 el	 transmisor	 en	 la	 frecuencia	 proporcionada	 y	 emitir	 una
representación	analógica	de	los	datos	que	provienen	de	este	flujo.

No	sabíamos	cómo	hacerlo	ya	que	todavía	no	se	había	diseñado	la	API.	Por
ello	decidimos	determinar	después	los	detalles.

Para	no	quedarnos	bloqueados,	definimos	nuestra	propia	interfaz.	Le	dimos
un	 nombre	 sencillo,	 Transmitter.	 Le	 asignamos	 el	 método	 transmit	 que
aceptaba	una	frecuencia	y	un	flujo	de	datos.	Es	la	interfaz	que	deseábamos	haber
tenido.

Lo	mejor	 de	 escribir	 la	 interfaz	 que	 deseábamos	 haber	 tenido	 era	 que	 la
controlábamos.	Esto	hace	que	el	código	cliente	sea	más	 legible	y	se	ciña	a	 los
objetivos	previstos.

En	 la	 figura	 8.1	 se	 aprecia	 que	 aislamos	 las	 clases
CommunicationsController	de	 la	API	del	 transmisor	(que	no	controlábamos	y
estaba	por	definir).	Al	usar	nuestra	propia	interfaz	específica	de	la	aplicación,	el
código	de	CommunicationsController	era	limpio	y	expresivo.	Una	vez	definida
la	API	del	transmisor,	creamos	TransmitterAdapter	para	reducir	las	distancias.
El	adaptador[35]	encapsulaba	la	interacción	con	la	API	y	ofrecía	un	único	punto	en
el	que	evolucionaba.

Figura	8.1.	Predicción	del	transmisor

Este	diseño	también	nos	ofrece	un	sello[36]	en	el	código	para	realizar	pruebas.
Con	 un	 elemento	 FakeTransmitter,	 podemos	 probar	 las	 clases
CommunicationsController.	También	podemos	crear	pruebas	de	límite	una	vez
diseñada	 la	 API	 Transmitter	 para	 asegurarnos	 de	 que	 la	 utilizamos
correctamente.

Límites	limpios

En	 los	 límites	 suceden	 cosas	 interesantes.	 Los	 cambios	 es	 una	 de	 ellas.	 Los
diseños	 de	 código	 correctos	 acomodan	 los	 cambios	 sin	 necesidad	 de	 grandes
modificaciones.	 Cuando	 usamos	 código	 que	 no	 controlamos,	 hay	 que	 prestar
especial	atención	a	proteger	nuestra	inversión	y	asegurarnos	de	que	los	cambios
futuros	 no	 son	 demasiado	 costosos.	 El	 código	 en	 los	 límites	 requiere	 una
separación	evidente	y	pruebas	que	definan	expectativas.	Debemos	evitar	que	el
código	 conozca	 los	 detalles	 de	 terceros.	 Es	más	 aconsejable	 depender	 de	 algo
que	 controlemos	 que	 de	 algo	 que	 no	 controlemos,	 y	 menos	 todavía	 si	 nos
controla.	Los	 límites	 de	 terceros	 se	 gestionan	 gracias	 a	 la	 presencia	 de	 puntos
mínimos	en	el	código	que	hagan	referencia	a	los	mismos.	Podemos	envolverlos
como	 hicimos	 con	 Map	 o	 usar	 un	 adaptador	 para	 convertir	 nuestra	 interfaz
perfecta	en	la	interfaz	proporcionada.	En	cualquier	caso,	el	código	se	lee	mejor,
promueve	 el	 uso	 coherente	 e	 interno	 en	 el	 límite	 y	 hay	 menos	 puntos	 de
mantenimiento	cuando	cambie	el	código	de	terceros.

Bibliografía
	

[BeckTDD]:	Test	Driven	Development,	Kent	Beck,	Addison-Wesley,	2003.

[GOF]:	Design	Patterns:	Elements	of	Reusable	Object	Oriented	Software,
Gamma	et	al.,	Addison	Wesley,	19%.
[WELC]:	Working	Effectively	with	Legacy	Code,	Addison-Wesley,	2004.

9
Pruebas	de	unidad

Nuestra	profesión	ha	evolucionado	mucho	en	los	últimos	10	años.	En	1997	nadie
había	oído	hablar	del	Desarrollo	guiado	por	pruebas	(DGP).	Para	la	mayoría,	las
pruebas	 de	 unidad	 eran	 pequeños	 fragmentos	 de	 código	 desechable	 que
creábamos	 para	 asegurarnos	 de	 que	 nuestros	 programas	 funcionaban.
Escribíamos	clases	y	métodos,	y	después	código	ad	hoc	para	probarlos,	 lo	que
implicaba	 algún	 tipo	 de	 programa	 controlador	 que	 nos	 permitiera	 interactuar
manualmente	con	el	programa	que	habíamos	escrito.

Recuerdo	crear	un	programa	de	C++	para	un	sistema	incrustado	de	tiempo
real	a	mediados	de	la	década	de	1990.	El	programa	era	un	sencillo	temporizador

con	la	siguiente	firma:
void	Timer::ScheduleCommand(Command*	theCommand,	int	milliseconds)

La	 idea	 era	 sencilla;	 el	 método	 execute	 de	 Command	 se	 ejecutaba	 en	 un
nuevo	subproceso	tras	el	número	especificado	de	milisegundos.	El	problema	era
cómo	probarlo.	Confeccioné	un	sencillo	programa	controlador	que	escuchaba	al
teclado.	Cada	vez	que	se	introducía	un	carácter,	se	programaba	un	comando	que
escribía	 el	 mismo	 carácter	 cinco	 segundos	 después.	 Introduje	 una	 rítmica
melodía	en	el	teclado	y	esperé	a	que	se	reprodujera	en	pantalla	cinco	segundos
después:

«I…	want-a-girl…	just…	like-the-girl-who-marr…	ied…	dear…	old…	dad.»

Incluso	 tarareé	 la	 melodía	 mientras	 pulsaba	 la	 tecla,	 y	 la	 volví	 a	 cantar
cuando	aparecieron	los	puntos	en	la	pantalla.

Ésa	 fue	 mi	 prueba.	 Cuando	 vi	 que	 funcionaba	 y	 se	 lo	 mostré	 a	 mis
compañeros,	me	deshice	del	código	de	prueba.

Como	 he	 afirmado,	 nuestra	 profesión	 ha	 evolucionado	 mucho.	 Ahora
crearía	 una	 prueba	 que	 garantizara	 el	 funcionamiento	 de	 hasta	 el	más	mínimo
detalle	del	código.	Aislaría	el	código	del	sistema	operativo	en	lugar	de	invocar
las	 funciones	 estándar	 de	 temporización.	 Las	 imitaría	 para	 tener	 control	 total
sobre	el	tiempo.	Programaría	comandos	que	definieran	indicadores	Booleanos	y
avanzaría	el	tiempo,	para	observar	los	indicadores	y	asegurarme	de	que	pasaran
de	false	 a	true	 al	 cambiar	 el	 tiempo	 al	 valor	 correcto.	Cuando	 superara	 una
serie	de	pruebas,	comprobaría	que	fueran	adecuadas	para	todo	el	que	tuviera	que
trabajar	con	el	código.	Me	aseguraría	de	comprobar	las	pruebas	y	el	código	en	el
mismo	paquete.	Sí,	hemos	avanzado	mucho,	pero	nos	queda	mucho	por	avanzar.
Los	movimientos	Agile	 y	TDD	han	 animado	 a	muchos	programadores	 a	 crear
pruebas	 de	 unidad	 automatizadas	 y	 cada	 vez	 son	 más.	 Pero	 en	 esta	 alocada
carrera	 por	 añadir	 pruebas	 a	 nuestra	 disciplina,	 muchos	 programadores	 han
pasado	por	alto	dos	de	los	aspectos	más	sutiles	e	importantes	de	diseñar	pruebas
de	calidad.

Las	tres	leyes	del	DGP

Todos	 sabemos	 que	 el	 DGP	 nos	 pide	 que	 primero	 creemos	 las	 pruebas	 de
unidad,	antes	que	el	código	de	producción.	Pero	esa	norma	es	sólo	la	punta	del

iceberg.	Tenga	en	cuenta	las	tres	siguientes	leyes[37]:

Primera	 ley:	No	debe	 crear	 código	de	producción	hasta	 que	haya	 creado
una	prueba	de	unidad	que	falle.
Segunda	ley:	No	debe	crear	más	de	una	prueba	de	unidad	que	baste	como
fallida,	y	no	compilar	se	considera	un	fallo.
Tercera	ley:	No	debe	crear	más	código	de	producción	que	el	necesario	para
superar	la	prueba	de	fallo	actual.

Estas	 tres	 leyes	 generan	 un	 ciclo	 de	 unos	 30	 segundos	 de	 duración.	 Las
pruebas	y	el	código	de	producción	se	crean	de	forma	conjunta,	las	pruebas	unos
segundos	antes	que	el	código.	Si	trabajamos	de	esta	forma,	crearemos	decenas	de
pruebas	al	día,	 cientos	 al	mes	y	miles	 al	 año.	Si	 trabajamos	de	esta	 forma,	 las
pruebas	 abarcarán	 todos	 los	 aspectos	 de	 nuestro	 código	 de	 producción.	 El
tamaño	de	 dichas	 pruebas,	 que	 puede	 ser	 similar	 al	 del	 código	 de	 producción,
puede	suponer	un	problema	de	administración.

Realizar	pruebas	limpias

Hace	 unos	 años	 me	 pidieron	 que	 dirigiera	 un	 equipo	 que	 había	 decidido
explícitamente	 que	 su	 código	 de	 prueba	 no	 debía	mantenerse	 con	 los	mismos
estándares	de	calidad	que	su	código	de	producción.	Podían	incumplir	las	reglas
en	sus	pruebas	de	unidad.	La	premisa	era	«Rápido	y	directo».	No	era	necesario
que	 las	 variables	 tuvieran	 nombres	 adecuados,	 ni	 que	 las	 funciones	 de	 prueba
fueran	breves	y	descriptivas.	No	era	necesario	que	el	código	de	prueba	estuviera
bien	diseñado.	Bastaba	con	que	funcionara	y	abarcara	el	código	de	producción.

Puede	que	 algunos	 lectores	 empaticen	 con	 esta	 decisión.	Puede	que	 en	 el
pasado	creara	el	 tipo	de	pruebas	que	cree	para	 la	clase	Timer.	Supone	un	gran
paso	 crear	 ese	 tipo	 de	 pruebas	 desechables	 a	 diseñar	 una	 suite	 de	 pruebas	 de
unidad	 automatizadas.	Por	 ello,	 como	el	 equipo	que	dirigía,	 puede	decidir	 que
pruebas	incorrectas	sea	mejor	que	no	tener	pruebas.

Pero	el	equipo	no	se	daba	cuenta	que	tener	pruebas	incorrectas	era	igual	o
peor	que	no	tener	prueba	alguna.	El	problema	es	que	las	pruebas	deben	cambiar
de	acuerdo	a	la	evolución	del	código.	Cuanto	menos	limpias	sean,	más	difícil	es
cambiarlas.	Cuando	más	enrevesado	sea	el	código	de	prueba,	más	probabilidades
de	que	dedique	más	tiempo	a	añadir	nuevas	pruebas	a	la	suite	que	el	empleado
en	crear	el	nuevo	código	de	producción.	Al	modificar	el	código	de	producción,
las	pruebas	antiguas	comienzan	a	fallar	y	el	desastre	impide	que	las	pruebas	se

superen,	por	lo	que	acaban	por	convertirse	en	un	obstáculo	interminable.
Entre	 versiones,	 aumentó	 el	 coste	 de	mantener	 la	 suite	 de	 pruebas	 de	mi

equipo.	 Acabó	 por	 convertirse	 en	 la	 principal	 queja	 entre	 los	 desarrolladores.
Cuando	 los	 directores	 preguntaron	 sobre	 este	 aumento,	 los	 desarrolladores
culparon	 a	 las	 pruebas.	 Al	 final,	 se	 vieron	 obligados	 a	 descartar	 la	 suite	 de
pruebas	completa.

Pero	 sin	 una	 suite	 de	 pruebas	 perdieron	 la	 posibilidad	 de	 garantizar	 el
funcionamiento	esperado	de	los	cambios	en	el	código.	Sin	una	suite	de	pruebas
no	podían	asegurar	que	los	cambios	en	una	parte	del	sistema	no	afectaran	a	otras
diferentes.	 Los	 defectos	 aumentaron,	 lo	 que	 propició	 que	 temieran	 realizar
cambios.	 Dejaron	 de	 limpiar	 su	 código	 de	 producción	 por	 miedo	 a	 que	 los
cambios	 fueran	 dañinos.	 El	 código	 de	 producción	 comenzó	 a	 corromperse.	Al
final,	 se	 quedaron	 sin	 pruebas,	 con	 un	 código	 de	 producción	 enmarañado	 y
defectuoso,	 clientes	 frustrados	 y	 la	 sensación	 de	 que	 su	 esfuerzo	 les	 había
fallado.

En	 cierto	 modo	 tenían	 razón.	 Su	 esfuerzo	 les	 había	 fallado.	 Pero	 fue	 su
decisión	de	permitir	que	las	pruebas	fueran	incorrectas	lo	que	provocó	el	fallo.	Si
hubieran	 empleado	 pruebas	 limpias,	 su	 esfuerzo	 no	 habría	 fallado.	 Puedo
afirmarlo	con	cierta	seguridad	porque	he	participado	y	dirigido	muchos	equipos
que	han	tenido	éxito	gracias	a	pruebas	de	unidad	limpias.

La	moraleja	de	la	historia	es	sencilla:	el	código	de	prueba	es	tan	importante
como	el	de	producción.	No	es	un	ciudadano	de	segunda.	Requiere	concentración,
diseño	y	cuidado.	Debe	ser	tan	limpio	como	el	código	de	producción.

Las	pruebas	propician	posibilidades
Si	sus	pruebas	no	son	limpias,	las	perderá.	Y	sin	ellas	pierde	lo	mismo	que	hace
que	 su	 código	 de	 producción	 sea	 flexible.	 Sí,	 ha	 leído	 bien.	 Las	 pruebas	 de
unidad	 son	 las	 que	 hacen	 que	 el	 código	 sea	 flexible	 y	 se	 pueda	 mantener	 y
reutilizar.	 La	 razón	 es	 sencilla.	 Si	 tiene	 pruebas,	 no	 tendrá	 miedo	 a	 realizar
cambios	 en	 el	 código.	 Sin	 pruebas,	 cada	 cambio	 es	 un	 posible	 error.
Independientemente	 de	 la	 flexibilidad	 de	 su	 arquitectura,	 de	 la	 división	 del
diseño,	sin	pruebas	tendrá	miedo	a	realizar	cambios	por	la	posibilidad	de	añadir
errores	no	detectados.

Pero	con	las	pruebas	ese	miedo	desaparece.	Cuanto	mayor	sea	el	alcance	de
sus	 pruebas,	 menos	 miedo	 tendrá.	 Podrá	 modificar	 el	 código	 con	 total
impunidad,	 aunque	 su	 arquitectura	 no	 sea	 la	 mejor	 y	 el	 diseño	 sea	 mediocre.
Podrá	mejorar	la	arquitectura	y	el	diseño	sin	miedo	alguno.

Por	 tanto,	 disponer	 de	 una	 suite	 automatizada	 de	 pruebas	 de	 unidad	 que
cubran	el	código	de	producción	es	la	clave	para	mantener	limpio	el	diseño	y	la
arquitectura.	 Las	 pruebas	 proporcionan	 las	 posibilidades,	 ya	 que	 permiten	 el
cambio.

Si	sus	pruebas	no	son	limpias,	la	capacidad	de	modificar	el	código	se	verá
limitada	 y	 perderá	 la	 posibilidad	 de	 mejorar	 la	 estructura	 de	 dicho	 código.
Cuanto	 menos	 limpias	 sean	 las	 pruebas,	 menos	 lo	 será	 el	 código.	 En	 última
instancia	perderá	las	pruebas	y	el	código	se	corromperá.

Pruebas	limpias

¿Qué	hace	que	una	prueba	sea	limpia?	Tres	elementos:	legibilidad,	legibilidad	y
legibilidad.	La	legibilidad	es	sin	duda	más	importante	en	las	pruebas	de	unidad
que	 en	 el	 código	 de	 producción.	 ¿Qué	 hace	 que	 una	 prueba	 sea	 legible?	 Lo
mismo	que	en	el	código:	claridad,	simplicidad	y	densidad	de	expresión.	En	una
prueba	debe	decir	mucho	con	el	menor	número	de	expresiones	posible.

Fíjese	 en	 el	 código	 de	 FitNesse	 del	 Listado	 9-1.	 Estas	 tres	 pruebas	 son
difíciles	 de	 entender	 y	 sin	 duda	 se	 pueden	 mejorar.	 Por	 un	 lado,	 hay	 mucho
código	 duplicado	 [G5]	 en	 las	 invocaciones	 repetidas	 a	 addPage	 y
assertSubString.	Sobre	todo,	este	código	se	carga	con	detalles	que	interfieren
con	la	expresividad	de	la	prueba.

Listado	9-1
SerializedPageResponderTest.java.

public	void	testGetPageHieratchyAsXml()	throws	Exception

{

crawler.addPage(root,	PathParser.parse(“PageOne”));

crawler.addPage(root,	PathParser.parse(“PageOne.ChildOne”));

crawler.addPage(root,	PathParser.parse(“PageTwo”));

request.setResource(“root”);

request.addInput(“type”,	“pages”);

Responder	responder	=	new	SerializedPageResponder();

SimpleResponse	response	=

(SimpleResponse)	responder.makeResponse(

new	FitNesseContext(root),	request);

String	xml	=	response.getContent();

assertEquals(“text/xml”,	response.getContentType());

assertSubString(“<name>PageOne</name>”,	xml);

assertSubString(“<name>PageTwo</name>”,	xml);

assertSubString(“<name>ChildOne</name>”,	xml);

}

public	void	testGetPageHieratchyAsXmlDoesntContainSymbolicLinks()

throws	Exception

{

WikiPage	pageOne	=	crawler.addPage(root,	PathParser.parse(“PageOne”));

crawler.addPage(root,	PathParser.parse(“PageOne.ChildOne”));

crawler.addPage(root,	PathParser.parse(“PageTwo”));

PageData	data	=	pageOne.getData();

WikiPageProperties	properties	=	data.getProperties();

WikiPageProperty	symLinks	=	properties.set(SymbolicPage.PROPERTY_NAME);

symLinks.set(“SymPage”,	“PageTwo”);

pageOne.commit(data);

request.setResource(“root”);

request.addInput(“type”,	“pages”);

Responder	responder	=	new	SerializedPageResponder();

SimpleResponse	response	=

(SimpleResponse)	responder.makeResponse(

new	FitNesseContext(root),	request);

String	xml	=	response.getContent();

assertEquals(“text/xml”,	response.getContentType());

assertSubString(“<name>PageOne</name>”,	xml);

assertSubString(“<name>PageTwo</name>”,	xml);

assertSubString(“<name>ChildOne</name>”,	xml);

assertNotSubString(“SymPage”,	xml);

}

public	void	testGetDataAsHtml()	throws	Exception

{

crawler.addPage(root,	PathParser.parse(“TestPageOne”),	“test	page”);

request.setResource(“TestPageOne”);

request.addInput(“type”,	“data”);

Responder	responder	=	new	SerializedPageResponder();

SimpleResponse	response	=

(SimpleResponse)	responder.makeResponse(

new	FitNesseContext(root),	request);

String	xml	=	response.getContent();

assertEquals(“text/xml”,	response.getContentType());

assertSubString(“test	page”,	xml);

assertSubString(“<Test”,	xml);

}

Fíjese	 en	 las	 invocaciones	 de	 PathParser.	 Transforman	 cadenas	 en
instancias	de	PagePath	usadas	por	las	arañas.	Esta	transformación	es	totalmente
irrelevante	 para	 la	 prueba	 y	 únicamente	 complica	 su	 cometido.	 Los	 detalles
circundantes	 a	 la	 creación	 del	 respondedor	 y	 la	 obtención	 y	 conversión	 de	 la
respuesta	también	sobran.	También	la	forma	de	crear	la	URL	de	solicitud	a	partir
de	un	 recurso	y	un	argumento	 (contribuí	 a	 crear	 este	 código,	por	 lo	que	 tengo
todo	el	derecho	a	criticarlo).

Al	 final,	 el	 código	 no	 se	 ha	 diseñado	 de	 forma	 legible.	 El	 lector	 se	 ve
rodeado	 de	 miles	 de	 detalles	 que	 debe	 comprender	 antes	 de	 que	 las	 pruebas
tengan	sentido.

Fíjese	ahora	en	las	pruebas	mejoradas	del	Listado	9-2.	Hacen	exactamente
lo	mismo,	pero	se	han	refactorizado	de	forma	más	clara	y	descriptiva.

Listado	9-2
SerializedPageResponderTest.java	(refactorizado)

public	void	testGetPageHierarchyAsXml()	throws	Exception	{

makePages(“PageOne”,	“PageOne.ChildOne”,	“PageTwo”);

submitRequest(“root”,	“type:pages”);

assertResponseIsXML();

assertResponseContains(

“<name>PageOne</name>”,	“<name>PageTwo</name>”,	“<name>ChildOne</name>”

);

}

public	void	testSymbolicLinksAreNotInXmlPageHierarchy()	throws	Exception	{

WikiPage	page	=	makePage(“PageOne”);

makePages(“PageOne.ChildOne”,	“PageTwo”);

addLinkTo(page,	“PageTwo”,	“SymPage”);

submitRequest(“root”,	“type:pages”);

assertResponseIsXML();

assertResponseContains(

“<name>PageOne</name>”,	“<name>PageTwo</name>”,	“<name>ChildOne</name>”

);

assertResponseDoesNotContain(“SymPage”);

}

public	void	testGetDataAsXml()	throws	Exception	{

makePageWithContent(“TestPageOne”,	“test	page”);

submitRequest(“TestPageOne”,	“type:data”);

assertResponseIsXML();

assertResponseContains(“test	page”,	“<Test”);

}

El	patrón	Generar-Operar-Comprobar[38]	 es	 evidente	 en	 la	 estructura	de	 las
pruebas.	Cada	una	se	divide	claramente	en	tres	partes.	La	primera	crea	los	datos
de	 prueba,	 la	 segunda	 opera	 en	 dichos	 datos	 y	 la	 tercera	 comprueba	 que	 la
operación	devuelva	los	resultados	esperados.

Comprobará	que	 se	ha	 eliminado	gran	parte	de	 los	detalles	molestos.	Las
pruebas	 son	concisas	y	 sólo	usan	 los	 tipos	de	datos	y	 funciones	que	 realmente
necesitan.	Todo	el	que	lea	estas	pruebas	sabrá	rápidamente	para	qué	sirven	y	no
se	perderá	entre	detalles	irrelevantes.

Lenguaje	de	pruebas	específico	del	dominio
Las	 pruebas	 del	 Listado	 9-2	 ilustran	 la	 creación	 de	 un	 lenguaje	 específico	 del
dominio	 para	 sus	 pruebas.	 En	 lugar	 de	 usar	 las	 API	 que	 los	 programadores
emplean	para	manipular	el	sistema,	creamos	una	serie	de	funciones	y	utilidades
que	usan	dichas	API	y	que	facilitan	la	escritura	y	la	lectura	de	las	pruebas.	Estas
funciones	 y	 utilidades	 se	 convierten	 en	 una	 API	 especializada	 usada	 por	 las
pruebas.	Son	un	lenguaje	de	pruebas	que	los	programadores	usan	personalmente
para	crear	sus	pruebas	y	para	ayudar	a	los	que	después	las	lean.

Esta	API	de	pruebas	no	se	diseña	con	antelación,	sino	que	evoluciona	con	la
refactorización	continuada	del	código	de	prueba.	Al	igual	que	refactorizamos	el
Listado	 9-1	 en	 el	Listado	 9-2,	 los	 programadores	 disciplinados	 refactorizan	 su
código	de	prueba	en	versiones	más	sucintas	y	expresivas.

Un	estándar	dual
En	 un	 sentido,	 el	 equipo	 que	mencionamos	 antes	 tenía	 razón.	 El	 código	 de	 la

API	 de	 pruebas	 tiene	 un	 conjunto	 de	 estándares	 de	 ingeniería	 diferentes	 al
código	de	producción.	También	tiene	que	ser	sencillo,	sucinto	y	expresivo,	pero
no	tan	eficaz	como	el	código	de	producción.	Después	de	todo,	se	ejecuta	en	un
entorno	 de	 prueba,	 no	 de	 producción,	 y	 cada	 entorno	 tiene	 sus	 propias
necesidades.

Fíjese	en	la	prueba	del	Listado	9-3.	La	creé	como	parte	de	un	prototipo	de
sistema	 de	 control	medioambiental.	 Sin	 entrar	 en	 detalles,	 se	 aprecia	 que	 esta
prueba	 comprueba	que	 la	 alarma	de	baja	 temperatura,	 el	 calentador	y	 el	 fuelle
estén	activados	cuando	la	temperatura	sea	demasiado	fría.

Listado	9-3
EnvironmentControllerTest.java

@Test

public	void	turnOnLoTempAlarmAtThreashold()	throws	Exception	{

hw.setTemp(WAY_TOO_COLD);

controller.tic();

assertTrue(hw.heaterState());

assertTrue(hw.blowerState());

assertFalse(hw.coolerState());

assertFalse(hw.hiTempAlarm());

assertTrue(hw.loTempAlarm());

}

Aquí	hay	muchos	detalles.	Por	ejemplo,	¿para	qué	sirve	la	función	tic?	De
hecho,	la	ignoraría	mientras	leemos	esta	prueba.	Intente	centrarse	en	saber	si	está
de	 acuerdo	 en	 que	 el	 estado	 final	 del	 sistema	 tiene	 que	 ver	 con	 que	 la
temperatura	sea	demasiado	baja.

Al	 leer	 la	 prueba,	 la	 vista	 tiene	 que	 cambiar	 entre	 el	 nombre	 del	 estado
comprobado	y	el	sentido	del	estado	comprobado.	Vemos	heaterState	y	después
la	vista	salta	a	assertTrue.	Vemos	coolerState	y	nos	fijamos	en	assertFalse.
Resulta	tedioso	y	dificulta	la	lectura	de	la	prueba.

He	 conseguido	mejorar	 la	 legibilidad	 de	 la	 prueba	 transformándola	 en	 el
Listado	9-4.

Listado	9-4
EnvironmentControllerTest.java	(refactorizado)

@Test

public	void	turnOnLoTempAlarmAtThreshold()	throws	Exception	{

wayTooCold();

assertEquals(“HBchL”,	hw.getState());

}

Evidentemente,	 he	 ocultado	 el	 detalle	 de	 la	 función	 tic	 creando	 una
función	wayTooCold.	Pero	lo	importante	es	la	extraña	cadena	de	assertEquals.
Las	 mayúsculas	 significan	 activado	 y	 las	 minúsculas	 desactivado,	 y	 las	 letras
siempre	 aparece	 en	 este	 orden:	 {heater,	 blower,	 cooler,	 hi-temp-alarm,

lo-temp-alarm}.
Aunque	 prácticamente	 sea	 un	 incumplimiento	 de	 las	 reglas	 de	 asignación

mental[39],	en	este	caso	parece	apropiado.	Una	vez	que	conocemos	el	significado,
la	vista	pasa	por	la	cadena	y	podemos	interpretar	los	resultados.	La	lectura	de	la
prueba	es	casi	un	placer.	Fíjese	en	el	Listado	9-5	y	compruebe	con	qué	facilidad
entiende	las	pruebas.

Listado	9-5
EnvironmentControllerTest.java	(una	selección	mayor).

@Test

public	void	turnOnCoolerAndBlowerIfTooHot()	throws	Exception	{

tooHot();

assertEquals(“hBChl”,	hw.getState());

}

@Test

public	void	turnOnHeaterAndBlowerIfTooCold()	throws	Exception	{

tooCold();

assertEquals(“HBchl”,	hw.getState());

}

@Test

public	void	turnOnHiTempAlarmAtThreshold()	throws	Exception	{

wayTooHot();

assertEquals(“hBCHL”,	hw.getState());

}

@Test

public	void	turnOnLoTempAlarmAtThreshold()	throws	Exception	{

wayTooCold();

assertEquals(“HBchL”,	hw.getState());

}

La	función	getState	se	reproduce	en	el	Listado	9-6.	No	es	un	código	muy
eficaz.	Para	que	lo	sea,	deberíamos	haber	usado	StringBuffer.

Listado	9-6
MockControlHardware.java.

public	String	getState()	{

String	state	=	“”;

state	+=	heater	?	“H”	:	“h”;

state	+=	blower	?	“B”	:	“b”;

state	+=	cooler	?	“C”	:	“c”;

state	+=	hiTempAlarm	?	“H”	:	“h”;

state	+=	loTempAlarm	?	“L”	:	“l”;

return	state;

}

StringBuffer	es	poco	atractivo.	 Incluso	en	código	de	producción,	 intento
evitarlo	si	el	coste	es	mínimo,	como	podría	suceder	en	el	Listado	9-6.	Pero	esta
aplicación	es	claramente	un	sistema	incrustado	en	tiempo	real	y	es	probable	que
los	recursos	del	equipo	y	la	memoria	estén	limitados.	Sin	embargo,	el	entorno	de
pruebas	es	improbable	que	lo	esté.	Es	la	naturaleza	del	estándar	dual.	Hay	cosas
que	nunca	haría	en	un	entorno	de	producción	totalmente	válidas	para	un	entorno
de	prueba.	Suelen	ser	problemas	de	memoria	o	eficacia	de	la	CPU,	pero	nunca

problemas	de	limpieza.

Una	afirmación	por	prueba

Existe	 una	 escuela	 de	 pensamiento[40]	 que	 afirma	 que	 todas	 las	 funciones	 de
prueba	 de	 una	 prueba	 JUnit	 sólo	 deben	 tener	 una	 instrucción	 de	 afirmación.
Puede	parecer	una	regla	draconiana	pero	la	ventaja	se	aprecia	en	el	Listado	9-5.
Las	pruebas	llegan	a	una	misma	conclusión,	que	se	entiende	de	forma	rápida	y
sencilla.

¿Pero	qué	sucede	con	el	Listado	9-2?	No	parece	 razonable	afirmar	que	el
resultado	 es	 XML	 y	 que	 contiene	 determinadas	 subcadenas.	 Sin	 embargo,
podemos	dividir	la	prueba	en	dos,	cada	una	con	una	afirmación	concreta,	como
se	muestra	en	el	Listado	9-7.

Listado	9-7
SerializedPageResponderTest.java	(una	sola	afirmación).

public	void	testGetPageHierarchyAsXml()	throws	Exception	{

givenPages(“PageOne”,	“PageOne.ChildOne”,	“PageTwo”);

whenRequestIsIssued(“root”,	“type:pages”);

thenResponseShouldBeXML();

}

public	void	testGetPageHierarchyHasRightTags()	throws	Exception	{

givenPages(“PageOne”,	“PageOne.ChildOne”,	“PageTwo”);

whenRequestIsIssued(“root”,	“type:pages”);

thenResponseShouldContain(

“<name>PageOne</name>”,	“<name>PageTwo</name>”,	“<name>ChildOne</name>”

);

}

He	cambiado	 los	nombres	de	 las	 funciones	para	usar	 la	convención	dado-
cuando-entonces[41].	 De	 este	 modo	 las	 pruebas	 son	 más	 fáciles	 de	 leer.
Desafortunadamente,	al	dividir	las	pruebas	se	genera	código	duplicado.

Podemos	 eliminar	 los	 duplicados	 por	 medio	 del	 patrón	 Método	 de
plantilla[42]	e	incluir	las	partes	dado/cuando	en	la	clase	base,	y	las	partes	entonces
en	derivaciones	diferentes.	O	podríamos	crear	una	clase	de	prueba	independiente
e	incluir	las	partes	dado	y	cuando	en	la	función	@Before	y	las	partes	entonces	en
cada	función	@Test.	Pero	parece	un	mecanismo	excesivo	para	un	problema	tan
menor.	Al	final,	opto	por	las	afirmaciones	múltiples	del	Listado	9-2.	Considero
que	la	regla	de	una	sola	afirmación	es	una	directriz	adecuada[43].	Siempre	intento
crear	un	lenguaje	de	pruebas	específico	del	dominio	que	la	complemente,	como

en	el	Listado	9-5,	pero	no	rechazo	incluir	más	de	una	afirmación	en	una	prueba.
Creo	que	lo	mejor	que	podemos	decir	es	que	el	número	de	afirmaciones	de	una
prueba	debe	ser	mínimo.

Un	solo	concepto	por	prueba
Puede	que	una	regla	más	indicada	sea	probar	un	único	concepto	en	cada	función
de	prueba.	No	queremos	extensas	funciones	que	prueben	una	cosa	diferente	tras
otra,	 como	 sucede	 en	 el	 Listado	 9-8.	 Esta	 prueba	 debería	 dividirse	 en	 tres
diferentes	que	probaran	tres	cosas	distintas.	Al	combinarlas	en	la	misma	función
se	obliga	al	lector	a	determinar	por	qué	cada	sección	se	ubica	en	ese	punto	y	qué
prueba	dicha	sección.

Listado	9-8

/**

*	Varias	pruebas	para	el	método	addMonths().

*/

public	void	testAddMonths()	{

SerialDate	d1	=	SerialDate.createInstance(31,	5,	2004);

SerialDate	d2	=	SerialDate.addMonths(1,	d1);

assertEquals(30,	d2.getDayOfMonth());

assertEquals(6,	d2.getMonth());

assertEquals(2004,	d2.getYYYY());

SerialDate	d3	=	SerialDate.addMonths(2,	d1);

assertEquals(31,	d3.getDayOfMonth());

assertEquals(7,	d3.getMonth());

assertEquals(2004,	d3.getYYYY());

SerialDate	d4	=	SerialDate.addMonths(1,	SerialDate.addMonths(1,	d1));

assertEquals(30,	d4.getDayOfMonth());

assertEquals(7,	d4.getMonth());

assertEquals(2004,	d4.getYYYY());

}

Las	tres	funciones	deberían	ser	las	siguientes:
	

Dado	el	último	día	de	un	mes	con	31	días	(como	mayo):
1.	 Cuando	se	añade	un	mes,	si	el	último	día	de	ese	mes	es	el	30	(como	en

junio),	entonces	la	fecha	debe	ser	el	día	30	de	ese	mes,	no	el	31.
2.	 Cuando	 se	 añaden	 dos	meses	 a	 esa	 fecha,	 si	 el	 último	mes	 tiene	 31

días,	entonces	la	fecha	debe	ser	el	día	31.
Dado	el	último	día	de	un	mes	con	30	días	(como	junio):
1.	 Cuando	se	añade,	si	el	último	día	de	ese	mes	tiene	31	días,	entonces	la

fecha	debe	ser	el	30,	no	el	31.

Expresado	de	esta	forma,	se	aprecia	que	existe	una	regla	general	entre	 las
distintas	 pruebas.	Al	 incrementar	 el	mes,	 la	 fecha	 no	 puede	 ser	mayor	 que	 su
último	 día.	 Esto	 implica	 que	 al	 incrementar	 el	 mes	 en	 el	 28	 de	 febrero	 debe
generarse	el	28	de	marzo.	Falta	esa	prueba	y	convendría	que	la	escribiéramos.

Así	 pues,	 no	 son	 las	múltiples	 afirmaciones	 del	Listado	9-8	 las	 causantes
del	 problema,	 sino	 el	 hecho	 de	 que	 se	 prueba	 más	 de	 un	 concepto.
Probablemente	la	regla	óptima	sea	minimizar	el	número	de	activos	por	concepto
y	probar	un	solo	concepto	por	función	de	prueba.

F.I.R.S.T.[44]

Las	pruebas	 limpias	siguen	otras	cinco	reglas,	cuyas	 iniciales	forman	las	siglas
FIRST	en	inglés:

Rapidez	(Fast):	Las	reglas	deben	ser	rápidas	y	ejecutarse	de	forma	rápida.
Si	 lo	 hacen	 lentamente,	 no	 las	 ejecutará	 con	 frecuencia.	 Al	 no	 hacerlo,	 no
detectará	los	problemas	con	la	suficiente	antelación	como	para	solucionarlos.	No
se	sentirá	con	libertad	para	limpiar	el	código,	que	acabará	corrompiéndose.

Independencia	(Independent):	Las	pruebas	no	deben	depender	entre	ellas.
Una	 prueba	 no	 debe	 establecer	 condiciones	 para	 la	 siguiente.	 Debe	 poder
ejecutar	 cada	 prueba	 de	 forma	 independiente	 y	 en	 el	 orden	 que	 desee.	 Si	 las
pruebas	dependen	unas	de	otras,	la	primera	que	falle	provocará	una	sucesión	de
fallos,	dificultará	el	diagnóstico	y	ocultará	efectos	posteriores.

Repetición	 (Repeatable):	 Las	 pruebas	 deben	 poder	 repetirse	 en	 cualquier
entorno.	Debe	poder	ejecutarlas	en	el	entorno	de	producción,	en	el	de	calidad	y
en	su	portátil	de	camino	a	casa	en	un	tren	sin	red.	Si	no	puede	repetir	las	pruebas
en	cualquier	entorno,	siempre	tendrá	una	excusa	de	su	fallo.	También	verá	que
no	puede	ejecutar	las	pruebas	si	el	entorno	no	está	disponible.

Validación	 automática	 (Self-Validating):	 Las	 pruebas	 deben	 tener	 un
resultado	 booleano:	 o	 aciertan	 o	 fallan.	 No	 debe	 tener	 que	 leer	 un	 extenso
archivo	 de	 registro	 para	 saber	 si	 una	 prueba	 ha	 acertado,	 ni	 comparar
manualmente	 dos	 archivos	 de	 texto	 distintos	 para	 ello.	 Si	 las	 pruebas	 no	 se
validan	 automáticamente,	 el	 fallo	 puede	 ser	 subjetivo	 y	 la	 ejecución	 de	 las
pruebas	puede	requerir	una	extensa	evaluación	manual.

Puntualidad	 (Timely):	Las	pruebas	deben	crearse	en	el	momento	preciso:
antes	 del	 código	 de	 producción	 que	 hace	 que	 acierten.	 Si	 crea	 las	 pruebas
después	 del	 código	 de	 producción,	 puede	 que	 resulte	 difícil	 probarlo.	 Puede
decidir	qué	parte	del	código	de	producción	sea	demasiado	difícil	de	probar.	No
diseñe	código	de	producción	que	no	se	pueda	probar.

Conclusión

Apenas	hemos	abordado	la	superficie	de	este	tema.	De	hecho,	se	podría	crear	un
libro	entero	sobre	pruebas	limpias.	Las	pruebas	son	tan	importantes	para	la	salud
de	un	proyecto	como	el	código	de	producción.	Puede	que	 incluso	más,	ya	que
conservan	y	mejoran	la	flexibilidad,	capacidad	de	mantenimiento	y	reutilización
del	 código	de	producción.	Por	 ello,	 intente	que	 sean	 limpias.	Trabaje	para	que
resulten	expresivas	y	concisas.	Invente	API	de	prueba	que	actúen	como	lenguaje
específico	del	dominio	que	le	ayude	a	crear	las	pruebas.

Si	deja	que	las	pruebas	se	corrompan,	sucederá	lo	mismo	con	el	código	de
producción.	Mantenga	limpias	las	pruebas.

Bibliografía
	

[RSpec]:	 RSpec:	 Behavior	 Driven	 Development	 for	 Ruby	 Programmers,
Aslak	Hellesay,	David	Chelimsky,	Pragmatic	Bookshelf,	2008.
[GOF]:	Design	Patterns:	Elements	of	Reusable	Object	Oriented	Software,
Gamma	et	al.,	Addison-Wesley,	1996.

10
Clases

con	Jeff	Langr

Hasta	ahora	nos	hemos	centrado	en	escribir	bien	líneas	y	bloques	de	código.	Nos
hemos	 adentrado	 en	 la	 correcta	 composición	 de	 las	 funciones	 y	 en	 su
interrelación.	 Pero	 a	 pesar	 de	 la	 atención	 dedicada	 a	 la	 expresividad	 de	 las
instrucciones	y	las	funciones,	no	tendremos	código	limpio	hasta	que	nos	fijemos
en	los	niveles	superiores	de	su	organización.	Hablemos	sobre	clases.

Organización	de	clases

De	acuerdo	a	la	convención	estándar	de	Java,	una	clase	debe	comenzar	con	una
lista	 de	 variables.	 Las	 constantes	 estáticas	 públicas,	 si	 existen,	 deben	 aparecer

primero.	 Tras	 ello,	 las	 variables	 estáticas	 privadas	 y	 después	 las	 variables	 de
instancia	privadas.	No	suele	ser	necesario	usar	variables	públicas.

Las	 funciones	 públicas	 deben	 seguir	 a	 la	 lista	 de	 variables.	 Incluimos	 las
utilidades	 públicas	 invocadas	 por	 una	 función	 pública	 tras	 la	 propia	 función
pública.	Este	sistema	cumple	la	regla	descendente	y	permite	que	el	programa	se
lea	como	un	artículo	de	periódico.

Encapsulación
Queremos	que	nuestras	variables	y	funciones	de	utilidad	sean	privadas,	pero	no
es	 imprescindible.	 En	 ocasiones	 podemos	 proteger	 una	 variable	 o	 función	 de
utilidad	para	que	sea	accesible	para	una	prueba.	Las	reglas	mandan.	Si	una	regla
del	 mismo	 paquete	 tiene	 que	 invocar	 una	 función	 o	 acceder	 a	 una	 variable,
hacemos	 que	 tenga	 ámbito	 protected	 o	 de	 paquete.	 Sin	 embargo,	 primero
veremos	una	forma	de	mantener	la	privacidad.	La	relajación	de	la	encapsulación
siempre	es	un	último	resorte.

Las	clases	deben	ser	de	tamaño	reducido

La	primera	regla	de	las	clases	es	que	deben	ser	de	tamaño	reducido.	La	segunda
regla	es	que	deben	ser	todavía	más	reducidas.	No,	no	vamos	a	repetir	el	mismo
texto	en	el	capítulo	sobre	las	funciones,	pero	como	sucede	con	las	funciones,	el
tamaño	 reducido	 es	 lo	 principal	 a	 la	 hora	 de	 diseñar	 una	 clase.	Y	 la	 pregunta
inmediata	 es	 qué	 nivel	 de	 reducción.	 Con	 las	 funciones	 medimos	 el	 tamaño
contando	 líneas	 físicas.	 Con	 las	 clases	 usamos	 otra	 medida	 distinta:	 las
responsabilidades[45].

El	 Listado	 10-1	 muestra	 una	 clase,	 SuperDashboard,	 que	 muestra	 70
métodos	 públicos.	 Muchos	 programadores	 estarán	 de	 acuerdo	 en	 que	 es	 un
tamaño	excesivo.	Algunos	denominarían	a	SuperDashboard	una	clase	Dios.

Listado	10-1
Demasiadas	responsabilidades.

public	class	SuperDashboard	extends	JFrame	implements	MetaDataUser

public	String	getCustomizerLanguagePath()

public	void	setSystemConfigPath(String	systemConfigPath)

public	String	getSystemConfigDocument()

public	void	setSystemConfigDocument(String	systemConfigDocument)

public	boolean	getGuruState()

public	boolean	getNoviceState()

public	boolean	getOpenSourceState()

public	void	showObject(MetaObject	object)

public	void	showProgress(String	s)

public	boolean	isMetadataDirty()

public	void	setIsMetadataDirty(boolean	isMetadataDirty)

public	Component	getLastFocusedComponent()

public	void	setLastFocused(Component	lastFocused)

public	void	setMouseSelectState(boolean	isMouseSelected)

public	boolean	isMouseSelected()

public	LanguageManager	getLanguageManager()

public	Project	getProject()

public	Project	getFirstProject()

public	Project	getLastProject()

public	String	getNewProjectName()

public	void	setComponentSizes(Dimension	dim)

public	String	getCurrentDir()

public	void	setCurrentDir(String	newDir)

public	void	updateStatus(int	dotPos,	int	markPos)

public	Class[]	getDataBaseClasses()

public	MetadataFeeder	getMetadataFeeder()

public	void	addProject(Project	project)

public	boolean	setCurrentProject(Project	project)

public	boolean	removeProject(Project	project)

public	MetaProjectHeader	getProgramMetadata()

public	void	resetDashboard()

public	Project	loadProject(String	fileName,	String	projectName)

public	void	setCanSaveMetadata(boolean	canSave)

public	MetaObject	getSelectedObject()

public	void	deselectObjects()

public	void	setProject(Project	project)

public	void	editorAction(String	actionName,	ActionEvent	event)

public	void	setMode(int	mode)

public	FileManager	getFileManager()

public	void	setFileManager(FileManager	fileManager)

public	ConfigManager	getConfigManager()

public	void	setConfigManager(ConfigManager	configManager)

public	ClassLoader	getClassLoader()

public	void	setClassLoader(ClassLoader	classLoader)

public	Properties	getProps()

public	String	getUserHome()

public	String	getBaseDir()

public	int	getMajorVersionNumber()

public	int	getMinorVersionNumber()

public	int	getBuildNumber()

public	MetaObject	pasting(

MetaObject	target,	MetaObject	pasted,	MetaProject	project)

public	void	processMenuItems(MetaObject	metaObject)

public	void	processMenuSeparators(MetaObject	metaObject)

public	void	processTabPages(MetaObject	metaObject)

public	void	processPlacement(MetaObject	object)

public	void	processCreateLayout(MetaObject	object)

public	void	updateDisplayLayer(MetaObject	object,	int	layerIndex)

public	void	propertyEditedRepaint(MetaObject	object)

public	void	processDeleteObject(MetaObject	object)

public	boolean	getAttachedToDesigner()

public	void	processProjectChangedState(boolean	hasProjectChanged)

public	void	processObjectNameChanged(MetaObject	object)

public	void	runProject()

public	void	setAllowDragging(boolean	allowDragging)

public	boolean	allowDragging()

public	boolean	isCustomizing()

public	void	setTitle(String	title)

public	IdeMenuBar	getIdeMenuBar()

public	void	showHelper(MetaObject	metaObject,	String	propertyName)

//…	y	otros	muchos	métodos	no	públicos…

}

¿Y	 si	 SuperDashboard	 sólo	 incluyera	 los	 métodos	 mostrados	 en	 el
Listado	10-2?

Listado	10-2
¿Suficientemente	reducido?

public	class	SuperDashboard	extends	JFrame	implements	MetaDataUser

public	Component	getLastFocusedComponent()

public	void	setLastFocused(Component	lastFocused)

public	int	getMajorVersionNumber()

public	int	getMinorVersionNumber()

public	int	getBuildNumber()

}

Cinco	métodos	no	es	demasiado,	¿verdad?	En	este	caso	 sí	ya	que	a	pesar

del	 reducido	 número	 de	 métodos,	 SuperDashboard	 también	 tiene	 demasiadas
responsabilidades.

El	 nombre	 de	 una	 clase	 debe	 describir	 las	 responsabilidades	 que
desempeña.	De	hecho,	el	nombre	es	la	primera	forma	para	determinar	el	tamaño
de	 una	 clase.	 Si	 no	 podemos	 derivar	 un	 nombre	 conciso	 para	 una	 clase,
seguramente	sea	demasiado	extenso.	Cuanto	más	ambiguo	sea	el	nombre	de	 la
clase,	más	 probabilidades	 hay	de	 que	 tenga	 demasiadas	 responsabilidades.	 Por
ejemplo,	los	nombres	de	clase	con	palabras	como	Processor,	Manager	o	Super
suelen	indicar	una	desafortunada	acumulación	de	responsabilidades.

También	debemos	ser	capaces	de	escribir	una	breve	descripción	de	la	clase
en	 unas	 25	 palabras,	 sin	 usar	 las	 palabras	 «si»,	 «o»,	 «y»	 o	 «pero».	 ¿Cómo
describiríamos	 SuperDashboard?:	 SuperDashboard	 permite	 acceder	 al
componente	 con	 el	 enfoque	 y	 nos	 permite	 controlar	 los	 números	 de	 versión	 y
producto.	 El	 primer	 y	 indica	 que	 SuperDashboard	 tiene	 demasiadas
responsabilidades.

El	Principio	de	responsabilidad	única
El	 Principio	 de	 responsabilidad	 única	 (Single	 Responsibility	 Principle,	 SRP)[46]
indica	que	una	clase	o	módulo	debe	 tener	uno	y	 sólo	un	motivo	para	cambiar.
Este	principio	nos	indica	la	definición	de	responsabilidad	y	una	directriz	para	el
tamaño	de	la	clase.	Las	clases	sólo	deben	tener	una	responsabilidad,	un	motivo
para	cambiar.	La	clase	SuperDashboard	aparentemente	reducida	del	Listado	10-
2	tiene	dos	motivos	para	cambiar.	Primero,	controla	información	de	versión	que
supuestamente	debe	actualizarse	cada	vez	que	se	comercialice	el	software.	Por
otra	 parte,	 gestiona	 componentes	 de	 Java	 Swing	 (un	 derivado	 de	 JFrame,	 la
representación	 Swing	 de	 una	 ventana	 de	 IGU	 de	 nivel	 superior).	 Sin	 duda,
querremos	cambiar	el	número	de	versión	si	cambiamos	el	código	Swing,	pero	lo
contrario	 no	 es	 necesario:	 podríamos	 cambiar	 la	 información	 de	 versión	 en
función	 de	 los	 cambios	 de	 otro	 código	 del	 sistema.	 La	 identificación	 de
responsabilidades	(los	motivos	del	cambio)	nos	permite	reconocer	y	mejorar	las
abstracciones	 en	 nuestro	 código.	 Podemos	 extraer	 los	 tres	 métodos	 de
SuperDashboard	 relacionados	 con	 la	 información	 de	 versiones	 en	 una	 clase
independiente	como	Version	 (véase	el	Listado	10-3.)	La	clase	Version	 es	una
construcción	que	se	puede	reutilizar	en	otras	aplicaciones.

Listado	10-3
Una	clase	con	una	única	responsabilidad.

public	class	Version	{

public	int	getMajorVersionNumber()

public	int	getMinorVersionNumber()

public	int	getBuildNumber()

}

SRP	es	uno	de	los	conceptos	más	importantes	del	diseño	orientado	a	objetos
y	también	uno	de	los	más	sencillos	de	entender	y	cumplir,	pero	también	es	uno
de	los	que	más	se	abusa	al	diseñar	clases.	Habitualmente	nos	encontramos	clases
que	hacen	demasiadas	cosas.	¿Por	qué?

Crear	 software	 que	 funcione	 y	 crear	 software	 limpio	 son	 dos	 actividades
diferentes.	Muchos	tenemos	un	cerebro	limitado,	de	modo	que	nos	centramos	en
que	 el	 código	 funcione	 más	 que	 en	 su	 organización	 y	 limpieza.	 Es	 algo
totalmente	 válido.	Mantener	 objetivos	 separados	 es	 tan	 importante	 en	 nuestras
actividades	de	programación	como	en	nuestros	programas.

El	 problema	 es	 que	 muchos	 creemos	 que	 hemos	 terminado	 cuando	 el
programa	funciona.	No	cambiamos	al	otro	objetivo	de	organización	y	limpieza.
Pasamos	 al	 siguiente	 problema	 en	 lugar	 de	 retroceder	 y	 dividir	 las	 clases	 en
unidades	independientes	con	una	única	responsabilidad.

Al	mismo	tiempo,	muchos	programadores	temen	que	un	elevado	número	de
pequeñas	clases	con	un	único	propósito	dificulten	la	comprensión	del	conjunto.
Les	preocupa	que	tengan	que	desplazarse	entre	las	clases	para	determinar	cómo
funciona	un	aspecto	concreto.

Sin	 embargo,	 un	 sistema	 con	 muchas	 clases	 reducidas	 no	 tiene	 más
elementos	móviles	 que	un	 sistema	 con	 algunas	 clases	 enormes.	En	 ambos	 hay
que	entender	 lo	mismo.	La	pregunta	es	si	quiere	organizar	sus	herramientas	en
cajas	con	muchos	pequeños	cajones	que	contengan	componentes	bien	definidos
y	etiquetados,	o	usar	varios	cajones	grandes	en	los	que	mezcle	todo.

Todos	 los	 sistemas	 tienen	 una	 gran	 lógica	 y	 complejidad.	 El	 objetivo
principal	 para	 gestionar	 dicha	 complejidad	 es	 organizarla	 para	 que	 un
programador	 sepa	 dónde	 buscar	 y	 comprenda	 la	 complejidad	 directamente
afectada	 en	 cada	 momento	 concreto.	 Por	 el	 contrario,	 un	 sistema	 con	 clases
multipropósito	de	mayor	tamaño	nos	obliga	a	buscar	entre	numerosos	elementos
que	no	siempre	necesitamos	conocer.

Para	reformular	los	puntos	anteriores,	diremos	que	los	sistemas	deben	estar
formados	 por	muchas	 claves	 reducidas,	 no	 por	 algunas	 de	 gran	 tamaño.	 Cada
clase	 reducida	 encapsula	 una	 única	 responsabilidad,	 tiene	 un	 solo	motivo	 para
cambiar	 y	 colabora	 con	 algunas	 otras	 para	 obtener	 los	 comportamientos
deseados	del	sistema.

Cohesión

Las	 clases	 deben	 tener	 un	 número	 reducido	 de	 variables	 de	 instancia.	 Los
métodos	de	una	clase	deben	manipular	una	o	varias	de	dichas	variables.	Por	 lo
general,	cuantas	más	variables	manipule	un	método,	más	cohesión	tendrá	con	su
clase.	 Una	 clase	 en	 la	 que	 cada	 variable	 se	 usa	 en	 cada	 método	 tiene	 una
cohesión	máxima.

Por	lo	general,	no	es	recomendable	ni	posible	crear	este	tipo	de	clases	pero
queremos	 que	 la	 cohesión	 de	 nuestras	 clases	 sea	 elevada.	 Si	 lo	 logramos,
significa	que	los	métodos	y	variables	de	la	clase	dependen	unos	de	otros	y	actúan
como	un	todo	lógico.

Fíjese	en	la	implementación	de	Stack	en	el	Listado	10-4.	Es	una	clase	muy
consistente.	De	los	tres	métodos,	sólo	size()	no	usa	ambas	variables.

Listado	10-4
Stack.java,	una	clase	consistente.

public	class	Stack	{

private	int	topOfStack	=	0;

List<Integer>	elements	=	new	LinkedList<Integer>();

public	int	size()	{

return	topOfStack;

}

public	void	push(int	element)	{

topOfStack++;

elements.add(element);

}

public	int	pop()	throws	PoppedWhenEmpty	{

if	(topOfStack	==	0)

throw	new	PoppedWhenEmpty();

int	element	=	elements.get(--topOfStack);

elements.remove(topOfStack);

return	element;

}

}

La	 estrategia	 de	 reducir	 el	 tamaño	 de	 las	 funciones	 y	 de	 las	 listas	 de
parámetros	suele	provocar	 la	proliferación	de	variables	de	 instancia	usadas	por
un	 subconjunto	 de	 los	 métodos.	 Si	 esto	 sucede,	 siempre	 existe	 al	 menos	 una
clase	 que	 intenta	 huir	 de	 la	 clase	 de	mayor	 tamaño.	Debe	 intentar	 separar	 las
variables	 y	 métodos	 en	 dos	 o	 más	 clases	 para	 que	 las	 nuevas	 sean	 más
consistentes.

Mantener	resultados	consistentes	en	muchas	clases	de	tamaño
reducido
La	división	de	grandes	funciones	en	otras	más	pequeñas	aumenta	la	proliferación
de	 clases.	 Imagine	 una	 gran	 función	 con	 numerosas	 variables	 declaradas.
Imagine	 que	 desea	 extraer	 una	 pequeña	 parte	 de	 esa	 función	 en	 otra

independiente.	 Sin	 embargo,	 el	 código	 que	 extrae	 usa	 cuatro	 de	 las	 variables
declaradas	en	la	función.	¿Debe	pasar	las	cuatro	variables	como	argumentos	a	la
nueva	función?

En	absoluto.	Si	ascendemos	estas	cuatro	variables	a	variables	de	 instancia
de	 la	 clase,	 podremos	 extraer	 el	 código	 sin	 pasar	 las	 variables.	Resultaría	más
sencillo	dividir	la	función	en	pequeños	fragmentos.

Desafortunadamente,	 eso	 significaría	 que	 nuestras	 clases	 perderían
cohesión	ya	que	acumularían	más	y	más	variables	de	instancia	que	sólo	existen
para	 que	 otras	 funciones	 las	 compartan.	 Pero	 un	 momento.	 Si	 apenas	 existen
funciones	que	compartan	determinadas	variables,	¿no	son	entonces	una	clase	con
derecho	propio?	Por	supuesto.	Cuando	las	clases	pierdan	cohesión,	divídalas.

Por	 tanto,	 dividir	 una	 gran	 función	 en	 otras	 más	 reducidas	 también	 nos
permite	 dividir	 varias	 clases	 más	 reducidas.	 De	 este	 modo	 mejora	 la
organización	 del	 programa	 y	 su	 estructura	 resulta	 más	 transparente.	 Como
ejemplo,	 usaremos	 un	 ejemplo	 obtenido	 del	 libro	 de	 Knuth	 Literate
Programming[47].	 El	 Listado	 10-5	muestra	 una	 traducción	 a	 Java	 del	 programa
PrintPrimes	de	Knuth.	Para	hacerle	justicia,	no	es	el	programa	que	creó	sino	el
resultado	 generado	 por	 su	 herramienta	 WEB.	 Lo	 usamos	 aquí	 por	 ser	 un
magnífico	 punto	 de	 partida	 para	 dividir	 una	 función	 de	 gran	 tamaño	 en	 varias
funciones	y	clases	más	reducidas.

Listado	10-5
PrintPrimes.java

package	literatePrimes;

public	class	PrintPrimes	{

public	static	void	main(String[]	args)	{

final	int	M	=	1000;

final	int	RR	=	50;

final	int	CC	=	4;

final	int	WW	=	10;

final	int	ORDMAX	=	30;

int	P[]	=	new	int[M	+	1];

int	PAGENUMBER;

int	PAGEOFFSET;

int	ROWOFFSET;

int	C;

int	J;

int	K;

boolean	JPRIME;

int	ORD;

int	SQUARE;

int	N;

int	MULT[]	=	new	int[ORDMAX	+	1];

J	=	1;

K	=	1;

P[1]	=	2;

ORD	=	2;

SQUARE	=	9;

while	(K	<	M)	{

do	{

J	=	J	+	2;

if	(J	==	SQUARE)	{

ORD	=	ORD	+	1;

SQUARE	=	P[ORD]	*	P[ORD];

MULT[ORD	-	1]	=	J;

}

N	=	2;

JPRIME	=	true;

while	(N	<	ORD	&&	JPRIME)	{

while	(MULT[N]	<	J)

MULT[N]	=	MULT[N]	+	P[N]	+	P[N];

if	(MULT[N]	==	J)

JPRIME	=	false;

N	=	N	+	1;

}

}	while	(!JPRIME);

K	=	K	+	1;

P[K]	=	J;

}

{

PAGENUMBER	=	1;

PAGEOFFSET	=	1;

while	(PAGEOFFSET	<=	M)	{

System.out.println(“The	First	”	+	M	+

“	Prime	Numbers	---	Page	”	+	PAGENUMBER);

System.out.println(“”);

for	(ROWOFFSET	=	PAGEOFFSET;	ROWOFFSET	<	PAGEOFFSET	+	RR;	ROWOFFSET++)	{

for	(C	=	0;	C	<	CC;C++)

if	(ROWOFFSET	+	C	*	RR	<=	M)

System.out.format(“%10d”,	P[ROWOFFSET	+	C	*	RR]);

System.out.println(“”);

}

System.out.println(“\f”);

PAGENUMBER	=	PAGENUMBER	+	1;

PAGEOFFSET	=	PAGEOFFSET	+	RR	*	CC;

}

}

}

}

Este	programa,	escrito	como	una	sola	función,	es	un	desastre.	El	sangrado
de	su	estructura	es	excesivo	y	hay	demasiadas	variables	extrañas.	Como	mínimo,
la	función	debería	dividirse	en	otras	más	pequeñas.	Los	listados	del	10-6	al	10-8
muestran	la	división	del	código	del	Listado	10-5	en	clases	y	funciones	de	menor
tamaño,	 además	 de	 los	 nombres	 elegidos	 para	 dichas	 clases,	 funciones	 y
variables.

Listado	10-6
PrimePrinter.java	(refactorizado)

package	literatePrimes;

public	class	PrimePrinter	(

public	static	void	main(String[]	args)	{

final	int	NUMBER_OF_PRIME5	=	1000;

int[]	primes	=	PrimeGenerator.generate(NUMBER_OF_PRIMES);

final	int	ROWS_PER_PAGE	=	50;

final	int	COLUMNS_PER_PAGE	=	4;

RowColumnPagePrinter	tablePrinter	=

new	RowColumnPagePrinter(ROWS_PER_PAGE,

COLUMNS_PER_PAGE,

“The	First	”	+	NUMBER_OF_PRIMES	+

“	Prime	Numbers”);

tablePrinter.print(primes);

}

}

Listado	10-7
RowColumnPagePrinter.java.

package	literatePrimes;

import	java.io.PrintStream;

public	class	RowColumnPagePrinter	{

private	int	rowsPerPage;

private	int	columnsPerPage;

private	int	numbersPerPage;

private	String	pageHeader;

private	PrintStream	printStream;

public	RowColumnPagePrinter(int	rowsPerPage,

int	columnsPerPage,

String	pageHeader)	{

this.rowsPerPage	=	rowsPerPage;

this.columnsPerPage	=	columnsPerPage;

this.pageHeader	=	pageHeader;

numbersPerPage	=	rowsPerPage	*	columnsPerPage;

printStream	=	System.out;

}

public	void	print(int	data[])	{

int	pageNumber	=	1;

for	(int	firstIndexOnPage	=	0;

firstIndexOnPage	<	data.length;

firstIndexOnPage	+=	numbersPerPage)	{

int	lastIndexOnPage	=

Math.min(firstIndexOnPage	+	numbersPerPage	-	1,

data.length	-	1);

printPageHeader(pageHeader,	pageNumber);

printPage(firstIndexOnPage,	lastIndexOnPage,	data);

printStream.println(“\f”);

pageNumber++;

}

}

private	void	printPage	(int	firstIndexOnPage,

int	lastIndexOnPage,

int[]	data)	{

int	firstIndexOfLastRowOnPage	=

firstIndexOnPage	+	rowsPerPage	-	1;

for	(int	firstIndexInRow	=	firstIndexOnPage;

firstIndexInRow	<=	firstIndexOfLastRowOnPage;

firstIndexInRow++)	{

printRow(firstIndexInRow,	lastIndexOnPage,	data);

printStream.println(“”);

}

}

private	void	printRow(int	firstIndexInRow,

int	lastIndexOnPage,

int[]	data)	{

for	(int	column	=	0;	column	<	columnsPerPage;	column++)	{

int	index	=	firstIndexInRow	+	column	*	rowsPerPage;

if	(index	<=	lastIndexOnPage)

printStream.format(“%10d”,	data[index]);

}

}

private	void	printPageHeader(String	pageHeader,

int	pageNumber)	{

printStream.println(pageHeader	+	“	---	Page	”	+	pageNumber);

printStream.println(“”);

}

public	void	setOutput(PrintStream	printStream)	{

this.printStream	=	printStream;

}

}

Listado	10-8
PrimeGenerator.java

package	literatePrimes;

import	java.util.ArrayList;

public	class	PrimeGenerator	{

private	static	int[]	primes;

private	static	ArrayList<Integer>	multiplesOfPrimeFactors;

protected	static	int[]	generate(int	n)	{

primes	=	new	int[n];

multiplesOfPrimeFactors	=	new	ArrayList<Integer>();

set2AsFirstPrime();

checkOddNumbersForSubsequentPrimes();

return	primes;

}

private	static	void	set2AsFirtsPrime()	{

primes[0]	=	2;

multiplesOfPrimeFactors.add(2);

}

private	static	void	checkOddNumbersForSubsequentPrimes()	{

int	primeIndex	=	1;

for	(int	candidate	=	3;

primeIndex	<	primes.length;

candidate	+=	2)	{

if	(isPrime(candidate))

primes[primeIndex++]	=	candidate;

}

}

private	static	boolean	isPrime(int	candidate)	{

if	(isLeastRelevantMultipleOfNextLargerPrimeFactor(candidate))	{

multiplesOfPrimeFactors.add(candidate);

return	false;

}

return	isNotMultipleOfAnyPreviousPrimeFactor(candidate);

}

private	static	boolean

isLeastRelevantMultipleOfNextLargerPrimeFactor(int	candidate)	{

int	nextLargerPrimeFactor	=	primes[multiplesOfPrimeFactors.size()];

int	leastRelevantMultiple	=	nextLargerPrimeFactor	*	nextLargerPrimeFactor;

return	candidate	==	leastRelevantMultiple;

}

private	static	boolean

isNotMultipleOfAnyPreviousPrimeFactor(int	candidate)	{

for	(int	n	=	1;	n	<	multiplesOfPrimeFactors.size();	n++)	{

if	(isMultipleOfNthPrimeFactor(candidate,	n))

return	false;

}

return	true;

}

private	static	boolean

isMultipleOfNthPrimeFactor(int	candidate,	int	n)	{

return

candidate	==	smallestOddNthMultipleNotLessThanCandidate(candidate,	n);

}

private	static	int

smallestOddNthMultipleNotLessThanCandidate(int	candidate,	int	n)	{

int	multiple	=	multiplesOfPrimeFactors.get(n);

while	(multiple	<	candidate)

multiple	+=	2	*	primes[n];

multiplesOfPrimeFactors.set(n,	multiple);

return	multiple;

}

}

Lo	primero	que	apreciará	es	que	ha	aumentado	la	longitud	del	programa,	de
una	a	casi	tres	páginas.	Este	aumento	se	debe	a	varios	motivos.	En	primer	lugar,
el	programa	refactorizado	usa	nombres	de	variable	más	extensos	y	descriptivos.
Por	 otra	 parte,	 usa	 declaraciones	 de	 funciones	 y	 clases	 como	 comentarios	 del
código.	 Por	 último,	 usamos	 espacios	 en	 blanco	 y	 técnicas	 de	 formato	 para
mantener	la	legibilidad.

El	programa	se	ha	dividido	en	 tres	 responsabilidades	principales.	La	parte
principal	 se	 incluye	 en	 la	 clase	 PrimePrinter,	 responsable	 de	 controlar	 el
entorno	 de	 ejecución.	 Cambia	 si	 se	 modifica	 el	 método	 de	 invocación.	 Por
ejemplo,	 si	 este	 programa	 se	 convierte	 en	un	 servicio	SOA,	 es	 la	 clase	que	 se

verá	afectada.
RowColumnPagePrinter	sabe	cómo	aplicar	formato	a	una	lista	de	números

con	 una	 determinada	 cantidad	 de	 filas	 y	 columnas.	 Si	 es	 necesario	 cambiar	 el
formato	del	resultado,	es	la	clase	que	se	verá	afectada.

La	clase	PrimeGenerator	sabe	cómo	generar	una	lista	de	números	primos.
No	se	creará	una	instancia	como	objeto.	La	clase	es	sólo	un	ámbito	útil	en	el	que
declarar	 y	 ocultar	 sus	 variables.	Esta	 clase	 cambia	 si	 se	modifica	 el	 algoritmo
para	 calcular	 números	 primos.	 No	 hemos	 reescrito	 el	 programa.	 No	 hemos
empezado	 de	 cero	 y	 los	 hemos	 vuelto	 a	 diseñar.	 En	 realidad,	 si	 se	 fija
atentamente	 en	 los	 dos	 programas,	 verá	 que	 usan	 los	 mismos	 algoritmos	 y
mecanismos.

El	 cambio	 se	 ha	 realizado	 creando	 una	 suite	 de	 pruebas	 que	 verifican	 el
comportamiento	 preciso	 del	 primer	 programa.	 Tras	 ello,	 se	 aplican	 numerosos
cambios	mínimos,	de	uno	en	uno.	Tras	cada	cambio,	se	ejecuta	el	programa	para
garantizar	que	el	comportamiento	no	varía.	Paso	a	paso,	el	primer	programa	se
limpia	y	se	transforma	en	el	segundo.

Organizar	los	cambios

En	muchos	sistemas,	el	cambio	es	continuo.	Cada	cambio	supone	un	riesgo	de
que	el	resto	del	sistema	no	funcione	de	la	forma	esperada.	En	un	sistema	limpio
organizamos	las	clases	para	reducir	los	riesgos	de	los	cambios.

La	clase	Sql	del	Listado	10-9	 se	usa	para	generar	cadenas	SQL	de	 forma
correcta	 con	 los	metadatos	 adecuados.	 Es	 un	 trabajo	 continuo	 y,	 como	 tal,	 no
admite	 funciones	 SQL	 como	 instrucciones	 update.	 Cuando	 la	 clase	 Sql	 tenga
que	 admitir	 una	 instrucción	 update,	 tendremos	 que	 abrirla	 para	 realizar
modificaciones.	 El	 problema	 de	 abrir	 una	 clase	 es	 el	 riesgo	 que	 conlleva.
Cualquier	modificación	puede	afectar	a	otro	código	de	 la	clase.	Debe	probarse
concienzudamente.

Listado	10-9
Clase	que	debemos	abrir	para	realizar	cambios.

public	class	Sql	{

public	Sql(String	table,	Column[]	columns)

public	String	create()

public	String	insert(Object[]	fields)

public	String	selectAll()

public	String	findByKey(String	keyColumn,	String	keyValue)

public	String	select(Column	column,	String	pattern)

public	String	select(Criteria	criteria)

public	String	preparedInsert()

private	String	columnList(Column[]	columns)

private	String	valuesList(Object[]	fields,	final	Column[]	columns)

private	String	selectWithCriteria(String	criteria)

private	String	placeholderList(Column[]	columns)

}

La	clase	Sql	debe	cambiar	al	añadir	un	nuevo	tipo	de	instrucción.	También
debe	cambiar	 cuando	variemos	 los	detalles	de	un	 tipo	de	 instrucción	concreto;
por	 ejemplo,	 si	 tenemos	 que	 modificar	 la	 funcionalidad	 select	 para	 admitir
selecciones	secundarias.	Estos	dos	motivos	de	cambio	significan	que	la	clase	Sql
incumple	SRP.

Podemos	 detectar	 este	 incumplimiento	 desde	 un	 punto	 de	 vista
organizativo.	 El	 método	 outline	 de	 Sql	 muestra	 que	 hay	 métodos	 privados,
como	 selectWithCriteria,	 que	 parecen	 relacionarse	 únicamente	 con
instrucciones	select.

El	 comportamiento	 de	 métodos	 privados	 aplicados	 a	 un	 pequeño
subconjunto	de	una	clase	puede	 ser	una	heurística	útil	 para	detectar	 zonas	que
mejorar.	Sin	embargo,	 la	verdadera	razón	debe	ser	el	cambio	del	sistema.	Si	 la
clase	Sql	se	considera	totalmente	lógica,	no	debemos	preocuparnos	por	separar
las	 responsabilidades.	 Si	 no	 necesitamos	 funcionalidad	 de	 actualización	 en	 el
futuro,	 podemos	 olvidarnos	 de	 Sql.	 Pero	 si	 tenemos	 que	 abrir	 una	 clase,
debemos	corregir	el	diseño.

¿Y	si	optamos	por	una	solución	como	 la	del	Listado	10-10?	Los	métodos
públicos	de	 interfaz	definidos	en	Sql	 en	el	Listado	10-9	 se	 refactorizan	en	 sus
propias	variantes	de	 la	clase	Sql.	Los	métodos	privados,	como	valuesList,	 se
mueven	directamente	a	las	posiciones	necesarias.	El	comportamiento	privado	se
reduce	a	un	par	de	clases	de	utilidad:	Where	y	ColumnList.

Listado	10-10
Un	grupo	de	clases	cerradas.

Abstract	public	class	Sql	{

public	Sql(String	table,	Column[]	columns)

abstract	public	String	generate();

}

public	class	CreateSql	extends	Sql	{

public	CreateSql(String	table,	Column[]	columns)

@Override	public	String	generate()

}

public	class	SelectSql	extends	Sql	{

public	SelectSql(String	table,	Column[]	columns)

@Override	public	String	generate()

}

public	class	InsertSql	extends	Sql	{

public	SelectSql(String	table,	Column[]	columns,	Object[]	fields)

@Override	public	String	generate()

private	String	valuesList(Object[]	fields,	final	Column[]	columns)

}

public	class	SelectWithCriteriaSql	extends	Sql	{

public	SelectWithCriteriaSql(

String	table,	Column[]	columns,	Criteria	criteria)

@Override	public	String	generate()

}

public	class	SelectWithMatchSql	extends	Sql	{

public	SelectWithMatchSql(

String	table,	Column[]	columns,	Column	column,	String	pattern)

@Override	public	String	generate()

}

public	class	FindByKeySql	extends	Sql	{

public	FindByKeySql(

String	table,	Column[]	columns,	String	keyColumn,	String	keyValue)

@Override	public	String	generate()

}

public	class	PreparedInsertSql	extends	Sql	{

public	PreparedInsertSql(String	table,	Column[]	columns)

@Override	public	String	generate()

private	String	placeholderList(Column[]	columns)

}

public	class	Where	{

public	Where(String	criteria)

public	String	generate()

}

public	class	ColumnList	{

public	ColumnList(Column[]	columns)

public	String	generate()

}

El	 código	 de	 cada	 clase	 se	 simplifica	 enormemente.	 El	 tiempo	 necesario
para	entender	las	clases	se	reduce	al	mínimo.	El	riesgo	de	que	una	función	afecte
a	 otra	 desaparece	 casi	 por	 completo.	 Desde	 el	 punto	 de	 vista	 de	 las	 pruebas,
resulta	más	sencillo	probar	la	lógica	de	esta	solución,	ya	que	las	clases	se	aíslan
unas	de	otras.

Además,	cuando	llegue	el	momento	de	añadir	las	instrucciones	update,	no
cambia	 ninguna	 de	 las	 clases	 existentes.	 Añadimos	 la	 lógica	 para	 generar
instrucciones	update	a	una	nueva	subclase	de	Sql,	UpdateSql.	Este	cambio	no
afecta	a	otro	código	del	sistema.

Nuestra	 lógica	 Sql	 reestructurada	 representa	 lo	mejor	 de	 ambos	mundos.
Cumple	 con	 SRP	 y	 también	 con	 otro	 principio	 clave	 del	 diseño	 de	 clases
orientadas	 a	 objetos,	 denominado	 Principio	 abierto/cerrado[48]:	 las	 clases	 deben
abrirse	 para	 su	 ampliación	 para	 cerrarse	 para	 su	modificación.	 La	 nueva	 clase
Sql	 se	 abre	 a	 nuevas	 funcionalidades	 mediante	 la	 creación	 de	 subclases	 pero
podemos	realizar	estos	cambios	y	mantener	cerradas	las	demás	clases.	Basta	con
añadir	nuestra	clase	UpdateSql.

Debemos	 estructurar	 nuestros	 sistemas	 para	 ensuciarlos	 lo	menos	 posible
cuando	los	actualicemos	con	nuevas	funciones	o	cambios.	En	un	sistema	ideal,
incorporamos	 nuevas	 funciones	 ampliándolo,	 no	 modificando	 el	 código
existente.

Aislarnos	de	los	cambios
Las	 necesidades	 cambiarán	 y	 también	 lo	 hará	 el	 código.	 En	 la	 programación
orientada	a	objetos	aprendemos	que	hay	clases	concretas	que	contienen	detalles

de	 implementación	 (el	 código)	 y	 clases	 abstractas	 que	 sólo	 representan
conceptos.	Una	clase	cliente	que	dependa	de	detalles	concretos	está	en	peligro	si
dichos	detalles	 cambian.	Podemos	 recurrir	 a	 interfaces	y	clases	 abstractas	para
aislar	el	impacto	de	dichos	detalles.

Las	dependencias	de	detalles	de	concretos	crean	retos	para	nuestro	sistema.
Si	 tenemos	 que	 crear	 la	 clase	 Portfolio	 y	 ésta	 depende	 de	 una	 API
TokyoStockExchange	externa	para	obtener	su	valor,	nuestros	casos	de	prueba	se
verán	 afectados	 por	 la	 volatilidad	 de	 esta	 búsqueda.	 Resulta	 complicado	 crear
una	 prueba	 cuando	 se	 obtiene	 una	 respuesta	 diferente	 cada	 cinco	minutos.	 En
lugar	 de	 diseñar	 Portfolio	 para	 que	 dependa	 directamente	 de
TokyoStockExchange,	 creamos	 una	 interfaz,	 StockExchange,	 que	 declara	 un
único	método:	public	Interface	StockExchange	{

Money	currentPrice(String	symbol);

}

Diseñamos	TokyoStockExchange	 para	 implementar	 esta	 interfaz.	También
nos	aseguramos	de	que	el	constructor	de	Portfolio	adopte	como	argumento	una
referencia	a	StockExchange:

public	Portfolio	{

private	StockExchange	exchange;

public	Portfolio(StockExchange	exchange)	{

this.exchange	=	exchange;

}

//…

}

Ahora	 la	 prueba	 puede	 crear	 una	 implementación	 de	 la	 interfaz
StockExchange	 que	 emule	 TokyoStockExchange.	 Esta	 implementación	 de
prueba	fijará	el	valor	actual	del	símbolo	que	usemos	en	la	prueba.

Si	nuestra	prueba	demuestra	la	adquisición	de	cinco	acciones	de	Microsoft
para	nuestra	cartera	de	valores,	diseñe	el	código	de	la	implementación	de	prueba
para	 que	 siempre	 devuelva	 100	 dólares	 por	 acción	 de	 Microsoft.	 Nuestra
implementación	de	prueba	de	la	interfaz	StockExchange	se	reduce	a	una	sencilla
búsqueda	de	tabla.	De	este	modo	podemos	crear	una	prueba	que	espere	un	valor
de	cartera	total	de	500	dólares:	public	class	PortfolioTest	{

private	FixedStockExchangeStub	exchange;

private	Portfolio	portfolio;

@Before

protected	void	setUp()	throws	Exception	{

exchange	=	new	FixedStockExchangeStub();

exchange.fix(“MSFT”,	100);

portfolio	=	new	Portfolio(exchange);

}

@Test

public	void	GivenFiveMSFTTotalShouldBe500()	throws	Exception	{

portfolio.add(5,	“MSFT”);

Assert.assertEquals(500,	portfolio.value());

}

}

Si	 diseccionamos	 un	 sistema	para	 poder	 probarlo	 de	 esta	 forma,	 resultará

más	 flexible	y	 se	podrá	 reutilizar.	La	ausencia	de	conexiones	 significa	que	 los
elementos	del	sistema	se	aíslan	entre	ellos	y	de	otros	cambios.	Este	aislamiento
hace	que	comprendamos	mejor	los	elementos	del	sistema.

Al	minimizar	 las	 conexiones	 de	 esta	 forma,	 nuestras	 clases	 cumplen	 otro
principio	 de	 diseño:	 Dependency	 Inversion	 Principle	 (DIP)	 o	 Principio	 de
inversión	 de	 dependencias[49].	 Básicamente	 afirma	 que	 nuestras	 clases	 deben
depender	de	abstracciones,	no	de	detalles	concretos.

En	 lugar	 de	 depender	 de	 los	 detalles	 de	 implementación	 de	 la	 clase
TokyoStockExchange,	 nuestra	 clase	 Portfolio	 depende	 de	 la	 interfaz
StockExchange,	que	representa	el	concepto	abstracto	de	solicitar	el	precio	actual
de	una	acción.	Esta	abstracción	aísla	todos	los	datos	concretos	de	la	obtención	de
dicho	precio,	incluyendo	de	dónde	se	obtiene.

Bibliografía
	

[RDD]:	 Object	 Design:	 Roles,	 Responsibilities,	 and	 Collaborations,
Rebecca	Wirfs-Brock	et	al.,	Addison-Wesley,	2002.
[PPP]:	Agile	 Software	 Development:	 Principles,	 Patterns,	 and	 Practices,
Robert	C.	Martin,	Prentice	Hall,	2002.
[Knuth92]:	Literate	Programming,	Donald	E.	Knuth,	Center	for	the	Study
of	language	and	Information,	Leland	Stanford	Junior	University,	1992.

11
Sistemas

por	el	Dr.	Kevin	Dean	Wampler

«La	complejidad	es	letal.	Acaba	con	los	desarrolladores	y	dificulta
la	planificación,	generación	y	pruebas	de	los	productos».

—Ray	Ozzie,	CTO,	Microsoft	Corporation

Cómo	construir	una	ciudad

¿Podría	encargarse	de	todos	los	detalles	por	su	cuenta?	Seguramente	no.	Incluso
la	gestión	de	una	ciudad	existente	sería	demasiado	para	una	sola	persona.	Y	aun
así,	 las	 ciudades	 funcionan	 (en	 la	 mayoría	 de	 los	 casos).	 Funcionan	 porque
tienen	equipos	que	controlan	partes	concretas	de	 la	ciudad,	el	alcantarillado,	 la
red	eléctrica,	el	tráfico,	la	seguridad,	las	normativas	urbanísticas,	etc.	Algunos	se
encargan	de	aspectos	generales	y	otros	se	centran	en	los	detalles.

Las	ciudades	también	funcionan	porque	disponen	de	evolucionados	niveles
de	abstracción	y	modularidad	que	permiten	a	individuos	y	componentes	trabajar
de	forma	eficaz,	sin	necesidad	de	entender	el	trasfondo	general.

Aunque	 los	 equipos	 de	 software	 se	 suelen	 organizar	 de	 esta	 forma,	 los
sistemas	 en	 los	 que	 trabajan	 no	 suelen	 contar	 con	 la	 misma	 separación	 de
aspectos	y	niveles	 de	 abstracción.	En	 este	 capítulo	veremos	 cómo	mantener	 la
limpieza	en	niveles	superiores	de	abstracción,	en	el	sistema.

Separar	la	construcción	de	un	sistema	de	su	uso

En	 primer	 lugar,	 recuerde	 que	 la	 construcción	 es	 un	 proceso	muy	 diferente	 al
uso.	Mientras	escribo	estas	líneas,	a	través	de	la	ventana	veo	un	nuevo	hotel	en
construcción	en	Chicago.	Hoy	instalarán	una	gran	grúa.	Todos	los	obreros	llevan
casco.	 Dentro	 de	 un	 año	 habrán	 acabado	 el	 hotel.	 La	 grúa	 desaparecerá.	 El
edificio	 estará	 terminado,	 con	 su	 reluciente	 fachada	 de	 cristal	 y	 su	 atractiva
decoración.	La	gente	que	trabajará	en	él	también	será	diferente.

Los	sistemas	de	software	deben	separar	el	proceso	de	 inicio,	en	el	que	se
crean	 los	 objetos	 de	 la	 aplicación	 y	 se	 conectan	 las	 dependencias,	 de	 la
lógica	de	ejecución	que	toma	el	testigo	tras	el	inicio.

El	proceso	de	inicio	es	un	aspecto	que	toda	aplicación	debe	abordar.	Es	el
primero	que	veremos	en	este	capítulo.	La	separación	de	aspectos	es	una	de	 las
técnicas	de	diseño	más	antiguas	e	importantes	de	nuestra	profesión.

Desafortunadamente,	 muchas	 aplicaciones	 no	 lo	 hacen.	 El	 código	 del
proceso	de	 inicio	 se	mezcla	 con	 la	 lógica	 de	 tiempo	de	 ejecución.	Veamos	un
ejemplo	típico:

public	Service	getService()	{

if	(service	==	null)

service	=	new	MyServiceImpl	(…);	//¿Lo	bastante	predeterminado	para	la	mayoría	de	los	casos?

return	service;

}

Es	 la	 técnica	 de	 inicialización/evaluación	 tardía	 y	 tiene	 sus	 méritos.	 No
incurrimos	 en	 la	 sobrecarga	 de	 la	 construcción	 a	menos	 que	 usemos	 el	 objeto
realmente,	 y	 como	 resultado	 el	 tiempo	 de	 inicio	 se	 puede	 acelerar.	 También
evitamos	que	se	devuelva	null.

Sin	embargo,	ahora	tenemos	una	dependencia	en	MyServiceImpl	y	todo	lo
que	su	constructor	requiere	(que	he	omitido).	No	podemos	compilar	sin	resolver
estas	dependencias,	 aunque	nunca	usemos	un	objeto	de	 este	 tipo	 en	 tiempo	de
ejecución.

Las	 pruebas	 también	 pueden	 ser	 un	 problema.	 Si	 MyServiceImpl	 es	 un
objeto	 pesado,	 tendremos	 que	 asegurarnos	 de	 asignar	 el	 correspondiente	 test
double[50]	u	objeto	simulado	al	campo	de	servicio	antes	de	invocar	este	método	en
las	 pruebas	 de	 unidad.	 Como	 la	 lógica	 de	 la	 construcción	 se	 mezcla	 con	 el
procesamiento	normal	de	tiempo	de	ejecución,	debemos	probar	todas	las	rutas	de
ejecución	 (como	 la	 prueba	 null	 y	 su	 bloque).	 Al	 contar	 con	 ambas
responsabilidades,	 el	método	hace	más	de	una	cosa,	por	 lo	que	 se	 incumple	el
principio	de	responsabilidad	única.

Lo	peor	de	todo	es	que	no	sabemos	si	MyServiceImpl	es	el	objeto	correcto
en	 todos	 los	 casos.	 ¿Por	 qué	 la	 clase	 con	 este	 método	 tiene	 que	 conocer	 el
contexto	global?	¿Podemos	saber	 realmente	cuál	es	el	objeto	correcto	que	usar
aquí?	 ¿Es	 posible	 que	 un	mismo	 tipo	 sea	 el	 correcto	 para	 todos	 los	 contextos
posibles?

Un	 caso	 de	 inicialización	 tardía	 no	 es	 un	 problema	 serio.	 Sin	 embargo,
suele	haber	muchos	casos	de	este	tipo	de	configuración	en	las	aplicaciones.	Por
tanto,	 la	 estrategia	 de	 configuración	 global	 (si	 existe)	 se	 disemina	 por	 la
aplicación,	sin	apenas	modularidad	y	con	una	significativa	duplicación.

Si	somos	diligentes	sobre	el	diseño	de	sistemas	robustos	y	bien	formados,
no	 debemos	 permitir	 fallos	 de	 modularidad.	 El	 proceso	 de	 inicio	 de	 la
construcción	y	conexión	de	objetos	no	es	una	excepción.	Debemos	modularizar
este	proceso	y	asegurarnos	de	contar	con	una	estrategia	global	y	coherente	para
resolver	las	dependencias	principales.

Separar	Main
Una	 forma	 de	 separar	 la	 construcción	 del	 uso	 consiste	 en	 trasladar	 todos	 los
aspectos	de	la	construcción	a	main	o	a	módulos	invocados	por	main,	y	diseñar	el
resto	 del	 sistema	 suponiendo	 que	 todos	 los	 objetos	 se	 han	 creado	 y	 conectado
correctamente	(véase	la	figura	11.1).

El	 flujo	 de	 control	 es	 fácil	 de	 seguir.	 La	 función	 main	 crea	 los	 objetos
necesarios	para	el	sistema,	los	pasa	a	la	aplicación	y	ésta	los	utiliza.	Verá	que	las
flechas	 de	 dependencia	 atraviesan	 la	 barrera	 entre	main	 y	 la	 aplicación.	Todas
van	en	la	misma	dirección,	alejándose	de	main,	lo	que	significa	que	la	aplicación
no	 tiene	 conocimiento	 de	 main	 ni	 del	 proceso	 de	 construcción.	 Simplemente
espera	que	todo	se	haya	construido	correctamente.

Figura	11.1.	Separación	de	la	construcción	en	main().

Factorías
En	 ocasiones,	 la	 aplicación	 tendrá	 que	 ser	 responsable	 de	 la	 creación	 de	 un
objeto.	Por	 ejemplo,	 en	un	 sistema	de	procesamiento	de	pedidos,	 la	 aplicación
debe	crear	 las	 instancias	LineItem	 que	añadir	 a	Order.	En	este	 caso,	podemos
usar	el	patrón	de	factoría	abstracta[51]	para	que	la	aplicación	controle	cuándo	crear
LineItem,	pero	mantener	los	detalles	de	dicha	construcción	separados	del	código
de	la	aplicación	(véase	la	figura	11.2).

De	nuevo	vemos	que	todas	las	dependencias	se	desplazan	desde	main	a	 la
aplicación	OrderProcessing,	lo	que	significa	que	la	aplicación	se	desconecta	de
los	 detalles	 de	 creación	 de	 LineItem.	 Esta	 capacidad	 se	 incluye	 en
LineItemFactoryImplementation,	 en	 el	 extremo	 main	 de	 la	 línea.	 Y	 sin
embargo,	 la	 aplicación	 tiene	 control	 total	 sobre	 cuándo	 se	 crean	 las	 instancias
LineItem	e	incluso	puede	proporcionar	argumentos	de	constructor	específicos	de
la	aplicación.

Figura	11.2.	Separación	de	la	construcción	con	una	factoría.

Inyectar	dependencias
Un	potente	mecanismo	para	 separar	 la	construcción	del	uso	es	 la	 Inyección	de
dependencias,	la	aplicación	de	Inversión	de	control	(Inversion	of	Control	o	IoC)
a	 la	 administración	 de	 dependencias[52].	 La	 Inversión	 de	 control	 pasa
responsabilidades	secundarias	de	un	objeto	a	otros	dedicados	a	ese	cometido,	por
lo	 que	 admite	 el	 principio	 de	 responsabilidad	 única.	 En	 el	 contexto	 de	 la
administración	de	dependencias,	un	objeto	no	debe	ser	responsable	de	instanciar
dependencias,	 sino	 que	 debe	 delegar	 esta	 responsabilidad	 en	 otro	 mecanismo
autorizado,	 de	 modo	 que	 se	 invierte	 el	 control.	 Como	 la	 configuración	 es	 un
aspecto	 global,	 este	 mecanismo	 autorizado	 suele	 ser	 la	 rutina	 main	 o	 un
contenedor	de	propósito	especial.

Las	 búsquedas	 JNDI	 son	 una	 implementación	 parcial	 de	 la	 inyección	 de
dependencias,	 en	 las	 que	 un	 objeto	 solicita	 a	 un	 servidor	 de	 directorios	 un
servicio	que	coincida	con	un	nombre	concreto.

MyService	myService	=	(MyService)(jndiContext.lookup(“NameOfMyService”));

El	 objeto	 invocador	 no	 controla	 el	 tipo	 de	 objeto	 devuelto	 (siempre	 que
implemente	 la	 interfaz	 correcta,	 evidentemente),	 pero	 es	 el	 que	 resuelve	 la
dependencia	de	forma	activa.

La	verdadera	 inyección	de	dependencias	va	un	paso	más	allá.	La	clase	no
hace	nada	directamente	para	resolver	sus	dependencias,	es	totalmente	pasiva.	Por
el	contrario,	ofrece	métodos	de	establecimiento	o	argumentos	de	constructor	(o
ambos)	 que	 se	 usan	 para	 inyectar	 las	 dependencias.	 En	 el	 proceso	 de

construcción,	el	contenedor	de	inyección	de	dependencias	crea	instancias	de	los
objetos	 necesarios	 (normalmente	 bajo	 demanda)	 y	 usa	 los	 argumentos	 de
constructor	 o	 métodos	 de	 establecimiento	 proporcionados	 para	 conectar	 las
dependencias.	Los	objetos	dependientes	empleados	suelen	especificarse	a	través
de	 un	 archivo	 de	 configuración	 o	 mediante	 programación	 en	 un	 módulo	 de
construcción	de	propósito	especial.

La	 estructura	 Spring	 proporciona	 el	 contenedor	 de	 inyección	 de
dependencias	más	 conocido	 para	 Java[53].	 Los	 objetos	 que	 se	 van	 a	 conectar	 se
definen	 en	 un	 archivo	 de	 configuración	 XML	 y	 después	 se	 solicitan	 objetos
concretos	por	nombre	en	código	de	Java.	Veremos	un	ejemplo	en	breve.

¿Y	qué	sucede	con	las	virtudes	de	la	inicialización	tardía?	En	ocasiones	es
útil	 con	 la	 inyección	 de	 dependencias.	 Por	 un	 lado,	 muchos	 contenedores	 de
inyección	de	dependencias	no	crean	un	objeto	hasta	que	es	necesario.	Por	otra
parte,	 muchos	 de	 estos	 contenedores	 cuentan	 con	 mecanismos	 para	 invocar
factorías	 o	 crear	 proxies	 que	 se	 pueden	 usar	 para	 evaluación	 tardía	 y
optimizaciones	similares[54].

Evolucionar

Las	 ciudades	 nacen	 de	 pueblos,	 que	 nacen	 de	 asentamientos.	 Inicialmente,	 los
caminos	 son	 estrechos	 y	 prácticamente	 inexistentes,	 después	 se	 asfaltan	 y
aumentan	de	tamaño.

Los	 pequeños	 edificios	 y	 solares	 vacíos	 se	 llenan	 de	 otros	 mayores	 que
acaban	convirtiéndose	en	rascacielos.	Al	principio	no	hay	servicios,	electricidad,
agua,	 alcantarillado	 o	 Internet	 (¡vaya!).	 Estos	 servicios	 se	 añaden	 cuando
aumenta	la	densidad	de	población.

Este	 crecimiento	 no	 es	 fácil.	 Cuántas	 veces	 mientras	 conduce	 por	 una
carretera	llena	de	baches	y	ve	una	señal	de	obras	no	se	ha	preguntado	por	qué	no
la	hicieron	más	ancha	desde	un	principio.

No	se	podía	haber	hecho	de	otra	forma.	¿Quién	puede	justificar	el	gasto	en
una	autopista	de	seis	carriles	que	atraviese	un	pequeño	pueblo	como	anticipación
a	un	supuesto	crecimiento?	¿Quién	querría	una	autopista	así	en	su	ciudad?

Conseguir	 sistemas	 perfectos	 a	 la	 primera	 es	 un	 mito.	 Por	 el	 contrario,
debemos	implementar	hoy,	y	refactorizar	y	ampliar	mañana.	Es	la	esencia	de	la
agilidad	 iterativa	 e	 incremental.	 El	 desarrollo	 controlado	 por	 pruebas,	 la
refactorización	 y	 el	 código	 limpio	 que	 generan	 hace	 que	 funcione	 a	 nivel	 del
código.

¿Pero	qué	sucede	en	el	nivel	del	 sistema?	¿La	arquitectura	del	 sistema	no

requiere	 una	 planificación	 previa?	 Sin	 duda	 no	 puede	 aumentar
incrementalmente	algo	sencillo	a	algo	complejo,	¿o	sí?

Los	 sistemas	 de	 software	 son	 únicos	 si	 los	 comparamos	 con	 los	 sistemas
físicos.	Sus	arquitecturas	pueden	crecer	 incrementalmente,	si	mantenemos
la	correcta	separación	de	los	aspectos.

La	 naturaleza	 efímera	 de	 los	 sistemas	 de	 software	 hace	 que	 sea	 posible,
como	 veremos.	 Primero	 nos	 centraremos	 en	 una	 arquitectura	 que	 no	 separa
correctamente	 los	 aspectos.	 Las	 arquitecturas	 EJB1	 y	 EJB2	 originales	 no
separaban	correctamente	los	aspectos	y	por	tanto	imponían	barreras	innecesarias
al	 crecimiento	 orgánico.	 Imagine	 un	 bean	 de	 entidad	 para	 una	 clase	 Bank
persistente.	 Un	 bean	 de	 entidad	 es	 una	 representación	 en	 memoria	 de	 datos
relacionales,	es	decir,	una	fila	de	una	tabla.

Primero,	 debe	 definir	 una	 interfaz	 local	 (en	 proceso)	 o	 remota	 (MVJ
independiente),	que	los	clientes	usen.	El	Listado	1-1	muestra	una	posible	interfaz
local:

Listado	11-1
Una	interfaz	local	EJB2	para	el	EJB	Bank.

package	com.example.banking;

import	java.util.Collections;

import	javax.ejb.*;

public	interface	BankLocal	extends	java.ejb.EJBLocalObject	{

String	getStreetAddrl{}	throws	EJBException;

String	getStreetAddr2{}	throws	EJBException;

String	getCity()	throws	EJBException;

String	getState()	throws	EJBException;

String	getZipCode()	throws	EJBException;

void	setStreetAddr1(String	street1)	throws	EJBException;

void	setStreetAddr2(String	street2)	throws	EJBException;

void	setCity(String	city)	throws	EJBException;

void	setState(String	state)	throws	EJBException;

void	setZipCode(String	zip)	throws	EJBException;

Collection	getAccounts()	throws	EJBException;

void	setAccounts(Collection	accounts)	throws	EJBException;

void	addAccount(AccountDTO	accountDTO)	throws	EJBException;

}

Mostramos	 diversos	 atributos	 de	 la	 dirección	 de	Bank	 y	 una	 colección	 de
cuentas	del	banco,	cuyos	datos	se	procesarán	por	un	EJB	Account	diferente.	El
Listado	11-2	muestra	la	correspondiente	clase	de	implementación	del	bean	Bank.

Listado	11-2
Implementación	del	bean	de	entidad	EJB2.

package	com.example.banking;

import	java.util.Collections;

import	javax.ejb.*;

public	abstract	class	Bank	implements	javax.ejb.EntityBean	{

//	Lógica	empresarial…

public	abstract	String	getStreerAddr1();

public	abstract	String	getStreetAddr2();

public	abstract	String	getCity();

public	abstract	String	getState();

public	abstract	String	getZipCode();

public	abstract	void	setStreetAddr1(String	street1);

public	abstract	void	setStreetAddr2(String	street2);

public	abstract	void	setcity(String	city);

public	abstract	void	setState(String	state);

public	abstract	void	setZipCode(String	zip);

public	abstract	Collection	getAccounts();

public	abstract	void	setAccounts(Collection	accounts);

public	void	addAccount(AccountPTO	accountDTO)	{

InitialContext	context	=	new	InitialContext();

AccountHomeLocal	accountHome	=	context.lookup(“AccountHomeLocal”);

AccountLocal	account	=	accountHome.create(accountDTO);

Collection	accounts	=	getAccounts();

accounts.add(account);

}

//	Lógica	del	contenedor	EJB

public	abstract	void	setId(Integer	id);

public	abstract	Integer	getId();

public	Integer	ejbCreate(Integer	id)	{…}

public	void	ejbPostCreate(Integer	id)	{…}

//	El	resto	tendría	que	implementarse	pero	se	deja	vacío:

public	void	setEntityContext(EntityContext	ctxt)	{}

public	void	unsetEntityContext()	{}

public	void	ejbActivate()	{}

public	void	ejbPassivate()	{}

public	void	ejbLoad()	{}

public	void	ejbStore()	{}

public	void	ejbRemove()	{}

}

No	 mostramos	 la	 correspondiente	 interfaz	 LocalHome,	 básicamente	 una
factoría	 usada	 para	 crear	 objetos,	 no	 los	métodos	 de	 consulta	 Bank	 que	 pueda
añadir.

Por	 último,	 debemos	 crear	 uno	 o	 varios	 descriptores	 de	 implementación
XML	 que	 especifiquen	 los	 detalles	 de	 asignación	 relacional	 de	 objetos	 en	 un
almacén	persistente,	el	comportamiento	deseado	de	 la	 transacción,	 limitaciones
de	seguridad	y	demás.

La	 lógica	 empresarial	 está	 directamente	 conectada	 al	 contenedor	 de	 la
aplicación	EJB2.	Debe	crear	subclases	de	tipos	de	contenedor	y	proporcionar	los
métodos	de	ciclo	vital	necesarios	para	el	contenedor.	Debido	a	esta	conexión	al
contenedor	pesado,	las	pruebas	de	unidad	aisladas	son	complicadas.	Es	necesario
imitar	 el	 contenedor,	 algo	 difícil,	 o	 perder	 demasiado	 tiempo	 en	 la
implementación	de	EJB	y	pruebas	en	un	servidor	real.	La	reutilización	fuera	de
la	arquitectura	EJB2	es	imposible,	debido	a	esta	estrecha	conexión.	Por	último,
incluso	la	programación	orientada	a	objetos	se	ve	afectada.	Un	bean	no	se	puede
heredar	de	otro.	Fíjese	en	la	lógica	para	añadir	una	nueva	cuenta.	En	bean	EJB2
es	 habitual	 definir	Objetos	 de	 transferencia	 de	 datos	 (Data	Transfer	Objects	 o
DTO),	estructuras	sin	comportamiento.	Esto	suele	generar	tipos	redundantes	con
los	mismos	datos	y	requiere	código	predefinido	para	copiar	datos	entre	objetos.

Aspectos	transversales

La	 arquitectura	 EJB2	 se	 acerca	 a	 la	 verdadera	 separación	 de	 aspectos	 en
determinados	 aspectos.	 Por	 ejemplo,	 los	 comportamientos	 transaccionales,	 de
seguridad	 y	 comportamiento	 deseados	 se	 declaran	 en	 los	 descriptores	 de
implementación,	 independientemente	 del	 código	 fuente.	 Aspectos	 como	 la
persistencia	suelen	cruzar	 los	 límites	de	objeto	naturales	de	un	dominio.	Por	 lo
general	 intentará	mantener	 todos	sus	objetos	mediante	 la	misma	estrategia,	por
ejemplo	 con	 un	 determinado	 DBMS[55]	 y	 no	 archivos	 planos,	 usando
determinadas	 convenciones	 de	 nomenclatura	 para	 tablas	 y	 columnas,	 una
semántica	transaccional	coherente,	etc.

En	 principio,	 puede	 razonar	 su	 estrategia	 de	 persistencia	 de	 una	 forma
modular	y	encapsulada,	pero	en	la	práctica	tendrá	que	distribuir	el	mismo	código
que	 implemente	 la	 estrategia	 de	 persistencia	 entre	 varios	 objetos.	 Usamos	 el
término	 transversales	 para	 este	 tipo	 de	 aspectos.	 De	 nuevo,	 la	 estructura	 de
persistencia	 podría	 ser	 modular	 y	 la	 lógica	 de	 dominios,	 aislada,	 también.	 El
problema	es	la	intersección	entre	ambos	dominios.

De	 hecho,	 la	 forma	 en	 que	 la	 arquitectura	 EJB	 procesa	 persistencia,
seguridad	 y	 transacciones	 es	 una	 Programación	 orientada	 a	 aspectos	 (Aspect
Oriented	 Programming	 o	 AOP)[56]	 anticipada,	 un	 enfoque	 de	 carácter	 general
para	restaurar	la	modularidad	en	aspectos	transversales.	En	AOP,	construcciones
modulares	 denominadas	 aspectos	 especifican	 qué	 puntos	 del	 sistema	 deben
modificar	 su	 comportamiento	de	 forma	coherente	para	 admitir	 un	determinado
aspecto.	 Esta	 especificación	 se	 realiza	 mediante	 un	 sucinto	 mecanismo	 de
declaración	o	programación.

Si	 usamos	 la	 persistencia	 como	 ejemplo,	 podría	 declarar	 qué	 objetos	 y
atributos	 (o	 patrones)	 deben	 conservarse	 y	 después	 delegar	 las	 tareas	 de
persistencia	 a	 su	 estructura	 de	 persistencia.	 Las	 modificaciones	 de
comportamiento	 no	 son	 invasivas[57]	 para	 el	 código	 de	 destino.	 Veamos	 tres
aspectos	o	mecanismos	similares	en	Java.

Proxies	de	Java

Los	proxies	de	Java	son	útiles	en	casos	sencillos,	como	envolver	invocaciones
de	métodos	 en	objetos	 o	 clases	 concretas.	Sin	 embargo,	 los	 proxies	 dinámicos
proporcionados	en	el	JDK	sólo	funcionan	con	interfaces.	Para	aplicarlos	a	clases,
debe	 usar	 una	 biblioteca	 de	 manipulación	 de	 código	 de	 bytes,	 como	 CGLIB,
ASM	o	Javassist[58].

El	 Listado	 11-3	 muestra	 la	 estructura	 de	 un	 proxy	 JDK	 para	 ofrecer

asistencia	 de	 persistencia	 a	 nuestra	 aplicación	 Bank;	 únicamente	 abarca	 los
métodos	para	obtener	y	establecer	la	lista	de	cuentas.

Listado	11-3
Ejemplo	de	proxy	del	JDK.

//	Bank.java	(eliminando	nombres	de	paquetes…)

import	java.utils.*;

//	La	abstracción	de	un	banco.

public	interface	Bank	{

Collection<Account>	getAccounts();

void	setAccounts(Collection<Accounts>	accounts);

}

//	BankImpl.java

import	java.utils.*;

//	“Plain	Old	Java	Object”	POJO	que	implementa	la	abstracción.

public	class	BankImpl	implements	Bank	{

private	List<Account>	accounts;

public	Collection<Account>	getAccounts()	{

return	accounts;

}

public	void	setAccounts(Collections<Accounts>	accounts)	{

this.accounts	=	new	ArrayList<Accounts>();

for	(Account	account:	accounts)	{

this.accounts.add(account);

}

}

}

//	BankProxyHandler.java

import	java.lang.reflect.*;

import	java.util.*;

//	«InvocationHandler»	necesario	para	la	API	de	proxy.

public	class	BankProxyHandler	implements	InvocationHandler	{

private	Bank	bank;

public	BankHandler	(Bank	bank)	{

this.bank	=	bank;

}

//	Método	definido	en	InvocationHandler

public	Object	invoke(Object	proxy,	Method	method,	Object[]	args)

throws	Throwable	{

String	methodName	=	method.getName();

if	(methodName.equals(“getAccounts”))	{

bank.setAccounts(getAccountsFromDatabase());

return	bank.getAccounts();

}	else	if	(methodName.equals(“setAccounts”))	{

bank.setAccounts((Collection<Account>)	args[0]);

setAccountsToDatabase(bank.getAccounts());

return	null;

}	else	{

…

}

}

//	Muchos	detalles:

protected	Collection<Account>	getAccountsFromDatabase()	{…}

protected	void	setAccountsToDatabase(Collection<Account>	accounts)	{…}

}

//En	otra	parte…

Bank	bank	=	(Bank)	Proxy.newproxyInstance(

Bank.class.getClassLoader(),

new	Class[]	{	Bank.class	},

new	BankProxyHandler(new	BankImpl()));

Definimos	la	interfaz	Bank,	que	envolvemos	en	el	proxy	y	un	POJO	(Plain-

Old	 Object	 u	 Objeto	 sencillo	 de	 Java),	 BankImpl,	 que	 implementa	 la	 lógica
empresarial	(encontrará	más	información	sobre	POJO	en	un	apartado	posterior).

La	 API	 Proxy	 requiere	 un	 objeto	 InvocationHandler	 que	 invocar	 para
implementar	 las	 invocaciones	 de	 métodos	 Bank	 realizadas	 en	 el	 proxy.
BankProxyHandler	usa	la	API	de	reflexión	de	Java	para	asignar	las	invocaciones
de	 métodos	 genéricos	 a	 los	 métodos	 correspondientes	 de	 BankImpl,	 y	 así
sucesivamente.

El	código	es	abundante	y	complejo,	incluso	para	este	sencillo	caso[59].	El	uso
de	una	de	las	bibliotecas	de	manipulación	de	bytes	es	igualmente	complicado.	El
volumen	y	 la	complejidad	de	este	código	son	dos	de	 los	 inconvenientes	de	 los
proxies.	 Dificultan	 la	 creación	 de	 código	 limpio.	 Además,	 los	 proxies	 no
ofrecen	un	mecanismo	para	especificar	puntos	de	ejecución	globales	del	sistema,
imprescindibles	para	una	verdadera	solución	AOP[60].

Estructuras	AOP	Java	puras

Afortunadamente,	gran	parte	del	código	predefinido	de	proxy	se	puede	procesar
de	 forma	 automática	mediante	 herramientas.	Los	proxies	 se	 usan	 internamente
en	varias	estructuras	de	Java	como	Spring	AOP	y	JBoss	AOP,	para	implementar
aspectos	en	Java[61].	En	Spring,	se	crea	la	lógica	empresarial	en	forma	de	POJO,
específicos	de	su	dominio.	No	dependen	de	estructuras	empresariales	(ni	de	otros
dominios).	Por	tanto,	son	conceptualmente	más	sencillos	y	más	fáciles	de	probar.
Su	 relativa	 simplicidad	 garantiza	 que	 se	 implementen	 correctamente	 las
correspondientes	 historias	 y	 el	 mantenimiento	 y	 evolución	 del	 código	 en
historias	futuras.

La	 infraestructura	 necesaria	 de	 la	 aplicación,	 incluidos	 aspectos
transversales	 como	 persistencia,	 transacciones,	 seguridad,	 almacenamiento	 en
caché	 y	 recuperación	 ante	 fallos,	 se	 incorpora	 por	 medio	 de	 archivos	 de
configuración	declarativos	o	API.	En	muchos	casos,	se	especifican	aspectos	de
bibliotecas	Spring	o	JBoss,	en	los	que	la	estructura	controla	el	uso	de	proxies	de
Java	 o	 bibliotecas	 de	 código	 de	 bytes	 de	 forma	 transparente	 al	 usuario.	 Estas
declaraciones	 controlan	 el	 contenedor	 de	 inyección	 de	 dependencias,	 que	 crea
instancias	de	los	principales	objetos	y	las	conecta	bajo	demanda.

El	Listado	11-4	muestra	un	fragmento	tipo	de	un	archivo	de	configuración
de	Spring	V2.5,	app.xml[62].

Listado	11-4

Archivo	de	configuración	de	Spring	2.X

<beans>

…

<bean	id=“appDataSource”

class=“org.apache.commons.dbcp.BasicDataSource”

destroy-method=“close”

p:driverClassName=“com.mysql.jdbc.Driver”

p:url=“jdbc:mysql://localhost:3306/mydb”

p:username=“me”/>

<bean	id=“bankDataAccessObject”

class=“com.example.banking.persistence.BankDataAccessObject”

p:dataSource-ref=“appDataSource”/>

<bean	id=“bank”

class=“com.example.banking.model.Bank”

p:dataAccessObject-ref=“bankDataAccessObject”/>

…

</beans>

Cada	bean	es	como	una	parte	de	una	muñeca	rusa	anidada,	con	un	objeto	de
domino	 de	 un	 proxy	 Bank	 (envuelto)	 por	 un	 Objeto	 de	 acceso	 a	 datos	 (Data
Accessor	Object,	DAO),	que	también	se	procesa	a	través	de	un	proxy	por	medio
de	un	origen	de	datos	de	controlador	JDBC	(véase	la	figura	11.3).

Figura	11.3.	La	“muñeca	rusa”	de	elementos	de	decoración.

El	 cliente	 cree	 que	 invoca	 getAccounts()	 en	 un	 objeto	 Bank,	 pero	 en
realidad	 se	 comunica	 con	 el	 objeto	DECORATOR[63]	más	 externo	de	un	grupo,	 un
objeto	que	amplía	el	comportamiento	básico	del	POJO	Bank.	Podríamos	añadir
otros	 objetos	 de	 decoración	 para	 transacciones,	 almacenamiento	 en	 caché	 y
demás.

En	 la	aplicación,	bastan	unas	 líneas	para	 solicitar	al	 contenedor	de	 ID	 los
objetos	de	nivel	superior	del	sistema,	como	se	especifica	en	el	archivo	XML.

XmlBeanFactory	bf	=

new	XmlBeanFactory(new	ClassPathResource(“app.xml”,	getclass()));

Bank	bank	=	(Bank)	bf.getBean(“bank”);

Como	 apenas	 se	 necesitan	 líneas	 de	 código	 Java	 específico	 de	 Spring,	 la
aplicación	 se	 desconecta	 casi	 por	 completo	 de	 Spring	 y	 desaparecen	 los
problemas	de	conexión	de	sistemas	como	EJB2.

Aunque	XML	puede	ser	difícil	de	leer[64],	 la	directiva	especificada	en	estos
archivos	de	configuración	es	más	sencilla	que	 la	complicada	lógica	de	proxy	y
aspectos	oculta	a	la	vista	y	creada	de	forma	automática.	Es	una	arquitectura	tan
atractiva	que	sistemas	como	Spring	modificaron	totalmente	el	estándar	EJB	para

la	versión	3.	EJB3	sigue	el	modelo	de	Spring	de	aspectos	transversales	admitidos
mediante	declaraciones	con	archivos	de	configuración	XML	y/o	anotaciones	de
Java	5.

El	Listado	11-5	muestra	nuestro	objeto	Bank	reescrito	en	EJB3[65].

Listado	11-5
Un	EJB	Bank	EJB3.

package	com.example.banking.model;

import	javax.persistence;

import	java.util.ArrayList;

import	java.util.Collection;

@Entity

@Table(name	=	“BANKS”)

public	class	Bank	implements	java.io.Serializable	{

@Id	@GeneratedValue(strategy=GenerationType.AUTO)

private	int	id;

@Embeddable	//	Un	objeto	en	línea	en	la	fila	DB	de	Bank

public	class	Address	{

protected	String	streetAddr1;

protected	String	streetAddr2;

protected	String	city;

protected	String	state;

protected	String	zipCode;

}

@Embedded

private	Address	address;

@OneToMany	(cascade	=	CascadeType.ALL,	fetch	=	FetchType.EAGER,

mappedBy=“bank”)

private	Collection<Account>	accounts	=	new	ArrayList<Account>();

public	int	getId()	{

return	id;

}

public	void	setID(int	id)	{

this.id	=	id;

}

public	void	addAccount(Account	account)	{

account.setBank(this);

accounts.add(account);

}

public	Collection<Account>	getAccounts()	{

return	accounts;

}

public	void	setAccounts(Collection<Account>	accounts)	{

this.accounts	=	accounts;

}

}

Este	 código	 es	 mucho	 más	 limpio	 que	 el	 código	 EJB2	 original.	 Se
conservan	algunos	detalles	de	entidades,	en	las	anotaciones.	Sin	embargo,	como
no	 hay	 información	 fuera	 de	 las	 anotaciones,	 el	 código	 es	 limpio	 y	 fácil	 de
probar,	mantener	y	demás.

Parte	de	la	información	de	persistencia	de	las	anotaciones	se	puede	cambiar
a	descriptores	de	implementación	XML	si	es	necesario,	dejando	un	POJO	puro.
Si	los	detalles	de	asignación	de	persistencia	no	cambian	con	frecuencia,	muchos

equipos	pueden	optar	por	mantener	 las	anotaciones	pero	con	menos	obstáculos
que	si	usaran	EJB2.

Aspectos	de	AspectJ
Por	último,	la	herramienta	más	completa	de	separación	a	través	de	aspectos	es	el
lenguaje	AspectJ[66],	una	extensión	de	Java	que	ofrece	compatibilidad	de	primer
nivel	para	aspectos	como	construcciones	de	modularidad.	Los	enfoques	puros	de
Java	proporcionados	por	Spring	AOP	y	JBoss	AOP	son	suficientes	en	el	80-90
por	100	de	 los	 casos	 en	 los	 que	 los	 aspectos	 son	útiles.	Sin	 embargo,	AspectJ
ofrece	un	conjunto	de	herramientas	avanzadas	y	completas	para	la	separación	de
aspectos.	 El	 inconveniente	 de	 AspectJ	 es	 la	 necesidad	 de	 adoptar	 nuevas
herramientas	y	aprender	nuevas	construcciones	del	 lenguaje.	Los	problemas	de
adopción	se	han	mitigado	parcialmente	gracias	a	la	introducción	de	un	formato
de	 anotación	de	AspectJ,	 en	 el	 que	 se	usan	 anotaciones	de	 Java	5	para	definir
aspectos	 con	 código	 puro	 de	 Java.	 Además,	 la	 estructura	 Spring	 dispone	 de
funciones	que	facilitan	 la	 incorporación	de	aspectos	basados	en	anotaciones	en
un	equipo	con	experiencia	limitada	con	AspectJ.

El	 análisis	 completo	 de	 AspectJ	 supera	 los	 objetivos	 de	 este	 libro.	 Si
necesita	más	información	al	respecto,	consulte	[AspectJ],	[Colyer]	y	[Spring].

Pruebas	de	unidad	de	la	arquitectura	del	sistema

La	 separación	 a	 través	 de	 enfoques	 similares	 a	 aspectos	 no	 se	 puede
menospreciar.	 Si	 puede	 crear	 la	 lógica	 de	 dominios	 de	 su	 aplicación	mediante
POJO,	sin	conexión	con	los	aspectos	arquitectónicos	a	nivel	del	código,	entonces
se	 podrá	 probar	 realmente	 la	 arquitectura.	 Puede	 evolucionar	 de	 simple	 a
sofisticado,	 de	 acuerdo	 a	 las	 necesidades,	 adoptando	 nuevas	 tecnologías	 bajo
demanda.	No	es	necesario	realizar	un	Buen	diseño	por	adelantado	(Big	Design
Up	 Front[67],	 BDUF).	 De	 hecho,	 BDUF	 puede	 ser	 negativo	 ya	 que	 impide	 la
adaptación	 al	 cambio,	 debido	 a	 la	 resistencia	 fisiológica	 a	 descartar	 esfuerzos
previos	 y	 a	 la	 forma	 en	 que	 las	 decisiones	 arquitectónicas	 influyen	 en	 la
concepción	posterior	del	diseño.

Los	 arquitectos	 deben	 realizar	 BDUF	 ya	 que	 no	 resulta	 factible	 aplicar
cambios	 arquitectónicos	 radicales	 a	 una	 estructura	 física	 una	 vez	 avanzada	 la
construcción[68].	 Aunque	 el	 software	 se	 rige	 por	 una	 física	 propia[69],	 es
económicamente	factible	realizar	cambios	radicales	si	la	estructura	del	software

separa	sus	aspectos	de	forma	eficaz.
Esto	 significa	 que	 podemos	 iniciar	 un	 proyecto	 de	 software	 con	 una

arquitectura	 simple	 pero	 bien	 desconectada,	 y	 ofrecer	 historias	 funcionales	 de
forma	 rápida,	 para	 después	 aumentar	 la	 infraestructura.	 Algunos	 de	 los
principales	 sitios	 Web	 del	 mundo	 han	 alcanzado	 una	 gran	 disponibilidad	 y
rendimiento	 por	 medio	 de	 sofisticadas	 técnicas	 de	 almacenamiento	 en	 caché,
seguridad,	virtualización	y	demás,	todo	ello	de	forma	eficaz	y	flexible	ya	que	los
diseños	mínimamente	conectados	 son	adecuadamente	 simples	en	cada	nivel	de
abstracción	 y	 ámbito.	 Evidentemente,	 no	 quiere	 decir	 que	 acometamos	 los
proyectos	sin	timón.	Debemos	tener	expectativas	del	ámbito	general,	objetivos	y
un	programa,	así	como	la	estructura	general	del	sistema	resultante.	Sin	embargo,
debemos	 mantener	 la	 capacidad	 de	 cambiar	 de	 rumbo	 en	 respuesta	 a	 las
circunstancias.

La	arquitectura	EJB	inicial	es	una	de	 las	API	conocidas	con	un	exceso	de
ingeniería	 y	 que	 compromete	 la	 separación	 de	 aspectos.	 Incluso	 las	 API	 bien
diseñadas	pueden	ser	excesivas	cuando	no	resultan	necesarias.	Una	API	correcta
debe	 desaparecer	 de	 la	 vista	 en	 la	 mayoría	 de	 los	 casos,	 para	 que	 el	 equipo
dedique	sus	esfuerzos	creativos	a	las	historias	implementadas.	En	caso	contrario,
las	 limitaciones	arquitectónicas	 impedirán	 la	entrega	eficaz	de	un	valor	óptimo
para	el	cliente.	Para	recapitular:

Una	arquitectura	de	 sistema	óptima	se	compone	de	dominios	de	aspectos
modularizados,	cada	uno	implementado	con	POJO.	Los	distintos	dominios
se	 integran	 mediante	 aspectos	 o	 herramientas	 similares	 mínimamente
invasivas.	Al	igual	que	en	el	código,	en	esta	arquitectura	se	pueden	realizar
pruebas.

Optimizar	la	toma	de	decisiones

La	 modularidad	 y	 separación	 de	 aspectos	 permite	 la	 descentralización	 de	 la
administración	y	 la	 toma	de	decisiones.	En	un	sistema	suficientemente	amplio,
ya	sea	una	ciudad	o	un	proyecto	de	software,	no	debe	haber	una	sola	persona	que
adopte	todas	las	decisiones.

Sabemos	 que	 conviene	 delegar	 las	 responsabilidades	 en	 las	 personas	más
cualificadas.	Solemos	olvidar	que	también	conviene	posponer	decisiones	hasta	el
último	momento.	No	es	 falta	de	 responsabilidad;	nos	permite	 tomar	decisiones
con	la	mejor	información	posible.	Una	decisión	prematura	siempre	es	subjetiva.

Si	 decidimos	 demasiado	 pronto,	 tendremos	 menos	 información	 del	 cliente,
reflexión	 mental	 sobre	 el	 proyecto	 y	 experiencia	 con	 las	 opciones	 de
implementación.

La	agilidad	que	proporciona	un	sistema	POJO	con	aspectos	modularizados
nos	 permite	 adoptar	 decisiones	 óptimas	 a	 tiempo,	 basadas	 en	 los
conocimientos	más	 recientes.	 Además,	 se	 reduce	 la	 complejidad	 de	 estas
decisiones.

Usar	estándares	cuando	añadan	un	valor	demostrable

La	 construcción	 de	 edificios	 es	 una	 maravilla	 para	 la	 vista	 debido	 al	 ritmo
empleado	(incluso	en	invierno)	y	los	extraordinarios	diseños	posibles	gracias	a	la
tecnología	actual.	La	construcción	es	un	sector	maduro	con	elementos,	métodos
y	estándares	optimizados	que	han	evolucionado	bajo	presión	durante	siglos.

Muchos	 equipos	 usaron	 la	 arquitectura	EJB2	 por	 ser	 un	 estándar,	 aunque
hubiera	 bastado	 con	 diseños	 más	 ligeros	 y	 sencillos.	 He	 visto	 equipos
obsesionados	con	estándares	de	moda	y	que	se	olvidaron	de	implementar	el	valor
para	sus	clientes.

Los	estándares	 facilitan	 la	 reutilización	de	 ideas	y	componentes,	 reclutan
individuos	 con	 experiencia,	 encapsulan	 buenas	 ideas	 y	 conectan
componentes.	 Sin	 embargo,	 el	 proceso	 de	 creación	 de	 estándares	 puede
tardar	 demasiado	 para	 el	 sector,	 y	 algunos	 pierden	 el	 contacto	 con	 las
verdaderas	necesidades	de	aquello	para	los	que	están	dirigidos.

Los	sistemas	necesitan	lenguajes	específicos	del
dominio

La	 construcción	 de	 edificios,	 como	muchos	 dominios,	 ha	 desarrollado	 un	 rico
lenguaje	 con	 vocabularios,	 frases	 y	 patrones[70]	 que	 comunican	 información
esencial	 de	 forma	 clara	 y	 concisa.	 En	 el	 mundo	 del	 software,	 ha	 renacido	 el
interés	 por	 crear	 Lenguajes	 específicos	 del	 dominio	 (Domain-Specific
Languages	 o	 DSL)[71],	 pequeños	 lenguajes	 independientes	 de	 creación	 de
secuencias	de	comandos	o	API	de	lenguajes	estándar	que	permiten	crear	código

que	se	lea	de	una	forma	estructurada,	como	lo	escribiría	un	experto	del	dominio.
Un	buen	DSL	minimiza	el	vacío	de	comunicación	entre	un	concepto	de	dominio
y	 el	 código	 que	 lo	 implementa,	 al	 igual	 que	 las	 prácticas	 ágiles	 optimizan	 la
comunicación	 entre	 un	 equipo	 y	 los	 accionistas	 del	 proyecto.	 Si	 tiene	 que
implementar	 la	 lógica	de	dominios	en	el	mismo	lenguaje	usado	por	un	experto
del	 dominio,	 hay	 menos	 riesgo	 de	 traducir	 incorrectamente	 el	 dominio	 en	 la
implementación.

Los	DSL,	si	se	usan	de	forma	eficaz,	aumentan	el	nivel	de	abstracción	por
encima	del	código	y	los	patrones	de	diseño.	Permiten	al	desarrollador	revelar	la
intención	del	código	en	el	nivel	de	abstracción	adecuado.

Los	lenguajes	específicos	del	dominio	permiten	expresar	como	POJO	todos
los	 niveles	 de	 abstracción	 y	 todos	 los	 dominios	 de	 la	 aplicación,	 desde
directivas	de	nivel	superior	a	los	detalles	más	mínimos.

Conclusión

Los	 sistemas	 también	 deben	 ser	 limpios.	Una	 arquitectura	 invasiva	 afecta	 a	 la
lógica	de	dominios	y	 a	 la	 agilidad.	Si	 la	 lógica	de	dominios	 se	ve	 afectada,	 la
calidad	se	resiente,	ya	que	los	errores	se	ocultan	y	las	historias	son	más	difíciles
de	implementar.	Si	la	agilidad	se	ve	comprometida,	la	productividad	sufre	y	las
ventajas	de	TDD	se	pierden.

En	todos	los	niveles	de	abstracción,	los	objetivos	deben	ser	claros.	Esto	sólo
sucede	 si	 crea	 POJO	 y	 usa	 mecanismos	 similares	 a	 aspectos	 para	 incorporar
otros	aspectos	de	implementación	de	forma	no	invasiva.

Independientemente	 de	 que	 diseñe	 sistemas	 o	 módulos	 individuales,	 no
olvide	usar	los	elementos	más	sencillos	que	funcionen.

Bibliografía
	

[Alexander]:	Christopher	Alexander,	A	Timeless	Way	of	Building,	Oxford
University	Press,	New	York,	1979.
[AOSD]:	 Puerto	 de	 Desarrollo	 de	 software	 orientado	 a	 aspectos,
http://aosd.net.

[ASM]:	Página	de	ASM,	http://asm.objectweb.org/.
[AspectJ]:	http:	//eclipse.org/aspectj.
[CGLIB]:	Biblioteca	de	generación	de	código,	http://cglib.sourceforge.net/.
[Colyer]:	Adrian	Colyer,	Andy	Clement,	George	Hurley,	Mathew	Webster,
Eclipse	AspectJ,	Person	Education,	Inc.,	Upper	Saddle	River,	NJ,	2005.
[DSL]:	 Lenguaje	 de	 programación	 específico	 del	 dominio,
http://es.wikipedia.org/wiki/Lenguaje_espec%C3%ADfico_del_dominio.
[Fowler]:	Inversión	de	contenedores	de	control	y	el	patrón	de	inyección	de
dependencias	(http://martinfowler.com/articles/injection.html).
[Goetz]:	Brian	Goetz,	Java	Theory	and	Practice:	Decorating	with	Dynamic
Proxies,	http://www.ibm.com/developerworks/java/library/j-jtp08305.html.
[Javassist]:	 Página	 de	 Javassist,
http://www.csg.is.titech.ac.jp/chiba/javassist/.
[JBoss]:	Página	de	JBoss,	http:	//jboss.org.
[JMock]:	 JMock:	 Una	 biblioteca	 de	 objetos	 Mock	 ligeros	 para	 Java,
http://jmock.org.
[Kolence]:	 Kenneth	 W.	 Kolence,	 Software	 physics	 and	 computer
performance	measurements,	 Proceedings	 of	 the	 ACM	 annual	 conference-
Volume	2,	Boston,	Massachusetts,	pp.	1024-1040,1972.
[Spring]:	The	Spring	Framework,	http://www.springframework.org.
[Mezzaros07]:	XUnit	Patterns,	Gerard	Mezzaros,	Addison-Wesley,	2007.
[GOF]:	Design	Patterns:	Elements	of	Reusable	Object	Oriented	Software,
Gamma	et	al.,	Addison-Wesley,	1996.

12
Emergencia

con	Jeff	Langr

Limpieza	a	través	de	diseños	emergentes

Imagine	 que	 existieran	 cuatro	 sencillas	 reglas	 para	 crear	 diseños	 de	 calidad.
Imagine	 que	 siguiéndolas	 accediera	 a	 la	 estructura	 y	 al	 diseño	 de	 su	 código	 y
facilitara	la	aplicación	de	principios	como	SRP	y	DIP.	Imagine	que	estas	cuatro
reglas	facilitaran	la	emergencia	de	diseños	de	calidad.

Muchos	 consideramos	 que	 las	 cuatro	 reglas	 de	 Kent	 Beck	 de	 diseño
sencillo[72]	son	fundamentales	para	crear	un	software	bien	diseñado.

Según	Kent,	un	diseño	es	sencillo	si	cumple	estas	cuatro	reglas:

	

Ejecuta	todas	las	pruebas.
No	contiene	duplicados.
Expresa	la	intención	del	programador.
Minimiza	el	número	de	clases	y	métodos.

Describiremos	estas	reglas	en	orden	de	importancia.

Primera	regla	del	diseño	sencillo:	Ejecutar	todas	las
pruebas

En	 primer	 lugar,	 un	 diseño	 debe	 generar	 un	 sistema	 que	 actúe	 de	 la	 forma
prevista.	Un	 sistema	 puede	 tener	 un	 diseño	 perfecto	 sobre	 el	 papel	 pero	 si	 no
existe	 una	 forma	 sencilla	 de	 comprobar	 que	 realmente	 funciona	 de	 la	 forma
esperada,	el	esfuerzo	sobre	el	papel	es	cuestionable.

Un	sistema	minuciosamente	probado	y	que	supera	todas	las	pruebas	en	todo
momento	 se	 denomina	 sistema	 testable.	 Es	 una	 afirmación	 obvia,	 pero
importante.	Los	sistemas	que	no	se	pueden	probar	no	se	pueden	verificar,	y	un
sistema	que	no	se	puede	verificar	no	debe	implementarse.

Afortunadamente,	 crear	 sistemas	 testables	 hace	 que	 diseñemos	 clases	 de
tamaño	 reducido	 y	 un	 solo	 cometido.	 Resulta	 más	 sencillo	 probar	 clases	 que
cumplen	 el	 SRP.	 Cuantas	 más	 pruebas	 diseñemos,	 más	 nos	 acercaremos	 a
elementos	 más	 fáciles	 de	 probar.	 Por	 lo	 tanto,	 hacer	 que	 nuestro	 sistema	 se
pueda	probar	nos	ayuda	a	crear	mejores	diseños.

Las	conexiones	rígidas	dificultan	la	creación	de	pruebas.	Del	mismo	modo,
cuantas	 más	 pruebas	 creemos,	 más	 usaremos	 principios	 como	 DIP	 y
herramientas	 con	 inyección	 de	 dependencias,	 interfaces	 y	 abstracción	 para
minimizar	dichas	conexiones.	Nuestros	diseños	mejorarán	todavía	más.

En	 especial,	 seguir	 una	 sencilla	 regla	 que	 afirme	 que	 debemos	 realizar
pruebas	y	ejecutarlas	continuamente	afecta	el	cumplimiento	por	parte	de	nuestro
sistema	de	 los	 principales	 objetivos	 de	 la	 programación	orientada	 a	 objetos	 de
baja	 conexión	 y	 elevada	 cohesión.	 La	 creación	 de	 pruebas	 conduce	 a	 obtener
mejores	diseños.

Reglas	2	a	4	del	diseño	sencillo:	Refactorizar

Una	vez	creadas	 las	pruebas,	debemos	mantener	 limpio	el	 código	y	 las	 clases.
Para	ello,	refactorizamos	el	código	progresivamente.	Tras	añadir	unas	líneas,	nos
detenemos	y	reflejamos	el	nuevo	diseño.	¿Ha	empeorado?	En	caso	afirmativo,	lo
limpiamos	 y	 ejecutamos	 las	 pruebas	 para	 comprobar	 que	 no	 hay	 elementos
afectados.	La	presencia	de	las	pruebas	hace	que	perdamos	el	miedo	a	limpiar	el
código	y	que	resulte	dañado.

En	la	fase	de	refactorización,	podemos	aplicar	todos	los	aspectos	del	diseño
de	 software	 correcto.	 Podemos	 aumentar	 la	 cohesión,	 reducir	 las	 conexiones,
separar	las	preocupaciones,	modularizar	aspectos	del	sistema,	reducir	el	tamaño
de	 funciones	 y	 clases,	 elegir	 nombres	 más	 adecuados,	 etc.	 Aquí	 también
aplicamos	 las	 tres	 últimas	 reglas	 del	 diseño	 correcto:	 eliminar	 duplicados,
garantizar	la	capacidad	de	expresión	y	minimizar	el	número	de	clases	y	métodos.

Eliminar	duplicados

Los	duplicados	son	los	mayores	enemigos	de	un	sistema	bien	diseñado.	Suponen
un	 esfuerzo	 adicional,	 riesgos	 añadidos	 y	 una	 complejidad	 a	 mayores
innecesaria.	 Los	 duplicados	 se	 manifiestan	 de	 diversas	 formas.	 Las	 líneas	 de
código	similar	pueden	modificarse	para	que	parezcan	refactorizadas,	y	hay	otras
formas	 de	 duplicación	 como	 la	 de	 implementación.	 Por	 ejemplo,	 podríamos
tener	dos	métodos	en	una	clase	de	colección:	int	size()	{}

boolean	isEmpty()	{}

Podríamos	tener	implementaciones	separadas	para	cada	método.	El	método
isEmpty	 podría	 controlar	 un	 valor	 booleano	 y	 size	 un	 contador,	 o	 podemos
eliminar	la	duplicación	y	vincular	isEmpty	a	la	definición	de	size:	boolean	isEmpty()	{

return	0	==	size();

}

La	 creación	 de	 un	 sistema	 limpio	 requiere	 la	 eliminación	 de	 duplicados,
aunque	sean	unas	cuantas	líneas	de	código.	Fíjese	en	el	siguiente	ejemplo:

public	void	scaleToOneDimension	{

float	desiredDimension,	float	imageDimension)	{

if	(Math.abs(desiredDimension	-	imageDimension)	<	errorThreshold)

return;

float	scalingFactor	=	desiredDimension	/	imageDimension;

scalingFactor	=	(float)(Math.floor(scalingFactor	100)	0.01f);

RenderedOp	newImage	=	ImageUtilities.getScaledImage(

image,	scalingFactor,	scalingFactor);

image.dispose();

System.gc();

image	=	newImage;

}

public	synchronized	void	rotate(int	degrees)	{

RenderedOp	newImage	=	ImageUtilities.getRotatedImage(

image,	degrees);

image.dispose();

System.gc();

image	=	newImage;

}

Para	mantener	 limpio	este	 sistema,	debemos	eliminar	 la	pequeña	cantidad
de	duplicación	entre	los	métodos	scaleToOneDimension	y	rotate:

public	void	scaleToOneDimension	(

float	desiredDimension,	float	imageDimension)	{

if	(Math.abs(desiredDimension	-	imageDimension)	<	errorThreshold)

return;

float	scalingFactor	=	desiredDimension	/	imageDimension;

scalingFactor	=	(float)(Math.floor(scalingFactor	100)	0.01f);

replaceImage(ImageUtilities.getScaledImage(
image,	scalingFactor,	scalingFactor));

}

public	synchronized	void	rotate	(int	degrees)	{

replaceImage(ImageUtilities.getRotatedImage(image,	degrees));
}

private	void	replaceImage(RenderedOp	newImage)	(
image.dispose();
System.gc();
image	=	newImage;

}

Al	 extraer	 a	 este	 reducido	 nivel,	 comenzamos	 a	 detectar	 incumplimientos
de	 SRP.	 Por	 ello,	 podríamos	 cambiar	 un	 nuevo	método	 extraído	 a	 otra	 clase.
Esto	aumenta	su	visibilidad.	Otro	miembro	del	equipo	puede	ver	la	necesidad	de
volver	 a	 extraer	 el	 nuevo	 método	 y	 usarlo	 en	 otro	 contexto	 diferente.	 Esta
reutilización	 mínima	 puede	 reducir	 considerablemente	 la	 complejidad	 del
sistema.	Saber	cómo	lograrlo	es	fundamental	para	alcanzar	la	reutilización	a	gran
escala.

El	patrón	Método	de	plantilla[73]	es	una	técnica	muy	utilizada	para	eliminar
duplicados	de	nivel	superior.	Por	ejemplo:	public	class	VacationPolicy	{

public	void	accrueUSDivisionVacation()	{

//	código	para	calcular	las	vacaciones	en	función	de	las	horas	trabajadas

//…

//	código	para	garantizar	que	las	vacaciones	cumplen	los	mínimos	legales

//…

//	código	para	aplicar	vacation	al	registro	payroll

//…

}

public	void	accrueEUDivisionVacation()	{

//	código	para	calcular	las	vacaciones	en	función	de	las	horas	trabajadas

//…

//	código	para	garantizar	que	las	vacaciones	cumplen	los	mínimos	legales

//…

//	código	para	aplicar	vacation	al	registro	payroll

//…

}

}

El	 código	 entre	 accrueUSDivisionVacation	 y
accrueEuropeanDivisionVacation	 es	 prácticamente	 idéntico,	 a	 excepción	 del
cálculo	de	mínimos	legales.	Esa	parte	del	algoritmo	cambia	en	función	del	tipo
de	empleado.	Podemos	eliminar	 la	duplicación	evidente	 si	 aplicamos	el	patrón
de	Método	de	plantilla:	abstract	public	class	VacationPolicy	{

public	void	accrueVacation()	{

calculateBaseVacationHours();
alterForLegalMinimums();
applyToPayroll();

}

private	void	calculateBaseVacationHours()	{	/*	…	*/	};

abstract	protected	void	alterForLegalMinimums();

private	void	applyToPayroll();	{	/*	…	*/	};

}

public	class	USVacationPolicy	extends	VacationPolicy	{

@Override	protected	void	alterForLegalMinimums()	{

//	Lógica	específica	de	EE.UU.

}

}

public	class	EUVacationPolicy	extends	VacationPolicy	{

@Override	protected	void	alterForLegalMinimums()	{

//	Lógica	específica	de	la	UE.

}

}

Las	subclases	ocupan	el	vacío	generado	en	el	algoritmo	accrueVacation	y
solamente	proporcionan	los	datos	que	no	están	duplicados.

Expresividad

Muchos	tenemos	experiencia	con	código	enrevesado.	Muchos	lo	hemos	creado.
Es	fácil	crear	código	que	entendamos,	ya	que	durante	su	creación	nos	centramos
en	 comprender	 el	 problema	 que	 intentamos	 resolver.	 Los	 encargados	 de
mantener	el	código	no	lo	comprenderán	de	la	misma	forma.

El	principal	coste	de	un	proyecto	de	software	es	su	mantenimiento	a	largo
plazo.	Para	minimizar	los	posibles	defectos	al	realizar	cambios,	es	fundamental
que	comprendamos	el	 funcionamiento	del	sistema.	Al	aumentar	 la	complejidad
de	los	sistemas,	el	programador	necesita	más	tiempo	para	entenderlo	y	aumentan
las	posibilidades	de	 errores.	Por	 tanto,	 el	 código	debe	expresar	 con	claridad	 la
intención	de	su	autor.	Cuando	más	claro	sea	el	código,	menos	tiempo	perderán
otros	 en	 intentar	 comprenderlo.	 Esto	 reduce	 los	 defectos	 y	 el	 coste	 de
mantenimiento.

Puede	expresarse	si	elige	nombres	adecuados.	El	objetivo	es	ver	el	nombre
de	una	clase	y	función,	y	que	sus	responsabilidades	no	nos	sorprendan.

También	 puede	 expresarse	 si	 reduce	 el	 tamaño	 de	 funciones	 y	 clases.	Al
hacerlo,	resulta	más	sencillo	asignarles	nombres,	crearlas	y	comprenderlas.	Otra
forma	de	expresarse	es	usar	una	nomenclatura	estándar.	Los	patrones	de	diseño,
por	 ejemplo,	 se	 basan	 en	 la	 comunicación	 y	 en	 la	 capacidad	 de	 expresión.	Al
usar	los	nombres	de	patrones	estándar,	como	COMMAND	o	VISITOR,	en	los	nombres
de	las	clases	que	implementan	dichos	patrones	puede	describir	sucintamente	su
diseño	a	otros	programadores.

Las	 pruebas	 de	 unidad	 bien	 escritas	 también	 son	 expresivas.	 Uno	 de	 los
principales	 objetivos	 de	 una	 prueba	 es	 servir	 de	 documentación	 mediante
ejemplos.	Los	que	lean	las	pruebas	deben	entender	con	facilidad	para	qué	sirve
una	clase.

Pero	 la	 forma	más	 importante	de	 ser	 expresivo	 es	 la	 práctica.	A	menudo,
conseguimos	 que	 el	 código	 funcione	 y	 pasamos	 al	 siguiente	 problema	 sin
detenernos	 en	 facilitar	 la	 lectura	 del	 código	 para	 otros.	 No	 olvide	 que
seguramente	sea	el	próximo	que	lea	el	código.

Por	tanto,	afronte	su	creación	con	orgullo.	Dedique	tiempo	a	sus	funciones
y	clases.	Seleccione	nombres	mejores,	divida	las	funciones	extensas	en	otras	más
reducidas	y	cuide	su	obra.	El	cuidado	es	un	recurso	precioso.

Clases	y	métodos	mínimos

Incluso	 conceptos	 tan	 básicos	 como	 la	 eliminación	 de	 código	 duplicado,	 la
expresividad	del	código	y	SRP	pueden	exagerarse.	En	un	esfuerzo	por	reducir	el
tamaño	 de	 clases	 y	 métodos,	 podemos	 crear	 demasiadas	 clases	 y	 métodos
reducidos.	 Esta	 regla	 también	 sugiere	 minimizar	 la	 cantidad	 de	 funciones	 y
clases.

Una	 gran	 cantidad	 de	 clases	 y	métodos	 suele	 indicar	 un	 dogmatismo	 sin
sentido.	Imagine	un	estándar	de	código	que	insista	en	la	creación	de	una	interfaz
para	 todas	 las	 clases,	 o	 a	 programadores	 que	 insisten	 en	 qué	 campos	 y
comportamientos	 siempre	 deben	 separarse	 en	 clases	 de	 datos	 y	 clases	 de
comportamiento.	 Este	 dogma	 debe	 evitarse	 y	 cambiarse	 por	 un	 enfoque	 más
pragmático.

Nuestro	 objetivo	 es	 reducir	 el	 tamaño	 general	 del	 sistema	 además	 del
tamaño	 de	 clases	 y	 funciones,	 pero	 recuerde	 que	 esta	 regla	 es	 la	 de	 menor
prioridad	de	 las	 cuatro.	Por	 ello,	 aunque	 sea	 importante	 reducir	 la	 cantidad	de
clases	y	funciones,	es	más	importante	contar	con	pruebas,	eliminar	duplicados	y
expresarse	correctamente.

Conclusión

¿Existen	 prácticas	 sencillas	 que	 puedan	 reemplazar	 a	 la	 experiencia?	 Por
supuesto	 que	 no.	 Sin	 embargo,	 las	 prácticas	 descritas	 en	 este	 capítulo	 y	 en	 el
libro	 son	una	 forma	cristalizada	de	décadas	de	experiencia	de	muchos	autores.
La	 práctica	 del	 diseño	 correcto	 anima	 y	 permite	 a	 los	 programadores	 adoptar
principios	y	patrones	que	en	caso	contrario	tardarían	años	en	aprender.

Bibliografía
	

[XPE]:	Extreme	 Programming	 Explained:	 Embrace	 Change,	 Kent	 Beck,
Addison	Wesley,	1999.
[GOF]:	Design	Patterns:	Elements	of	Reusable	Object	Oriented	Software,
Gamma	et	al.,	Addison-Wesley,	1996.

13
Concurrencia

por	Brett	L.	Schuchert

“Los	objetos	son	abstracciones	de	procesamiento.
Los	subprocesos	son	abstracciones	de	programaciones”.

—James	O.	Coplien[74]

La	creación	de	programas	concurrentes	limpios	es	complicada,	muy	complicada.
Es	 mucho	 más	 sencillo	 crear	 código	 que	 se	 ejecute	 en	 un	 mismo	 proceso.

También	 es	 fácil	 crear	 código	 de	 subprocesamiento	 múltiple	 que	 parezca
correcto	 en	 la	 superficie	 pero	 que	 esté	 dañado	 a	 niveles	 más	 profundos.	 Este
código	 funciona	 correctamente	 hasta	 que	 el	 sistema	 se	 somete	 a	 determinadas
presiones.

En	este	capítulo	analizaremos	la	necesidad	de	la	programación	concurrente
y	 sus	 dificultades.	 Tras	 ello,	 presentaremos	 diversas	 recomendaciones	 para
superar	 dichas	 dificultades	 y	 crear	 código	 concurrente	 limpio.	 Por	 último,
finalizaremos	 con	 los	 problemas	 relacionados	 con	 la	 prueba	 de	 código
concurrente.

La	concurrencia	limpia	es	un	tema	complejo,	merecedor	de	un	libro	propio.
Aquí,	 intentaremos	ofrecer	 una	visión	general,	 que	después	 ampliaremos	 en	 el
apéndice	 A.	 Si	 simplemente	 tiene	 curiosidad	 por	 el	 tema,	 le	 bastará	 con	 este
capítulo.	Si	necesita	entender	la	concurrencia	a	un	nivel	más	profundo,	consulte
también	el	apéndice.

¿Por	qué	concurrencia?

La	concurrencia	es	una	estrategia	de	desvinculación.	Nos	permite	desvincular	lo
que	 se	 hace	 de	 dónde	 se	 hace.	 En	 aplicación	 de	 un	 solo	 proceso,	 el	 qué	 y	 el
cuándo	están	tan	firmemente	vinculados	que	el	estado	de	la	aplicación	se	puede
determinar	analizando	la	huella	de	la	pila.	Un	programador	que	depure	este	tipo
de	sistemas	puede	definir	un	punto	de	interrupción	(o	varios)	y	saber	el	estado	de
la	aplicación	en	función	del	punto	al	que	se	llegue.

La	 desvinculación	 del	 qué	 del	 dónde	 puede	mejorar	 considerablemente	 el
rendimiento	 y	 la	 estructura	 de	 una	 aplicación.	 Desde	 un	 punto	 de	 vista
estructural,	la	aplicación	parece	una	serie	de	equipos	colaboradores	y	no	un	gran
bucle	principal.	Esto	puede	hacer	que	el	sistema	sea	más	fácil	de	comprender	y
ofrece	 diversas	 formas	 de	 separar	 las	 preocupaciones.	 Pongamos	 por	 caso	 el
modelo	Servlet	estándar	de	aplicaciones	Web.	Estos	sistemas	se	ejecutan	bajo	un
contenedor	Web	o	EJB	que	gestiona	parcialmente	la	concurrencia.	Los	servlet	se
ejecutan	de	forma	asíncrona	cuando	se	reciben	solicitudes	Web.	El	programador
de	los	servlet	no	tiene	que	gestionar	todas	las	solicitudes	entrantes.	En	principio,
la	ejecución	de	cada	servlet	vive	en	un	mundo	propio	y	se	desvincula	del	resto.

Evidentemente,	 si	 fuera	 tan	 sencillo,	 no	 necesitaríamos	 este	 capítulo.	 De
hecho,	 la	desvinculación	proporcionada	por	 los	contenedores	Web	dista	mucho
de	 ser	 perfecta.	 Los	 programadores	 de	 servlet	 deben	 asegurarse	 de	 que	 sus
programas	sean	correctos.	No	obstante,	las	ventajas	estructurales	del	modelo	de
servlet	son	significativas.

Pero	 la	 estructura	 no	 es	 el	 único	 motivo	 para	 adoptar	 la	 concurrencia.
Algunos	sistemas	 tienen	 limitaciones	de	 tiempo	de	 respuesta	y	producción	que
requieren	soluciones	concurrentes	manuales.	Imagine	un	dispositivo	para	añadir
información,	con	un	solo	proceso,	que	obtiene	datos	de	distintos	sitios	Web	y	los
combina	 en	 un	 resumen	 diario.	Al	 tener	 un	 solo	 proceso,	 accede	 por	 turnos	 a
cada	 sitio	 Web	 y	 siempre	 termina	 uno	 antes	 de	 comenzar	 el	 siguiente.	 Su
recorrido	diario	debe	ejecutarse	 en	menos	de	24	horas.	Sin	 embargo,	 al	 añadir
nuevos	 sitios	Web,	 el	 tiempo	 aumenta	 hasta	 necesitarse	más	 de	 24	 horas	 para
recopilar	 todos	 los	datos.	El	único	proceso	 implica	una	prolongada	espera	para
completar	la	E/S.	Podríamos	mejorar	el	rendimiento	con	ayuda	de	un	algoritmo
de	subprocesamiento	múltiple	que	visite	más	de	un	sitio	Web	por	vez.

Imagine	 un	 sistema	 que	 procesa	 un	 usuario	 por	 vez	 y	 sólo	 requiere	 un
segundo	 por	 cada	 uno.	 Su	 capacidad	 de	 respuesta	 es	 válida	 para	 un	 número
reducido	de	usuarios	pero	si	aumenta,	también	lo	hace	el	tiempo	de	respuesta	del
sistema.	Ningún	usuario	querrá	esperar	a	otros	150.	Podríamos	mejorar	el	tiempo
de	 respuesta	 de	 este	 sistema	 procesando	 varios	 usuarios	 a	 la	 vez.	 Imagine	 un
sistema	 que	 interprete	 grandes	 conjuntos	 de	 datos	 pero	 que	 sólo	 ofrezca	 una
solución	 completa	 tras	 procesarlos	 todos.	 Se	 podría	 procesar	 cada	 conjunto	 de
datos	en	un	equipo	distinto,	para	poder	procesarlos	todos	en	paralelo.

Mitos	e	imprecisiones
También	existen	motivos	evidentes	para	adoptar	 la	concurrencia	aunque,	como
indicamos	 antes,	 sea	 complicada.	 Si	 no	 presta	 la	 suficiente	 atención,	 pueden
darse	casos	desagradables.	Veamos	los	mitos	e	imprecisiones	más	habituales:
	

La	concurrencia	siempre	mejora	el	rendimiento:	En	ocasiones	lo	hace	pero
sólo	 cuando	 se	 puede	 compartir	 tiempo	 entre	 varios	 procesos	 o
procesadores.	Ninguna	situación	es	trivial.
El	diseño	no	cambia	al	crear	programas	concurrentes:	De	hecho,	el	diseño
de	un	algoritmo	concurrente	puede	ser	muy	distinto	al	de	un	sistema	de	un
solo	 proceso.	 La	 desvinculación	 entre	 el	 qué	 y	 el	 cuándo	 suele	 tener	 un
efecto	importante	en	la	estructura	del	sistema.
No	es	importante	entender	los	problemas	de	concurrencia	al	 trabajar	con
un	 contenedor	 Web	 o	 EJB:	 En	 realidad,	 debe	 saber	 lo	 que	 hace	 su
contenedor	 y	 protegerlo	 de	 problemas	 de	 actualizaciones	 concurrentes	 y
bloqueo,	como	veremos	después.

Veamos	 otros	 aspectos	 relacionados	 con	 la	 creación	 de	 software
concurrente:
	

La	concurrencia	genera	cierta	sobrecarga,	tanto	en	rendimiento	como	en	la
creación	de	código	adicional.
La	concurrencia	correcta	es	compleja,	incluso	para	problemas	sencillos.
Los	errores	de	concurrencia	no	se	suelen	repetir,	de	modo	que	se	ignoran[75]

en	lugar	de	considerarse	verdaderos	problemas.
La	concurrencia	suele	acarrear	un	cambio	fundamental	de	la	estrategia	de
diseño.

Desafíos

¿Qué	 hace	 que	 la	 programación	 concurrente	 sea	 tan	 complicada?	 Fíjese	 en	 la
siguiente	clase:

public	class	X	{

private	int	lastIdUsed;

public	int	getNextId()	{

return	++lastIdUsed;

}

}

Imagine	que	creamos	una	 instancia	X,	 establecemos	el	campo	lastIdUsed
en	42	y	después	compartimos	la	instancia	entre	dos	procesos.	Imagine	ahora	que
esos	dos	procesos	invocan	el	método	getNextId();	hay	tres	resultados	posibles:

El	primer	proceso	obtiene	el	valor	43,	el	segundo	el	valor	44	y	lastIdUsed
es	44.
El	primer	proceso	obtiene	el	valor	44,	el	segundo	el	valor	43	y	lastIdUsed
es	44.
El	primer	proceso	obtiene	el	valor	43,	el	segundo	el	valor	43	y	lastIdUsed
es	43.

El	 sorprendente	 tercer	 resultado[76]	 se	 produce	 cuando	 los	 dos	 procesos
coinciden.	Se	debe	 a	que	pueden	adoptar	varias	 rutas	posibles	 en	una	 línea	de
código	de	Java	y	algunas	generan	resultados	incorrectos.	¿Cuántas	rutas	distintas
existen?	 Para	 responder,	 debemos	 entender	 lo	 que	 hace	 el	 compilador	 justo	 a
tiempo	con	el	código	de	bytes	generado,	y	lo	que	el	modelo	de	memoria	de	Java
considera	atómico.

Una	 rápida	 respuesta,	 con	 el	 código	de	bytes	 generado,	 es	que	 existen	12

870	rutas	de	ejecución	diferentes[77]	para	los	dos	procesos	ejecutados	en	el	método
getNextId.	Si	el	tipo	de	lastIdUsed	cambia	de	int	a	long,	el	número	de	rutas
asciende	 a	 2	 704	 156.	 Evidentemente,	 muchas	 generan	 resultados	 válidos.	 El
problema	es	que	algunas	no	lo	hacen.

Principios	de	defensa	de	la	concurrencia

A	continuación	le	mostramos	una	serie	de	principios	y	técnicas	para	proteger	a
sus	sistemas	de	los	problemas	del	código	concurrente.

Principio	de	responsabilidad	única	(SRP)
SRP[78]	establece	que	un	método,	clase	o	componente	sólo	debe	tener	un	motivo
para	cambiar.	El	diseño	de	concurrencia	es	lo	bastante	complejo	como	para	ser
un	motivo	de	cambio	con	derecho	propio	y,	por	 tanto,	debe	separarse	del	resto
del	 código.	 Desafortunadamente,	 es	 habitual	 incrustar	 los	 detalles	 de	 la
implementación	de	concurrencia	directamente	en	otro	código	de	producción.

Tenga	en	cuenta	los	siguientes	aspectos:
	

El	 código	 relacionado	 con	 la	 concurrencia	 tiene	 su	 propio	 ciclo	 de
desarrollo,	cambios	y	ajustes.
El	 código	 relacionado	 con	 la	 concurrencia	 tiene	 sus	 propios	 desafíos,
diferentes	 y	 más	 complicados,	 que	 los	 del	 código	 no	 relacionado	 con	 la
concurrencia.
El	 número	 de	 formas	 en	 las	 que	 el	 código	 incorrecto	 basado	 en	 la
concurrencia	puede	fallar	lo	complica	ya	de	por	sí,	sin	la	carga	añadida	del
código	de	aplicación	circundante.

Recomendación:	Separe	el	código	de	concurrencia	del	resto	del	código[79].

Corolario:	Limitar	el	ámbito	de	los	datos
Como	 hemos	 visto,	 dos	 procesos	 que	 modifican	 el	 mismo	 campo	 u	 objeto
compartido	 pueden	 interferir	 entre	 ellos	 y	 provocar	 un	 comportamiento
inesperado.	Una	 solución	 consiste	 en	 usar	 la	 palabra	 clave	synchronized	 para
proteger	una	sección	importante	del	código	que	use	el	objeto	compartido,	aunque

conviene	 limitar	 la	cantidad	de	estas	secciones.	Cuantos	más	puntos	actualicen
datos	compartidos,	es	más	probable	que:

Se	olvide	de	proteger	uno	o	varios	de	esos	puntos,	y	se	dañe	el	código	que
modifica	los	datos	compartidos.
Se	duplique	el	esfuerzo	necesario	para	garantizar	la	protección	de	todos	los
elementos	(incumplimiento	de	DRY[80]).
Resulta	 complicado	determinar	 el	 origen	de	 los	 fallos,	 que	 por	 naturaleza
son	difíciles	de	detectar.

Recomendación:	 Encapsule	 los	 datos	 y	 limite	 el	 acceso	 a	 los	 datos
compartidos.

Corolario:	Usar	copias	de	datos
Una	forma	de	evitar	datos	compartidos	es	no	compartirlos.	En	algunos	casos	se
pueden	copiar	objetos	y	procesarlos	como	si	fueran	de	sólo	lectura.	En	otros,	se
pueden	copiar	objetos,	recopilar	los	resultados	de	varios	procesos	en	las	copias	y
después	 combinar	 los	 resultados	 en	 un	 mismo	 proceso.	 Si	 existe	 una	 forma
sencilla	 de	 evitar	 los	 objetos	 compartidos,	 el	 código	 resultante	 tendrá	 menos
problemas.	Puede	que	le	preocupe	el	coste	de	la	creación	de	objetos	adicionales.
Merece	la	pena	experimentar	y	comprobar	si	es	un	problema	real.	No	obstante,	si
el	 uso	 de	 copias	 de	 objetos	 permite	 al	 código	 evitar	 la	 sincronización,	 las
ventajas	de	evitar	el	bloque	compensan	la	creación	adicional	y	la	sobrecarga	de
la	recolección	de	elementos	sin	usar.

Corolario:	Los	procesos	deben	ser	independientes
Pruebe	 a	 crear	 el	 código	 de	 sus	 procesos	 de	 forma	 que	 cada	 uno	 sea
independiente	 y	 no	 comparta	 datos	 con	 otros.	 Cada	 uno	 procesa	 una	 solicitud
cliente	y	 todos	 los	datos	necesarios	provienen	de	un	origen	 sin	 compartir	 y	 se
almacenan	 como	 variables	 locales.	 De	 este	 modo,	 los	 procesos	 se	 comportan
como	 si	 fueran	 los	 únicos	 del	 mundo	 y	 no	 existieran	 requisitos	 de
sincronización.	 Por	 ejemplo,	 las	 subclases	 de	 HttpServlet	 reciben	 toda	 su
información	 como	 parámetros	 pasados	 en	 los	 métodos	 doGet	 y	 doPost.	 Esto
hace	que	cada	servlet	actúe	como	si	dispusiera	de	su	propio	equipo.	Mientras	el
código	del	servlet	sólo	use	variables	locales,	es	imposible	que	cause	problemas
de	 sincronización.	 Evidentemente,	 muchas	 aplicaciones	 que	 usan	 servlet	 se

topan	con	recursos	compartidos	como	conexiones	de	base	de	datos.
Recomendación:	 Intente	dividir	 los	datos	en	subconjuntos	 independientes

que	 se	 puedan	procesar	 en	procesos	 independientes,	 posiblemente	 en	distintos
procesadores.

Conocer	las	bibliotecas

Java	 5	 ofrece	 muchas	 mejoras	 para	 el	 desarrollo	 concurrente	 con	 respecto	 a
versiones	anteriores.	Existen	diversos	aspectos	que	tener	en	cuenta	a	la	hora	de
crear	código	de	procesos	en	Java	5:
	

Usar	las	colecciones	compatibles	con	procesos	proporcionadas.
Usar	la	estructura	de	ejecución	de	tareas	no	relacionadas.
Usar	soluciones	antibloqueo	siempre	que	sea	posible.
Varias	clases	de	bibliotecas	no	son	compatibles	con	procesos.

Colecciones	compatibles	con	procesos
En	 los	 albores	 de	 Java,	 Doug	 Lea	 escribió	 el	 conocido	 libro[81]	 Concurrent
Programming	 in	 Java.	 Al	 mismo	 tiempo,	 desarrolló	 varias	 colecciones
compatibles	con	procesos,	que	posteriormente	pasaron	a	formar	parte	del	JDK	en
el	 paquete	 java.util.concurrent.	 Las	 colecciones	 de	 dicho	 paquete	 son
compatibles	con	casos	de	procesos	múltiples	y	tienen	un	rendimiento	adecuado.
De	hecho,	 la	 implementación	ConcurrentHashMap	 tiene	mejor	 rendimiento	que
HashMap	 en	 la	 mayoría	 de	 los	 casos.	 También	 permite	 lecturas	 y	 escrituras
simultáneas,	 y	 dispone	 de	 métodos	 que	 admiten	 operaciones	 de	 composición
habituales	que	en	caso	contrario	serian	incompatibles	con	subprocesos.	Si	Java	5
es	su	entorno	de	desarrollo,	comience	con	ConcurrentHashMap.

Existen	otras	clases	añadidas	para	admitir	diseño	avanzado	de	concurrencia.
Veamos	algunos	ejemplos:

	ReentrantLock	 	Bloqueo	que	se	puede	adquirir	en	un	método	y	liberar	en
otro.	

	semaphore	 	Una	implementación	del	clásico	semáforo,	un	bloqueo	con
un	contador.	

	CountDownLatch	 	Bloqueo	que	espera	un	número	de	eventos	antes	de	liberar

todos	los	subprocesos	retenidos.	De	este	modo	todos	tienen
la	misma	oportunidad	de	iniciarse	al	mismo	tiempo.	

Recomendación:	Revise	las	clases	de	las	que	disponga.	En	el	caso	de	Java,
debe	 familiarizarse	 con	 java.util.concurrent,	 java.util.concurrent.atomic	 y
java.util.concurrent.locks.

Conocer	los	modelos	de	ejecución

Existen	 diversas	 formas	 de	 dividir	 el	 comportamiento	 de	 una	 aplicación
concurrente.	Para	describirlos	debe	conocer	ciertas	definiciones	básicas.

	Recursos

vinculados	
	Recursos	de	tamaño	o	número	fijo	usados	en	un	entorno
concurrente,	como	por	ejemplo	conexiones	de	base	de	datos	y
búfer	de	lectura/escritura	de	tamaño	fijo.	

	Exclusión

mutua	
	Sólo	un	proceso	puede	acceder	a	datos	o	a	un	recurso	compartido
por	vez.	

	Inanición	 	Se	impide	que	un	proceso	o	grupo	de	procesos	continúen
demasiado	tiempo	o	indefinidamente.	Por	ejemplo,	si	permite
primero	la	ejecución	de	los	procesos	más	rápidos,	los	que	se
ejecutan	durante	más	tiempo	pueden	perecer	de	inanición	si	los
primeros	no	terminan	nunca.	

	Bloqueo	 	Dos	o	más	procesos	esperan	a	que	ambos	terminen.	Cada	proceso
tiene	un	recurso	y	ninguno	puede	terminar	hasta	que	obtenga	el
otro	recurso.	

	Bloqueo

activo	
	Procesos	bloqueados,	intentando	realizar	su	labor	pero
estorbándose	unos	a	otros.	Por	motivos	de	resonancia,	los
procesos	siguen	intentando	avanzar	pero	no	pueden	durante
demasiado	tiempo,	o	de	forma	indefinida.	

Tras	mostrar	estas	definiciones,	ya	podemos	describir	los	distintos	modelos
de	ejecución	empleados	en	la	programación	concurrente.

Productor-Consumidor[82]

Uno	o	varios	procesos	productores	crean	trabajo	y	lo	añaden	a	un	búfer	o	a	una
cola.	Uno	o	varios	procesos	consumidores	adquieren	dicho	trabajo	de	la	cola	y	lo

completan.	La	cola	entre	productores	y	consumidores	es	un	recurso	vinculado,	lo
que	significa	que	los	productores	deben	esperar	a	que	se	libere	espacio	en	la	cola
antes	 de	 escribir	 y	 los	 consumidores	 deben	 esperar	 hasta	 que	 haya	 algo	 que
consumir	en	la	cola.	La	coordinación	entre	productores	y	consumidores	a	través
de	la	cola	hace	que	unos	emitan	señales	a	otros.	Los	productores	escriben	en	la
cola	e	indican	que	ya	no	está	vacía.	Los	consumidores	leen	de	la	cola	e	indican
que	ya	no	está	llena.	Ambos	esperan	la	notificación	para	poder	continuar.

Lectores-Escritores[83]

Cuando	un	 recurso	compartido	actúa	básicamente	como	 fuente	de	 información
para	 lectores	 pero	 ocasionalmente	 se	 actualiza	 por	 parte	 de	 escritores,	 la
producción	 es	 un	 problema.	 El	 énfasis	 de	 la	 producción	 puede	 provocar	 la
inanición	 y	 la	 acumulación	 de	 información	 caducada.	 Las	 actualizaciones
pueden	 afectar	 a	 la	 producción.	 La	 coordinación	 de	 lectores	 para	 que	 no	 lean
algo	que	un	escritor	está	actualizando	y	viceversa	es	complicada.	Los	escritores
tienden	 a	 bloquear	 a	 los	 lectores	 durante	 periodos	 prolongados,	 lo	 que	 genera
problemas	de	producción.

El	 desafío	 consiste	 en	 equilibrar	 las	 necesidades	de	 ambos	para	 satisfacer
un	 funcionamiento	correcto,	proporcionar	una	producción	 razonable	y	evitar	 la
inanición.	Una	sencilla	estrategia	hace	que	los	escritores	esperen	hasta	que	deje
de	haber	 lectores	antes	de	realizar	una	actualización.	Si	hay	lectores	continuos,
los	escritores	perecen	de	inanición.

Por	 otra	 parte,	 si	 hay	 escritores	 frecuentes	 y	 se	 les	 asigna	 prioridad,	 la
producción	 se	 ve	 afectada.	 Determinar	 el	 equilibrio	 y	 evitar	 problemas	 de
actualización	concurrente	es	el	objetivo	de	este	modelo.

La	cena	de	los	filósofos[84]

Imagine	varios	filósofos	sentados	alrededor	de	una	mesa	redonda.	A	la	izquierda
de	 cada	 uno	 hay	 un	 tenedor.	 En	 el	 centro	 de	 la	 mesa,	 una	 gran	 fuente	 de
espaguetis.	Los	filósofos	pasan	el	tiempo	pensando	a	menos	que	tengan	hambre.
Cuando	tienen	hambre,	utilizan	los	tenedores	situados	a	ambos	lados	para	comer.
No	pueden	comer	a	menos	que	tengan	dos	tenedores.	Si	el	filósofo	situado	a	la
derecha	o	 izquierda	de	otros	ya	 tiene	uno	de	 los	 tenedores	que	necesita,	 tendrá
que	 esperar	 a	 que	 termine	 de	 comer	 y	 deje	 los	 tenedores.	 Cuando	 un	 filósofo
termina	de	comer,	vuelve	a	colocar	los	tenedores	en	la	mesa	hasta	que	vuelve	a
tener	hambre.	Cambie	los	filósofos	por	procesos	y	los	tenedores	por	recursos	y

tendrá	 un	 problema	 habitual	 en	 muchas	 aplicaciones	 en	 las	 que	 los	 procesos
compiten	por	recursos.	A	menos	que	se	diseñen	correctamente,	los	sistemas	que
compiten	 de	 esta	 forma	 experimentan	 problemas	 de	 bloqueo,	 bloqueo	 mutuo,
producción	 y	 degradación	 de	 la	 eficacia.	 La	 mayoría	 de	 problemas	 de
concurrencia	 que	 encontrará	 serán	 alguna	 variante	 de	 éstos.	 Analice	 los
algoritmos	 y	 cree	 soluciones	 propias	 para	 estar	 preparado	 cuando	 surjan
problemas	de	concurrencia.

Recomendación:	 Aprenda	 estos	 algoritmos	 básicos	 y	 comprenda	 sus
soluciones.

Dependencias	entre	métodos	sincronizados

Las	 dependencias	 entre	 métodos	 sincronizados	 generan	 sutiles	 errores	 en	 el
código	 concurrente.	 Java	 cuenta	 con	 synchronized,	 que	 protege	 métodos
individuales.	No	obstante,	 si	 hay	más	de	un	método	 sincronizado	 en	 la	misma
clase	compartida,	puede	que	su	sistema	sea	incorrecto[85].

Recomendación:	Evite	usar	más	de	un	método	en	un	objeto	compartido.
En	ocasiones	tendrá	que	usar	más	de	un	método	en	un	objeto	compartido.

En	ese	caso,	hay	tres	formas	de	crear	código	correcto:
	

Bloqueo	basado	en	clientes:	El	cliente	debe	bloquear	al	servidor	antes	de
invocar	el	primer	método	y	asegurarse	de	que	el	alcance	del	bloque	incluye
el	código	que	invoque	el	último	método.
Bloqueo	basado	en	servidores:	Debe	crear	un	método	en	el	servidor	que
bloquee	el	servidor,	invoque	todos	los	métodos	y	después	anule	el	bloqueo.
El	cliente	debe	invocar	el	nuevo	método.
Servidor	 adaptado:	 Cree	 un	 intermediario	 que	 realice	 el	 bloque.	 Es	 un
ejemplo	de	bloqueo	basado	en	servidores	en	el	que	el	servidor	original	no
se	puede	modificar.

Reducir	el	tamaño	de	las	secciones	sincronizadas

La	 palabra	 clave	 synchronized	 presenta	 un	 bloqueo.	 Todas	 las	 secciones	 de
código	protegidas	por	el	mismo	bloque	sólo	tendrán	un	proceso	que	las	ejecute
en	 un	 momento	 dado.	 Los	 bloqueos	 son	 costosos	 ya	 que	 generan	 retrasos	 y
añaden	 sobrecarga.	 Por	 ello,	 no	 conviene	 colapsar	 el	 código	 con	 instrucciones

synchronized.	Por	otra	parte,	las	secciones	críticas[86]	deben	protegerse,	de	modo
que	debemos	diseñar	nuestro	código	con	el	menor	número	posible	de	secciones
críticas.

Algunos	 programadores	 intentan	 lograrlo	 ampliando	 el	 tamaño	 de	 sus
secciones	 críticas.	 Sin	 embargo,	 al	 ampliar	 la	 sincronización	 más	 allá	 de	 la
sección	 crítica	 mínima	 aumentan	 los	 problemas	 y	 afecta	 negativamente	 al
rendimiento[87].

Recomendación:	 Reduzca	 al	 máximo	 el	 tamaño	 de	 las	 secciones
synchronized.

Crear	código	de	cierre	correcto	es	complicado

Crear	un	sistema	activo	y	que	se	ejecute	indefinidamente	es	distinto	a	crear	algo
que	 funcione	 de	 forma	 temporal	 y	 después	 se	 cierre	 correctamente.	 Entre	 los
problemas	más	habituales	destacan	los	bloqueos[88],	con	procesos	que	esperan	una
señal	para	continuar	que	nunca	se	produce.

Imagine,	 por	 ejemplo,	 un	 sistema	 con	 un	 proceso	 principal	 que	 genera
varios	procesos	secundarios	y	que	espera	a	que	todos	 terminen	antes	de	 liberar
sus	 recursos	 y	 cerrarse.	 ¿Qué	 sucede	 si	 uno	 de	 los	 procesos	 secundarios	 está
bloqueado?	El	principal	esperará	indefinidamente	y	el	sistema	nunca	se	cerrará.

Imagine	 ahora	 un	 sistema	 similar	 al	 que	 se	 le	 indica	 que	 se	 cierre.	 El
proceso	 principal	 indica	 a	 todos	 los	 secundarios	 que	 abandonen	 sus	 tareas	 y
terminen.	 Pero	 imagine	 que	 dos	 procesos	 secundarios	 funcionan	 como	 par
productor/consumidor	 y	 que	 el	 productor	 recibe	 una	 señal	 del	 principal	 y	 se
cierra	 rápidamente.	 El	 consumidor	 espera	 un	 mensaje	 del	 productor	 y	 puede
quedar	bloqueado	en	un	estado	en	el	que	no	recibe	la	señal	del	principal,	lo	que
también	impide	que	éste	finalice.

Son	situaciones	habituales.	Por	tanto,	si	tiene	que	crear	código	concurrente
con	cierres	correctos,	 tendrá	que	dedicar	 tiempo	a	que	el	cierre	se	produzca	de
forma	correcta.

Recomendación:	Planifique	con	antelación	el	proceso	de	cierre	y	pruébelo
hasta	que	funcione.	Le	llevará	más	tiempo	del	que	espera.	Repase	los	algoritmos
existentes	porque	será	complicado.

Probar	código	con	procesos

Demostrar	 que	 el	 código	 es	 correcto	 no	 resulta	 práctico.	 Las	 pruebas	 no

garantizan	su	corrección.	Sin	embargo,	las	pruebas	adecuadas	pueden	minimizar
los	 riesgos,	 en	 especial	 en	 aplicaciones	de	un	 solo	proceso.	Cuando	hay	dos	o
más	 procesos	 que	 usan	 el	mismo	 código	 y	 trabajan	 con	 datos	 compartidos,	 la
situación	se	vuelve	más	compleja.

Recomendación:	 Cree	 pruebas	 que	 puedan	 detectar	 problemas	 y
ejecútelas	periódicamente,	con	distintas	configuraciones	de	programación	y	del
sistema,	y	cargas.	Si	las	pruebas	fallan,	identifique	el	fallo.	No	lo	ignore	porque
las	pruebas	superen	una	ejecución	posterior.

Hay	 muchos	 factores	 que	 tener	 en	 cuenta.	 Veamos	 algunas
recomendaciones	concretas:
	

Considere	los	fallos	como	posibles	problemas	de	los	procesos.
Consiga	que	primero	funcione	el	código	sin	procesos.
El	código	con	procesos	se	debe	poder	conectar	a	otros	elementos.
El	código	con	procesos	debe	ser	modificable.
Ejecute	con	más	procesos	que	procesadores.
Ejecute	en	diferentes	plataformas.
Diseñe	el	código	para	probar	y	forzar	fallos.

Considerar	los	fallos	como	posibles	problemas	de	los	procesos
El	 código	 con	 procesos	 hace	 que	 fallen	 elementos	 que	 no	 deberían	 fallar.
Muchos	desarrolladores	desconocen	cómo	interactúan	los	procesos	con	otro	tipo
de	código.	Los	problemas	del	código	con	procesos	pueden	mostrar	sus	síntomas
una	vez	cada	mil	o	un	millón	de	ejecuciones.

Los	 intentos	 por	 repetir	 los	 sistemas	 pueden	 resultar	 frustrantes,	 lo	 que
suele	provocar	que	los	programadores	consideren	el	fallo	como	algo	aislado.	Es
recomendable	asumir	que	los	fallos	aislados	no	existen.	Cuanto	más	los	ignore,
mayor	será	la	cantidad	de	código	que	se	acumule	sobre	un	enfoque	defectuoso.

Recomendación:	No	ignore	los	fallos	del	sistema	como	algo	aislado.

Conseguir	que	primero	funcione	el	código	sin	procesos
Puede	 parecer	 evidente	 pero	 no	 está	 de	 más	 recordarlo.	 Asegúrese	 de	 que	 el
código	 funciona	 fuera	 de	 sus	 procesos.	 Por	 lo	 general,	 esto	 significa	 crear
algunos	POJO	que	 los	 procesos	 deban	 invocar.	Los	POJO	no	 son	 compatibles

con	 los	 procesos	 y	 por	 tanto	 se	 pueden	 probar	 fuera	 de	 su	 entorno.	 Conviene
incluir	en	los	POJO	la	mayor	cantidad	posible	del	sistema.

Recomendación:	No	intente	identificar	fallos	de	procesos	y	que	no	sean	de
procesos	 al	mismo	 tiempo.	 Asegúrese	 de	 que	 su	 código	 funciona	 fuera	 de	 los
procesos.

El	código	con	procesos	se	debe	poder	conectar	a	otros	elementos
Cree	el	código	compatible	con	la	concurrencia	de	forma	que	se	pueda	ejecutar	en
distintas	configuraciones:
	

Un	proceso,	varios	procesos	y	variarlo	durante	la	ejecución.
El	código	con	procesos	interactúa	con	algo	que	puede	ser	real	o	probado.
Ejecutar	con	pruebas	dobles	ejecutadas	de	forma	rápida,	lenta	y	variable.
Configurar	pruebas	que	ejecutar	en	diferentes	iteraciones.

Recomendación:	 El	 código	 con	 procesos	 debe	 poder	 conectar	 a	 otros
elementos	y	ejecutar	en	distintas	configuraciones.

El	código	con	procesos	debe	ser	modificable
La	obtención	del	equilibrio	adecuado	de	procesos	suele	requerir	operaciones	de
ensayo	y	error.	En	las	fases	iniciales,	compruebe	el	rendimiento	del	sistema	bajo
diferentes	 configuraciones.	 Permita	 que	 se	 puedan	 modificar	 los	 distintos
procesos	y	también	durante	la	ejecución	del	sistema.	También	puede	permitir	la
modificación	automática	en	función	de	la	producción	y	la	utilización	del	sistema.

Ejecutar	con	más	procesos	que	procesadores
Cuando	 el	 sistema	 cambia	 de	 tarea,	 se	 producen	 reacciones.	 Para	 promover	 el
intercambio	de	tareas,	realice	la	ejecución	con	más	procesos	que	procesadores	o
núcleos.	 Cuanto	 mayor	 sea	 la	 frecuencia	 de	 intercambio	 de	 las	 tareas,	 más
probabilidades	 existen	 de	 que	 el	 código	 carezca	 de	 una	 sección	 crítica	 o	 se
produzcan	bloqueos.

Ejecutar	en	diferentes	plataformas

En	2007	diseñamos	un	curso	sobre	programación	concurrente,	principalmente	en
OS	X.	La	clase	se	presentó	con	Windows	XP	ejecutado	en	una	MV.	Se	crearon
pruebas	 para	 ilustrar	 condiciones	 de	 fallo	 que	 fallaban	 con	más	 frecuencia	 en
OS	X	que	en	XP.

En	todos	los	casos,	el	código	probado	era	incorrecto.	Esto	refuerza	el	hecho
de	que	cada	sistema	operativo	tiene	una	política	de	procesos	diferente	que	afecta
a	 la	 ejecución	 del	 código.	 El	 código	 con	 procesos	 múltiples	 se	 comporta	 de
forma	distinta	en	cada	entorno[89].	Debe	ejecutar	sus	pruebas	en	todos	los	entornos
de	implementación	posibles.

Recomendación:	Ejecute	el	código	con	procesos	en	todas	las	plataformas
de	destino	con	frecuencia	y	en	las	fases	iniciales.

Diseñar	el	código	para	probar	y	forzar	fallos
Es	 habitual	 que	 los	 fallos	 del	 código	 concurrente	 se	 oculten.	 Las	 pruebas
sencillas	 no	 suelen	 mostrarlos.	 En	 realidad,	 suelen	 ocultarse	 durante	 el
procesamiento	normal.	Pueden	aparecer	horas,	días	o	semanas	después.

La	razón	de	que	los	problemas	de	procesos	sean	infrecuentes,	esporádicos	y
apenas	 se	 repitan	es	que	 sólo	 fallan	algunas	de	 las	miles	de	 rutas	posibles	que
recorren	una	sección	vulnerable.	Por	 tanto,	 la	probabilidad	de	adoptar	una	 ruta
fallida	es	realmente	baja,	lo	que	dificulta	la	detección	y	la	depuración.

Se	 preguntará	 cómo	 aumentar	 las	 posibilidades	 de	 capturar	 estos	 casos.
Puede	 diseñar	 el	 código	 y	 forzarle	 a	 que	 se	 ejecute	 en	 diferentes	 órdenes
añadiendo	métodos	como	Object.wait(),	Object.sleep(),	Object.yield()	y
Object.priority().

Estos	 métodos	 afectan	 al	 orden	 de	 ejecución	 y,	 por	 tanto,	 aumentan	 las
posibilidades	 de	 detectar	 un	 error.	 Resulta	 más	 adecuado	 que	 el	 código
incorrecto	 falle	 lo	 antes	 posible	 y	 con	 frecuencia.	 Hay	 dos	 opciones	 de
instrumentación	de	código:
	

Manual.
Automática.

Manual
Puede	 añadir	 invocaciones	 de	 wait(),	 sleep(),	 yield()	 y	 priority()

manualmente	 a	 su	 código,	 en	 especial	 si	 tiene	 que	 probar	 un	 fragmento

especialmente	escabroso.	Veamos	un	ejemplo:
public	synchronized	String	nextUrlOrNull()	{

if	(hasNext())	{

String	url	=	urlGenerator.next();

Thread.yield();	//	se	añade	para	pruebas.

updateHasNext();

return	url;

}

return	null;

}

La	 invocación	 de	 yield()	 cambia	 la	 ruta	 de	 ejecución	 adoptada	 por	 el
código	y	 posiblemente	 hace	que	 el	 código	 falla	 donde	no	 lo	 hacía	 antes.	 Si	 el
código	 falla,	no	se	debe	a	 la	 invocación	de	yield()	añadida[90].	Se	debe	a	que	el
código	es	incorrecto	y	hemos	hecho	que	el	fallo	sea	más	evidente.	Este	enfoque
presenta	varios	problemas:

Tendrá	que	buscar	manualmente	los	puntos	adecuados	donde	hacerlo.
¿Cómo	sabe	dónde	incluir	la	invocación	y	qué	tipo	de	invocación	usar?
La	 presencia	 de	 este	 código	 en	 un	 entorno	 de	 producción	 ralentiza
innecesariamente	el	código.
Es	 un	 enfoque	 que	 puede	 o	 no	 detectar	 los	 fallos;	 de	 hecho,	 no	 las	 tiene
todas	consigo.

Lo	que	necesitamos	es	una	forma	de	hacerlo	durante	la	fase	de	pruebas,	no
de	 producción.	 También	 debemos	 poder	 mezclar	 configuraciones	 entre
ejecuciones,	lo	que	aumenta	las	probabilidades	de	detectar	los	errores.

Evidentemente,	 si	 dividimos	 el	 sistema	 POJO	 que	 no	 sepa	 nada	 los
procesos	en	clases	que	controlen	los	procesos,	resultará	más	sencillo	ubicar	los
puntos	 en	 los	 que	 instrumentar	 el	 código.	 Es	más,	 podríamos	 crear	 diferentes
pruebas	 que	 invoquen	 los	 POJO	 bajo	 distintos	 regímenes	 de	 invocaciones	 a
sleep,	yield	y	demás.

Automática
Puede	usar	herramientas	como	la	estructura	orientada	a	aspectos,	CGLIB	o	ASM
para	 instrumentar	 su	 código	mediante	 programación.	 Por	 ejemplo,	 podría	 usar
una	clase	con	un	único	método:

public	class	ThreadJigglePoint	{

public	static	void	jiggle()	{

}

}

Puede	añadir	invocaciones	en	distintos	puntos	del	código:
public	synchronized	String	nextUrlOrNull()	{

if(hasNext())	{

ThreadJigglePoint.jiggle();

String	url	=	urlGenerator.next();

ThreadJigglePoint.jiggle();

updateHasNext();

ThreadJigglePoint.jiggle();

return	url;

}

return	null;

}

Tras	 ello,	 use	 un	 sencillo	 aspecto	 que	 seleccione	 aleatoriamente	 entre	 no
hacer	nada,	pausar	o	generar	un	resultado.

Imagine	que	 la	 clase	ThreadJigglePoint	 tiene	dos	 implementaciones.	La
primera	 implementa	 jiggle	 para	 no	 hacer	 nada	 y	 se	 usa	 en	 producción.	 La
segunda	genera	un	número	 aleatorio	 para	 elegir	 entre	sleep,	yield	 o	 nada.	Si
ejecuta	 sus	 pruebas	mil	 veces	 con	jiggle	 de	 forma	 aleatoria,	 puede	 descubrir
algunos	fallos.	Si	la	prueba	es	satisfactoria,	al	menos	puede	felicitarse	por	haber
actuado	correctamente.	Aunque	sea	un	 tanto	simple,	puede	 resultar	una	opción
razonable	en	lugar	de	recurrir	a	una	herramienta	más	sofisticada.	La	herramienta
ConTest[91],	desarrollada	por	 IBM,	 tiene	un	 funcionamiento	 similar	pero	es	más
sofisticada.

El	objetivo	es	que	los	procesos	del	código	se	ejecuten	en	distinto	orden	en
momentos	 diferentes.	 La	 combinación	 de	 pruebas	 bien	 escritas	 y	 ejecuciones
aleatorias	puede	aumentar	considerablemente	la	capacidad	de	detectar	errores.

Recomendación:	Use	estas	estrategias	para	detectar	errores.

Conclusión

Es	 complicado	 conseguir	 código	 concurrente	 correcto.	 El	 código	 sencillo	 se
puede	 complicar	 al	 añadir	 varios	 procesos	 y	 datos	 compartidos.	 Si	 tiene	 que
crear	código	concurrente,	tendrá	que	hacerlo	con	rigor	o	se	enfrentará	a	sutiles	y
esporádicos	fallos.

En	 primer	 lugar,	 siga	 el	 principio	 de	 responsabilidad	 única.	 Divida	 su
sistema	 en	 varios	 POJO	 que	 separen	 el	 código	 compatible	 con	 procesos	 del
resto.	Asegúrese	de	probar	únicamente	el	código	compatible	con	procesos	y	nada
más,	por	lo	que	este	código	debe	ser	de	tamaño	reducido	y	específico.

Conozca	 los	 orígenes	 de	 los	 problemas	 de	 concurrencia:	 varios	 procesos
que	operen	en	datos	compartidos	o	usen	una	agrupación	de	recursos	común.	Los
casos	 de	 límites,	 como	el	 cierre	 correcto	 o	 la	 conclusión	de	 la	 iteración	de	 un
bucle,	pueden	ser	especialmente	espinosos.

Conozca	 su	 biblioteca	 y	 los	 algoritmos	 fundamentales.	 Debe	 comprender
cómo	las	funciones	de	la	biblioteca	permiten	resolver	problemas	similares	a	los
de	los	algoritmos	fundamentales.

Aprenda	 a	 localizar	 regiones	 del	 código	 que	 se	 puedan	 bloquear	 y
bloquéelas.	 No	 bloquee	 otras	 regiones	 que	 no	 lo	 necesiten.	 Evite	 invocar	 una

sección	 bloqueada	 desde	 otra.	 Para	 ello	 debe	 saber	 si	 un	 elemento	 está
compartido	 o	 no.	 Reduzca	 la	 cantidad	 de	 objetos	 compartidos	 y	 su	 ámbito.
Cambie	los	diseños	de	los	objetos	con	datos	compartidos	para	acomodar	clientes
en	lugar	de	obligar	a	los	clientes	a	gestionar	el	estado	compartido.

Los	 problemas	 se	 acumularán.	 Los	 que	 no	 aparezcan	 inicialmente	 suelen
considerarse	 esporádicos	 y	 suelen	 producirse	 en	 la	 fase	 de	 carga	 o	 de	 modo
aparentemente	aleatorio.	Por	 tanto,	debe	poder	ejecutar	su	código	con	procesos
en	 diferentes	 configuraciones	 y	 plataformas	 de	 forma	 repetida	 y	 continua.	 La
capacidad	de	prueba,	algo	natural	si	aplica	las	tres	leyes	de	TDD,	implica	cierto
nivel	 de	 conectividad,	 lo	 que	 ofrece	 la	 compatibilidad	 necesaria	 para	 ejecutar
código	en	distintas	configuraciones.

La	probabilidad	de	detectar	errores	mejora	 si	 se	 toma	el	 tiempo	necesario
para	instrumentar	su	código.	Puede	hacerlo	manualmente	o	mediante	tecnologías
automatizadas.	Hágalo	 en	 las	 fases	 iniciales.	Es	 aconsejable	 ejecutar	 el	 código
basado	 en	 procesos	 durante	 el	 mayor	 tiempo	 posible	 antes	 de	 pasarlo	 a
producción.

Si	adopta	un	enfoque	limpio,	aumentarán	las	probabilidades	de	hacerlo	de
forma	correcta.

Bibliografía
	

[Lea99]:	 Concurrent	 Programming	 in	 Java:	 Design	 Principles	 and
Patterns,	2d.	ed.,	Doug	Lea,	Prentice	Hall,	1999.
[PPP]:	Agile	 Software	 Development:	 Principles,	 Patterns,	 and	 Practices,
Robert	C.	Martin,	Prentice	Hall,	2002.
[PRAG]:	 The	 Pragmatic	 Programmer,	 Andrew	 Hunt,	 Dave	 Thomas,
Addison-Wesley,	2000.

14
Refinamiento	sucesivo

Caso	práctico	de	un	analizador	de	argumentos	de	línea	de	comandos

Este	capítulo	es	un	caso	práctico	de	refinamiento	sucesivo.	Veremos	un	módulo
que	 comienza	 correctamente	 pero	 no	 mantiene	 dicha	 corrección.	 Tras	 ello,
veremos	 cómo	 se	 refactoriza	 y	 se	 limpia.	 Muchos	 hemos	 tenido	 que	 analizar
argumentos	 de	 línea	 de	 comando.	 Si	 no	 disponemos	 de	 una	 utilidad	 para	 ello,
recorremos	la	matriz	de	cadenas	pasadas	a	la	función	principal.	Puede	encontrar
utilidades	 de	 calidad	 pero	 ninguna	 hace	 exactamente	 lo	 que	 necesitamos.	 Por
ello,	decidí	crear	una	propia,	a	la	que	he	denominado	Args.	Args	es	muy	fácil	de

usar.	Basta	 crearla	 con	 los	 argumentos	 de	 entrada	 y	 una	 cadena	de	 formato,	 y
después	consultar	a	la	instancia	de	Args	los	valores	de	los	argumentos.	Fíjese	en
el	siguiente	ejemplo:	Listado	14-1

Uso	de	Args

public	static	void	main(String[]	args)	{

try	{

Args	arg	=	new	Args(“l,p#,d*”,	args);

boolean	logging	=	arg.getBoolean(‘l’);

int	port	=	arg.getInt(‘p’);

String	directory	=	arg.getString(‘d’);

executeApplication(logging,	port,	directory);

}	catch	(ArgsException	e)	{

System.out.printf(“Argument	error:	%s\n”,	e.errorMessage());

}

}

Comprobará	lo	sencillo	que	es.	Creamos	una	instancia	de	la	clase	Args	con
dos	 parámetros.	 El	 primero	 es	 la	 cadena	 de	 formato	 o	 esquema:	 “l,p#,d*”.
Define	tres	argumentos	de	línea	de	comandos.	El	primero,	-l,	es	un	argumento
booleano.	 El	 segundo,	 -p,	 es	 un	 argumento	 entero.	 El	 tercero,	 -d,	 es	 un
argumento	de	cadena.	El	segundo	parámetro	del	constructor	Args	es	la	matriz	de
argumentos	 de	 línea	 de	 comandos	 pasada	 a	 main.	 Si	 el	 constructor	 no	 genera
ArgsException,	 la	 línea	 de	 comandos	 entrante	 se	 ha	 analizado	 y	 se	 puede
consultar	 la	 instancia	Args.	Se	usan	métodos	como	getBoolean,	getInteger	y
getString	para	acceder	a	los	valores	de	los	argumentos	por	sus	nombres.

Si	hay	un	problema,	ya	sea	en	la	cadena	de	formato	o	en	los	argumentos	de
línea	de	comandos,	se	genera	ArgsException.	La	descripción	del	error	se	puede
recuperar	del	método	errorMessage	de	la	excepción.

Implementación	de	Args

El	Listado	14-2	es	la	implementación	de	la	clase	Args.	Examínela	con	atención.
El	 estilo	 y	 la	 estructura	 se	 han	 trabajado	 concienzudamente	 y	 espero	 que	 los
imite.

Listado	14-2
Args.java

package	com.objectmentor.utilities.args;

import	static	com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

import	java.util.*;

public	class	Args	{

private	Map<Character,	ArgumentMarshaler>	marshalers;

private	Set<Character>	argsFound;

private	ListIterator<String>	currentArgument;

public	Args(String	schema,	String[]	args)	throws	ArgsException	{

marshalers	=	new	HashMap<Character,	ArgumentMarshaler>();

argsFound	=	new	HashSet<Character>();

parseSchema(schema);

parseArgumentStrings(Arrays.asList(args));

}

private	void	parseSchema(String	schema)	throws	ArgsException	{

for	(String	element	:	schema.split(“,”))

if	(element.length()	>	0)

parseSchemaElement(element.trim());

}

private	void	parseSchemaElement(String	element)	throws	ArgsException	{

char	elementId	=	element.charAt(0);

String	elementTail	=	element.substring(1);

validateSchemaElementId(element	Id);

if	(elementTail.length()	==	0)

marshalers.put(elementId,	new	BooleanArgumentMarshaler());

else	if	(elementTail.equals(“*”))

marshalers.put(elementId,	new	StringArgumentMarshaler());

else	if	(elementTail.equals(“#”))

marshalers.put(elementId,	new	IntegerArgumentMarshaler());

else	if	(elementTail.equals(“##”))

marshalers.put(elementId,	new	DoubleArgumentMarshaler());

else	if	(elementTail.equals(“[*]”))

marshalers.put(elementId,	new	StringArrayArgumentMarshaler());

else

throw	new	ArgsException(INVALID_ARGUMENT_FORMAT,	elementId,	elementTail);

}

private	void	validateSchemaElementId(char	elementId)	throws	ArgsException	{

if	{!Character.isLetter(elementId))

throw	new	ArgsException(INVALID_ARGUMENT_NAME,	elementId,	null);

}

private	void	parseArgumentStrings(List<String>	argsList)	throws	ArgsException

{

for	(currentArgument	=	argsList.listIterator();	currentArgument.hasNext();)

{

String	argString	=	currentArgument.next();

if	(argString.startsWith(“-”))	{

parseArgumentCharacters(argString.substring(1));

}	else	{

currentArgument.previous();

break;

}

}

}

private	void	parseArgumentCharacters(String	argChars)	throws	ArgsException	{

for	(int	i	=	0;	i	<	argChars.length();	i++)

parseArgumentCharacter(argChars.charAt(i));

}

private	void	parseArgumentCharacter(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	==	null)	{

throw	new	ArgsException	(UNEXPECTED_ARGUMENT,	argChar,	null);

}	else	{

argsFound.add(argChar);

try	{

m.set(currentArgument);

}	catch	(ArgsException	e)	{

e.setErrorArgumentId(argChar);

throw	e;

}

}

}

public	boolean	has(char	arg)	{

return	argsFound.contains(arg);

}

public	int	nextArgument()	{

return	currentArgument.nextIndex();

}

public	boolean	getBoolean(char	arg)	{

return	BooleanArgumentMarshaler.getValue(marshalers.get(arg));

}

public	String	getString(char	arg)	{

return	StringArgumentMarshaler.getValue(marshalers.get(arg));

}

public	int	getInt(char	arg)	{

return	IntegerArgumentMarshaler.getValue	(marshalers.get(arg));

}

public	double	getDouble(char	arg)	{

return	DoubleArgumentMarshaler.getValue(marshalers.get(arg));

}

public	String[]	getStringArray(char	arg)	{

return	StringArrayArgumentMarshaler.getValue(marshalers.get(arg));

}

}

Puede	leer	el	código	de	arriba	a	abajo	sin	necesidad	de	saltar	de	un	punto	a
otro	 ni	 buscar	 hacia	 adelante.	 Lo	 que	 seguramente	 busque	 es	 la	 definición	 de
ArgumentMarshaler,	que	hemos	omitido	intencionadamente.	Tras	leer	el	código,
comprenderá	 la	 interfaz	 ArgumentMarshaler	 y	 la	 función	 de	 sus	 variantes.
Veamos	algunas	de	ellas	(entre	los	listados	14-3	y	14-6).

Listado	14-3
ArgumentMarshaler.java

public	interface	ArgumentMarshaler	{

void	set(Iterator<String>	currentArgument)	throws	ArgsException;

}

Listado	14-4
BooleanArgumentMarshaler.java

public	class	BooleanArgumentMarshaler	implements	ArgumentMarshaler	{

private	boolean	booleanValue	=	false;

public	void	set	(Iterator<String>	currentArgument)	throws	ArgsException	{

booleanValue	=	true;

}

public	static	boolean	getValue(ArgumentMarshaler	am)	{

if	(am	!=	null	&&	am	instanceof	BooleanArgumentMarshaler)

return	((BooleanArgumentMarshaler)	am).booleanValue;

else

return	false;

}

}

Listado	14-5
StringArgumentMarshaler.java

import	static	com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public	class	StringArgumentMarshaler	implements	ArgumentMarshaler	{

private	String	stringValue	=	“”;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

try	{

stringValue	=	currentArgument.next();

}	catch	(NoSuchElementException	e)	{

throw	new	ArgsException(MISSING_STRING);

}

}

public	static	String	getValue(ArgumentMarshaler	am)	{

if	(am	!=	null	&&	am	instanceof	StringArgumentMarshaler)

return	((StringArgumentMarshaler)	am).stringValue;

else

return	“”;

}

}

Listado	14-6
IntegerArgumentMarshaler.java

import	static	com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public	class	IntegerArgumentMarshaler	implements	ArgumentMarshaler	{

private	int	intValue	=	0;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

String	parameter	=	null;

try	{

parameter	=	currentArgument.next();

IntValue	=	Integer.parseInt(parameter);

}	catch	(NoSuchElementException	e)	{

throw	new	ArgsException(MISSING_INTEGER);

}	catch	(NumberFormatException	e)	{

throw	new	ArgsException(INVALID_INTEGER,	parameter);

}

}

public	static	int	getValue	(ArgumentMarshaler	am)	{

if	(am	!=	null	&&	am	instanceof	IntegerArgumentMarshaler)

return	((IntegerArgumentMarshaler)	am).intValue;

else

return	0;

}

}

Las	otras	variantes	de	ArgumentMarshaler	simplemente	repiten	este	patrón
en	matrices	double	y	String	y	sólo	complicarían	el	capítulo.	Puede	consultarlas
como	ejercicio.	Otro	 fragmento	que	puede	 resultar	complicado	es	 la	definición
de	las	constantes	de	código	de	error,	incluidas	en	la	clase	ArgsException	(véase
el	Listado	14-7).

Listado	14-7
ArgsException.java

import	static	com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public	class	ArgsException	extends	Exception	{

private	char	errorArgumentId	=	‘\0’;

private	String	errorParameter	=	null;

private	ErrorCode	errorCode	=	OK;

public	ArgsException()	{}

public	ArgsException(String	message)	{	super(message);	}

public	ArgsException(ErrorCode	errorCode)	{

this.errorCode	=	errorCode;

}

public	ArgsException(ErrorCode	errorCode,	String	errorParameter)	{

this.errorCode	=	errorCode;

this.errorParameter	=	errorParameter;

}

public	ArgsException(ErrorCode	errorCode,

char	errorArgumentId,	String	errorParameter)	{

this.errorCode	=	errorCode;

this.errorParameter	=	errorParameter;

this.errorArgumentId	=	errorArgumentId;

}

public	char	getErrorArgumentId()	{

return	errorArgumentId;

}

public	void	setErrorArgumentId(char	errorArgumentId)	{

this.errorArgumentId	=	errorArgumentId;

}

public	String	getErrorParameter()	{

return	errorParameter;

}

public	void	setErrorParameter(String	errorParameter)	{

this.errorParameter	=	errorParameter;

}

public	ErrorCode	getErrorCode()	{

return	errorCode;

}

public	void	setErrorCode(ErrorCode	errorCode)	{

this.errorCode	=	errorCode;

}

public	String	errorMessage()	{

switch	(errorCode)	{

case	OK:

return	“TILT:	Should	not	get	here.”;

case	UNEXPECTED_ARGUMENT:

return	String.format(“Argument	-%c	unexpected.”,	errorArgumentId);

case	MISSING_STRING:

return	String.format(“Could	not	find	string	parameter	for	-%c.”,

errorArgumentId);

case	INVALID	INTEGER:

return	String.format(“Argument	-%c	expects	an	integer	but	was	‘%s’.”,

errorArgumentId,	errorParameter);

case	MISSING_INTEGER:

return	String.format(“Could	not	find	integer	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_DOUBLE:

return	String.format(“Argument	-%c	expects	a	double	but	was	‘%s’.”,

errorArgumentId,	errorParameter);

case	MISSING_DOUBLE:

return	String.format(“Could	not	find	double	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_ARGUMENT_NAME:

return	String.format(“‘%c’	is	not	a	valid	argument	name.”,

errorArgumentId);

case	INVALID_ARGUMENT_FORMAT:

return	String.format(“‘%s’	is	not	a	valid	argument	format.”,

errorParameter);

}

return	“”;

}

public	enum	ErrorCode	{

OK,	INVALID_ARGUMENT_FORMAT,	UNEXPECTED_ARGUMENT,	INVALID_ARGUMENT_NAME,

MISSING_STRING,

MISSING_INTEGER,	INVALID_INTEGER,

MISSING_DOUBLE,	INVALID_DOUBLE	}

}

Es	sorprendente	 la	cantidad	de	código	necesario	para	detallar	este	sencillo
concepto.	Uno	de	 los	motivos	es	el	uso	de	un	 lenguaje	especialmente	profuso.
Java,	 al	 ser	 un	 lenguaje	 de	 tipos	 estáticos,	 requiere	 muchas	 palabras	 para
satisfacer	el	sistema	de	tipos.	En	lenguajes	como	Ruby,	Python	o	Smalltalk,	este
programa	es	mucho	más	reducido[92].

Vuelva	 a	 leer	 el	 código.	 Fíjese	 especialmente	 en	 los	 nombres	 de	 los
elementos,	 el	 tamaño	de	 las	 funciones	y	el	 formato.	Si	 tiene	experiencia	como
programador,	partes	del	estilo	o	la	estructura	no	le	convencerán,	pero	espero	que,

desde	 un	 punto	 de	 vista	 global,	 considere	 que	 el	 programa	 está	 bien	 escrito	 y
tiene	una	estructura	limpia.

Por	ejemplo,	debería	ser	evidente	cómo	añadir	un	nuevo	tipo	de	argumento,
como	una	fecha	o	un	número	complejo,	y	que	dicha	inclusión	apenas	requeriría
código.	En	definitiva,	 bastaría	 con	una	nueva	variante	 de	ArgumentMarshaler,
una	 nueva	 función	 getXXX	 y	 una	 nueva	 instrucción	 case	 en	 la	 función
parseSchemaElement.	 También	 habría	 un	 nuevo	 código
ArgsException.ErrorCode	y	un	nuevo	mensaje	de	error.

Cómo	se	ha	realizado
No	diseñé	este	programa	de	principio	a	fin	en	su	forma	actual	y,	sobre	todo,	no
espero	 que	 pueda	 crear	 programas	 limpios	 y	 elegantes	 a	 la	 primera.	 Si	 algo
hemos	aprendido	en	las	dos	últimas	décadas	es	que	la	programación	es	un	arte
más	 que	 una	 ciencia.	 Para	 escribir	 código	 limpio,	 primero	 debe	 crear	 código
imperfecto	y	después	limpiarlo.	No	debería	sorprenderle.	Ya	lo	aprendimos	en	el
colegio	 cuando	 los	 profesores	 (normalmente	 en	 vano)	 nos	 obligaban	 a	 crear
borradores	 de	 nuestras	 redacciones.	 El	 proceso,	 nos	 decían,	 era	 escribir	 un
primer	borrador,	después	otro,	y	después	otros	muchos	hasta	lograr	una	versión
definitiva.	 Para	 escribir	 redacciones	 limpias,	 el	 refinamiento	 debía	 ser
continuado.

Muchos	programadores	noveles	(como	sucede	con	los	alumnos)	no	siguen
este	consejo.	Creen	que	el	objetivo	principal	es	que	el	programa	funcione.	Una
vez	que	lo	consiguen,	pasan	a	la	siguiente	tarea,	y	conservan	el	estado	funcional
del	programa,	 sea	cual	 sea.	Los	programadores	experimentados	saben	que	esto
es	un	suicidio	profesional.

Args:	El	primer	borrador

El	Listado	14-8	muestra	una	versión	inicial	de	la	clase	Args.	Funciona,	pero	es
un	desastre.

Listado	14-8
Args.java	(primer	borrador)

import	java.text.ParseException;

import	java.util.*;

public	class	Args	{

private	String	schema;

private	String[]	args;

private	boolean	valid	=	true;

private	Set<Character>	unexpectedArguments	=	new	TreeSet<Character>();

private	Map<Character,	Boolean>	booleanArgs	=

new	HashMap<Character,	Boolean>();

private	Map<Character,	String>	stringArgs	=

new	HashMap<Character,	String>();

private	Map<Character,	Integer>	intArgs	=

new	HashMap<Character,	Integer>();

private	Set<Character>	argsFound	=	new	HashSet<Character>();

private	int	currentArgument;

private	char	errorArgumentId	=	‘\0’;

private	String	errorParameter	=	“TILT”;

private	ErrorCode	errorCode	=	ErrorCode.OK;

private	enum	ErrorCode	{

OK,	MISSING_STRING,	MISSING_INTEGER,	INVALID_INTEGER,	UNEXPECTED_ARGUMENT}

public	Args(String	schema.	String[]	args)	throws	ParseException	{

this.schema	=	schema;

this.args	=	args;

valid	=	parse();

}

private	boolean	parse()	throws	ParseException	{

if	(schema.length()	==	0	&&	args.length	==	0)

return	true;

parseSchema();

try	{

parseArguments();

}	catch	(ArgsException	e)	{

}

return	valid;

}

private	boolean	parseSchema()	throws	ParseException	{

for	(String	element	:	schema.split(“,”))	{

if	(element.length()	>	0)	{

String	trimmedElement	=	element.trim();

parseSchemaElement(trimmedElement);

}

}

return	true;

}

private	void	parseSchemaElement(String	element)	throws	ParseException	{

char	elementId	=	element.charAt(0);

String	elemenTail	=	element.substring(1);

validateSchemaElementId(elementId);

if	(isBooleanSchemaElement(elementTail));

parseBooleanSchemaElement(elementId);

else	if	(isStringSchemaElement(elementTail))

parseStringSchemaElement(elementId);

else	if	(isIntegerSchemaElement(elementTail))	{

parseIntegerSchemaElement(elementId);

}	else	{

throw	new	ParseException(

String.format(“Argument:	%c	has	invalid	format:	%s.”,

elementId,	elementTail),	0);

}

}

private	void	validateSchemaElementId(char	elementId)	throws	ParseException	{

if	(!Character.isLetter(elementId))	{

throw	new	ParseException(

“Bad	character:”	+	elementId	+	“in	Args	format:	”	+	schema,	0);

}

}

private	void	parseBooleanSchemaElement(char	elementId)	{

booleanArgs.put(elementId,	false);

}

private	void	parseIntegerSchemaElement(char	elementId)	{

intArgs.put(elementId,	0);

}

private	void	parseStringSchemaElement(char	elementId)	{

stringArgs.put(elementId,	“”);

}

private	boolean	isStringSchemaElement(String	elementTail)	{

return	elementTail.equals(“*”);

}

private	boolean	isBooleanSchemaElement(String	elementTail)	{

return	elementTail.length()	==	0;

}

private	boolean	isIntegerSchemaElement(String	elementTail)	{

return	elementTail.equals(“#”);

}

private	boolean	parseArguments()	throws	ArgsException	{

for	(currentArgument	=	0;	currentArgument	<	args.length;	currentArgument++)

{

String	arg	=	args[currentArgument];

parseArgument(arg);

}

return	true;

}

private	void	parseArgument(String	arg)	throws	ArgsException	{

if	(arg.startsWith(“-”))

parseElements(arg);

}

private	void	parseElements(String	arg)	throws	ArgsException	{

for	(int	i	=	1;	i	<	arg.length();	i++)

parseElement(arg.charAt(i));

}

private	void	parseElement(char	argChar)	throws	ArgsException	{

if	(setArgument(argChar))

argsFound.add(argChar);

else	{

unexpectedArguments.add(argChar);

errorCode	=	ErrorCode.UNEXPECTED_ARGUMENT;

valid	=	false;

}

}

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

if	(isBooleanArg(argChar))

setBooleanArg(argChar,	true);

else	if	(isStringArg(argChar))

setStringArg(argChar);

else	if	(isIntArg(argChar))

setIntArg(argChar);

else

return	false;

return	true;

}

private	boolean	isIntArg(char	argChar)	{

return	intArgs.containsKey(argChar);

}

private	void	setIntArg(char	argChar)	throws	ArgsException	{

currentArgument++;

String	parameter	=	null;

try	{

parameter	=	args[currentArgument];

intArgs.put(argChar,	new	Integer(parameter));

}	catch	(ArrayIndexOutOfBoundsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorCode	=	ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();

}	catch	(NumberFormatException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorParameter	=	parameter;

errorCode	=	ErrorCode.INVALID_INTEGER;

throw	new	ArgsException();

}

}

private	void	setStringArg(char	argChar)	throws	ArgsException	{

currentArgument++;

try	{

stringArgs.put(argChar,	args[currentArgument]);

}	catch	(ArrayIndexOutOfBoundsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorCode	=	ErrorCode.MISSING_STRING;

throw	new	ArgsException();

}

}

private	boolean	isStringArg(char	argChar)	{

return	stringArgs.containsKey(argChar);

}

private	void	setBooleanArg(char	argChar,	boolean	value)	{

booleanArgs.put(argChar,	value);

}

private	boolean	isBooleanArg(char	argChar)	{

return	booleanArgs.containsKey(argChar);

}

public	int	cardinality()	{

return	argsFound.size();

}

public	String	usage()	{

if	(schema.length()	>	0)

return	"-["	+	schema	+	“]”;

else

return	“”;

}

public	String	errorMessage()	throws	Exception	{

switch	(errorCode)	{

case	OK:

throw	new	Exception(“TILT:	Should	not	get	here.”);

case	UNEXPECTED_ARGUMENT:

return	unexpectedArgumentMessage();

case	MISSING_STRING:

return	String.format(“Could	not	find	string	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_INTEGER:

return	String.format(“Argument	-	%c	expects	an	integer	but	was	‘%s’.”,

errorArgumentId,	errorParameter);

case	MISSING_INTEGER:

return	String.format(“Could	not	find	integer	parameter	for	-%c.”,

errorArgumentId);

}

return	“”;

}

private	String	unexpectedArgumentMessage()	{

StringBuffer	message	=	new	StringBuffer(“Arguments(s)	-”);

for	(char	c	:	unexpectedArguments)	{

message.append(c);

}

message.append(“	unexpected.”);

return	message.toString();

}

private	boolean	falseIfNull(Boolean	b)	{

return	b	!=	null	&&	b;

}

private	int	zeroIfNull(Integer	i)	{

return	i	==	null	?	0	:	i;

}

private	String	blankIfNull(String	s)	{

return	s	=	null	?	“”	:	s;

}

public	String	getString(char	arg)	{

return	blankIfNull(stringArgs.get(arg));

}

public	int	getInt(char	arg)	{

return	zeroIfNull(intArgs.get(arg));

}

public	boolean	getBoolean(char	arg)	{

return	falseIfNull(booleanArgs.get(arg));

}

public	boolean	has(char	arg)	(

return	argsFound.contains(arg);

}

public	boolean	isValid()	{

return	valid;

}

private	class	ArgsException	extends	Exception	{

}

}

Espero	que	su	reacción	inicial	ante	tal	cantidad	de	código	es	alegrarse	por
no	haberlo	conservado	tal	cual.	Si	ha	sido	su	reacción,	recuerde	que	será	la	que
tengan	otros	que	lean	un	borrador	de	su	código.

En	 realidad,	 primer	 borrador	 es	 lo	 mejor	 que	 se	 puede	 decir	 sobre	 este
código.	 Evidentemente	 es	 un	 trabajo	 en	 progreso.	 La	 cantidad	 de	 variables	 de
instancia	es	apabullante.	Cadenas	extrañas	como	«TILT»,	HashSet	y	TreeSet,	y
los	bloques	try-catch-catch	aumentan	el	desastre.

No	 era	 mi	 intención	 crear	 este	 desastre.	 En	 realidad,	 intentaba	 mantener
cierta	 organización,	 como	 demuestra	 la	 elección	 de	 nombres	 de	 funciones	 y
variables,	y	la	estructura	del	programa.	Pero	es	evidente	que	el	problema	se	me
fue	de	las	manos.

El	desastre	aumentó	gradualmente.	Las	versiones	anteriores	no	 fueron	 tan
malas.	Por	ejemplo,	el	Listado	14-9	muestra	una	versión	 inicial	en	 la	que	sólo
funcionaban	los	argumentos	booleanos.

Listado	14-9
Args.java	(sólo	argumentos	booleanos)

package	com.objectmentor.utilities.getopts;

import	java.util.*;

public	class	Args	{

private	String	schema;

private	String[]	args;

private	boolean	valid;

private	Set<Character>	unexpectedArguments	=	new	TreeSet<Character>();

private	Map<Character,	Boolean>	booleanArgs	=

new	HashMap<Character,	Boolean>();

private	int	numberOfArguments	=	0;

public	Args(String	schema,	String[]	args)	{

this.schema	=	schema;

this.args	=	args;

valid	=	parse();

}

public	boolean	isValid()	{

return	valid;

}

private	boolean	parse()	{

if	(schema.length()	==	0	&&	args.length	==	0)

return	true;

parseSchema();

parseArguments();

return	unexpectedArguments.size()	==	0;

}

private	boolean	parseSchema()	{

for	(String	element	:	schema.split(“,”))	{

parseSchemaElement(element);

}

return	true;

}

private	void	parseSchemaElement(String	element)	{

if	(element.length()	==	1)	{

parseBooleanSchemaElement(element);

}

}

private	void	parseBooleanSchemaElement(String	element)	{

char	c	=	element.charAt(0);

if	(Character.isLetter(c))	{

booleanArgs.put(c,	false);

}

}

private	boolean	parseArguments()	{

for	(String	arg	:	args)

parseArgument(arg);

return	true;

}

private	void	parseArgument(String	arg)	{

if	(arg.startsWith(“-”))

parseElement(arg);

}

private	void	parseElements(String	arg)	{

for	(int	i	=	1;	i	<	arg.length();	i++)

parseElement(arg.charAt(i));

}

private	void	parseElement(char	argChar)	{

if	(isBoolean(argChar))	{

numberOfArguments++;

setBooleanArg(argChar,	true);

}	else

unexpectedArguments.add(argChar);

}

private	void	setBooleanArg(char	argChar,	boolean	value)	{

booleanArgs.put(argChar,	value);

}

private	boolean	isBoolean(char	argChar)	{

return	booleanArgs.containsKey(argChar);

}

public	int	cardinality()	{

return	numberOfArguments;

}

public	String	usage()	{

if	(schema.length()	>	0)

return	“-[”+schema+“]”;

else

return	“”;

}

public	String	errorMessage()	{

if	(unexpectedArguments.size()	>	0)	{

return	unexpectedArgumentMessage();

}	else

return	“”;

}

private	String	unexpectedArgumentMessage()	{

StringBuffer	message	=	new	StringBuffer(“Argument(s)	-”);

for	(char	c	:	unexpectedArguments)	{

message.append(c);

}

message.append(“	unexpected.”);

return	message.toString();

}

public	boolean	getBoolean(char	arg)	{

return	booleanArgs.get(arg);

}

}

Aunque	hay	motivos	para	quejarse	del	código,	no	es	tan	malo.	Es	compacto
y	sencillo,	y	fácil	de	entender.	Sin	embargo,	en	este	código	se	aprecia	la	semilla
del	desastre	posterior	y	resulta	evidente	porqué.

La	 versión	 posterior	 sólo	 tiene	 dos	 tipos	 de	 argumentos	 más	 que	 ésta:
String	e	integer.	La	inclusión	de	sólo	dos	tipos	más	tiene	un	tremendo	impacto
negativo	en	el	código.	Lo	convierte	de	algo	que	sería	razonablemente	mantenible
en	algo	que	seguramente	esté	plagado	de	errores.

Añadí	 los	 dos	 tipos	 de	 argumento	 de	 forma	 incremental.	 Primero,	 el
argumento	String,	que	genera	lo	siguiente:

Listado	14-10
Args.java	(booleano	y	String)

package	com.objectmentor.utilities.getopts;

import	java.text.ParseException;

import	java.util.*;

public	class	Args	{

private	String	schema;

private	String[]	args;

private	boolean	valid	=	true;

private	Set<Character>	unexpectedArguments	=	new	TreeSet<Character>();

private	Map<Character,	Boolean>	booleanArgs	=

new	HashMap<Character,	Boolean>();

private	Map<Character,	String>	stringArgs	=

new	HashMap<Character,	String>();

private	Set<Character>	argsFound	=	new	HashSet<Character>();

private	int	currentArgument;

private	char	errorArgument	=	‘\0’;

enum	ErrorCode	{	OK,	MISSING_STRING	}

private	ErrorCode	errorCode	=	ErrorCode.OK;

public	Args(String	schema,	String[]	args)	throws	ParseException	{

this.schema	=	schema;

this.args	=	args;

valid	=	parse();

}

private	boolean	parse()	throws	ParseException	{

if	(schema.length()	==	0	&&	args.length	==	0)

return	true;

parseSchema();

parseArguments();

return	valid;

}

private	boolean	parseSchema()	throws	ParseException	{

for	(String	element	:	schema.split(“,”))	{

if	(element.length()	>	0)	{

String	trimmedElement	=	element.trim();

parseSchemaElement(trimmedElement);

}

}

return	true;

}

private	void	parseSchemaElement(String	element)	throws	ParseException	{

char	elementId	=	element.charAt(0);

String	elementTail	=	element.substring(1);

validateSchemaElementId(elementId);

if	(isBooleanSchemaElement(elementTail))

parseBooleanSchemaElement(elementId);

else	if	(isStringSchemaElement(elementTail))

parseStringSchemaElement(elementId);

}

private	void	validateSchemaElementId(char	elementId)	throws	ParseException	{

if	(!Character.isLetter(elementId))	{

throw	new	ParseException(

“Bad	character:”	+	elementId	+	“in	Args	format:	”	+	schema,	0);

}

}

private	void	parseStringSchemaElement(char	elementId)	{

stringArgs.put(elementId,	“”);

}

private	boolean	isStringSchemaElement(String	elementTail)	{

return	elementTail.equals(“*”);

}

private	boolean	isBooleanSchemaElement(String	elementTail)	{

return	elementTail.length()	==	0;

}

private	void	parseBooleanSchemaElement(char	elementId)	{

booleanArgs.put(elementId,	false);

}

private	boolean	parseArguments()	{

for	(currentArgument	=	0;	currentArgument	<	args.length;	currentArgument++)

{

String	arg	=	args[currentArgument];

parseArgument(arg);

}

return	true;

}

private	void	parseArgument(String	arg)	{

if	(arg.startsWith(“-”))

parseElements(arg);

}

private	void	parseElements(String	arg)	{

for	(int	i	=	1;	i	<	arg.length();	i++)

parseElement(arg.charAt(i));

}

private	void	parseElement(char	argChar)	{

if	(setArgument(argChar))

argsFound.add(argChar);

else	{

unexpectedArguments.add(argChar);

valid	=	false;

}

}

private	boolean	setArgument(char	argChar)	{

boolean	set	=	true;

if	(isBoolean(argChar))

setBooleanArg(argChar,	true);

else	if	(isString(argChar))

setStringArg	(argChar,	“”);

else

set	=	false;

return	set;

}

private	void	setStringArg(char	argChar,	String	s)	{

currentArgument++;

try	{

stringArgs.put(argChar,	args[currentArgument]);

}	catch	(ArrayIndexOutOfBoundsException	e)	{

valid	=	false;

errorArgument	=	argChar;

errorCode	=	ErrorCode.MISSING_STRING;

}

}

private	boolean	isString(char	argChar)	{

return	stringArgs.containsKey(argChar);

}

private	void	setBooleanArg(char	argChar,	boolean	value)	{

booleanArgs.put(argChar,	value);

}

private	boolean	isBoolean(char	argChar)	{

return	booleanArgs.containsKey(argChar);

}

public	int	cardinality()	{

return	argsFound.size();

}

public	String	usage()	{

if	(schema.length()	>	0)

return	“-[”	+	schema	+	“]”;

else

return	“”;

}

public	String	errorMessage()	throws	Exception	{

if	(unexpectedArguments.size()	>	0)	{

return	unexpectedArgumentMessage();

}	else

switch	(errorCode)	{

case	MISSING_STRING:

return	String.format	(“Could	not	find	string	parameter	for	-%c.”,

errorArgument);

case	OK:

throw	new	Exception(“TILT:	Should	not	get	here.”);

}

return	“”;

}

private	String	unexpectedArgumentMessage()	{

StringBuffer	message	=	new	StringBuffer(“Argument(s)	-”);

for	(char	c	:	unexpectedArguments)	{

message.append(c);

}

message.append(“	unexpected.”);

return	message.toString();

}

public	boolean	getBoolean(char	arg)	{

return	falseIfNull(booleanArgs.get(arg));

}

private	boolean	falseIfNull(Boolean	b)	{

return	b	==	null	?	false	:	b;

}

public	String	getString(char	arg)	{

return	blankIfNull(stringArgs.get(arg));

}

private	String	blankIfNull(String	s)	{

return	s	==	null	?	“”	:	s;

}

public	boolean	has(char	arg)	{

return	argsFound.contains(arg);

}

public	boolean	isValid()	{

return	valid;

}

}

Comprobará	 que	 empieza	 a	 desbocarse.	No	 es	 terrible	 pero	 el	 desastre	 se
está	gestando.	Basta	con	 incluir	el	 tipo	de	argumento	integer	para	que	resulte
fatídico.

Entonces	me	detuve

Todavía	tenía	que	añadir	otros	dos	tipos	de	argumentos	y	sabía	que	empeorarían
las	cosas.	Si	los	forzaba,	seguramente	funcionarían	pero	provocaría	un	desastre
demasiado	 complicado	de	 arreglar.	 Si	 la	 estructura	 del	 código	 tenía	 que	 poder
mantenerse,	era	el	momento	de	corregirla.

Por	ello	dejé	de	añadir	elementos	y	comencé	la	refactorización.	Tras	añadir
los	argumentos	String	e	integer,	sabía	que	cada	uno	necesitaría	nuevo	código
en	tres	puntos	principales.	En	primer	lugar,	cada	tipo	de	argumento	necesita	una
forma	de	analizar	su	elemento	de	esquema	para	poder	seleccionar	el	HashMap	de
ese	 tipo.	 Tras	 ello,	 sería	 necesario	 analizar	 cada	 tipo	 de	 argumento	 en	 las
cadenas	 de	 línea	 de	 comandos	 y	 convertirlos	 en	 su	 tipo	 correcto.	 Por	 último,
cada	tipo	de	argumento	necesitaría	un	método	getXXX	para	poder	devolverlo	al
invocador	como	su	tipo	correcto.

Muchos	tipos	diferentes	y	todos	con	métodos	similares,	lo	que	en	realidad
era	una	clase.	Y	de	este	modo	nació	el	concepto	de	ArgumentMarshaler.

Sobre	el	incrementalismo
Una	 de	 las	 mejores	 formas	 de	 acabar	 con	 un	 programa	 es	 realizar	 cambios
masivos	con	 la	 intención	de	mejorarlo.	Algunos	programas	nunca	se	recuperan
de	 estas	 mejoras.	 El	 problema	 es	 lo	 complicado	 que	 resulta	 conseguir	 que	 el
programa	funcione	de	la	misma	forma	que	antes	de	la	mejora.

Para	 evitarlo,	 recurro	 a	 la	 disciplina	 TDD	 (Test-Driven	 Development	 o
Desarrollo	guiado	por	pruebas).	Una	de	las	doctrinas	centrales	de	este	enfoque	es
mantener	 la	 ejecución	 del	 sistema	 en	 todo	 momento.	 Es	 decir,	 con	 TDD	 no
puedo	 realizar	 cambios	 que	 afecten	 al	 funcionamiento	 del	 sistema.	 Todos	 los
cambios	 deben	mantenerlo	 como	 antes	 de	 los	 cambios.	 Para	 lograrlo,	 necesito
una	 serie	 de	 pruebas	 automatizadas	 que	 ejecutar	 rápidamente	 y	 que	 verifiquen
que	el	comportamiento	del	 sistema	no	ha	variado.	Para	 la	clase	Args,	creé	una
serie	 de	 pruebas	de	unidad	y	 aceptación.	Las	pruebas	 de	unidad	 se	 crearon	 en
Java	y	se	administraron	con	JUnit.	Las	pruebas	de	aceptación	se	crearon	como
páginas	 wiki	 en	 FitNesse.	 Podría	 haber	 ejecutado	 estas	 pruebas	 en	 cualquier
momento	y,	si	eran	satisfactorias,	sabría	que	el	sistema	funcionaba	de	la	forma
especificada.

Así	 pues,	 comencé	 a	 realizar	 pequeños	 cambios.	 Cada	 uno	 desplazaba	 la
estructura	 del	 sistema	 hacia	 el	 concepto	 ArgumentMarshaler,	 y	 cada	 cambio
mantenía	el	 funcionamiento	del	sistema.	El	primer	cambio	realizado	fue	añadir
el	 esqueleto	 de	 ArgumentMarshaller	 al	 final	 del	 desastre	 anterior	 (véase	 el
Listado	14-11).

Listado	14-11
ArgumentMarshaller	añadido	a	Args.java

private	class	ArgumentMarshaler	{

private	boolean	booleanValue	=	false;

public	void	setBoolean(boolean	value)	{

booleanValue	=	value;

}

public	boolean	getBoolean()	{	return	booleanValue;	}

private	class	BooleanArgumentMarshaler	extends	ArgumentMarshaler	{

}

private	class	StringArgumentMarshaler	extends	ArgumentMarshaler	{

}

private	class	IntegerArgumentMarshaler	extends	ArgumentMarshaler	{

}

}

Evidentemente,	esto	no	afectaría	a	nada,	por	lo	que	realicé	la	modificación
más	 sencilla	 posible	 que	 afectara	 a	 la	 mínima	 cantidad	 de	 código.	 Cambié
HashMap	para	que	los	argumentos	Boolean	aceptaran	ArgumentMarshaler.

private	Map<Character,	ArgumentMarshaler>	booleanArgs	=
new	HashMap<Character,	ArgumentMarshaler>();

Esto	afectaba	a	varias	instrucciones	que	corregí	rápidamente.
…

private	void	parseBooleanSchemaElement(char	elementId)	{

booleanArgs.put(elementId,	new	BooleanArgumentMarshaler());
}

…

private	void	setBooleanArg(char	argChar,	boolean	value)	{

booleanArgs.get(argChar).setBoolean(value);
}

…

public	boolean	getBoolean(char	arg)	{

return	falseIfNull	(booleanArgs.get(arg).getBoolean());
}

Estos	cambios	se	aplican	a	las	zonas	que	mencionamos	antes:	parse,	set	y
get	 para	 el	 tipo	 de	 argumento.	 Desafortunadamente,	 aunque	 sean	 cambios
menores,	algunas	de	 las	pruebas	comenzaron	a	 fallar.	Si	se	 fija	atentamente	en
getBoolean,	 comprobará	 que	 se	 puede	 invocar	 con	 y	 pero	 no	 existe	 un
argumento	 y,	 por	 lo	 que	 booleanArgs.get(‘y’)	 devolverá	 null	 y	 la	 función
generará	 NullPointerException.	 La	 función	 falseIfNull	 se	 usa	 como
protección	 ante	 este	 hecho	 pero	 el	 cambio	 aplicado	 hace	 que	 la	 función	 sea
irrelevante.

El	 incrementalismo	 exigía	 que	 esto	 funcionara	 antes	 de	 realizar	 otros
cambios.	 La	 solución	 no	 era	 demasiado	 complicada;	 bastaba	 con	 cambiar	 la
comprobación	de	null.	Ya	no	era	necesario	comprobar	null	en	boolean,	sino	en
ArgumentMarshaller.

Primero,	eliminé	la	invocación	de	falseIfNull	en	la	función	getBoolean.
Ya	no	servía	de	nada,	por	 lo	que	eliminé	directamente	 la	 función.	Las	pruebas
seguían	fallando	igual,	lo	que	suponía	que	no	había	nuevos	errores.

public	boolean	getBoolean(char	arg)	{

return	booleanArgs.get(arg).getBoolean();

}

Tras	ello,	dividí	la	función	en	dos	líneas	y	añadí	ArgumentMarshaller	a	una
variable	propia:	argumentMarshaller.	No	me	preocupaba	el	extenso	nombre	de
la	variable;	 era	 redundante	y	 estorbaba	 a	 la	 función,	 por	 lo	que	 lo	 reduje	 a	am
[N5].

public	boolean	getBoolean(char	arg)	{

Args.ArgumentMarshaler	am	=	booleanArgs.get(arg);
return	am.getBoolean();

}

Y	tras	ello	añadí	la	lógica	de	detección	de	null.
public	boolean	getBoolean(char	arg)	{

Args.ArgumentMarshaler	am	=	booleanArgs.get(arg);

return	am	!=	null	&&	am.getBoolean();
}

Argumentos	de	cadena

La	 inclusión	 de	 los	 argumentos	 String	 fue	 similar	 a	 la	 de	 los	 argumentos
boolean.	Tuve	que	cambiar	HashMap	y	conseguir	que	funcionaran	parse,	set	y
get.	 No	 deberían	 producirse	 sorpresas	 posteriores	 a	 excepción	 de	 que	 la
implementación	completa	se	incluía	en	la	clase	ArgumentMarshaller	en	lugar	de
distribuirla	en	variantes.

private	Map<Character,	ArgumentMarshaler>	stringArgs	=
new	HashMap<Character,	ArgumentMarshaler>();

…

private	void	parseStringSchemaElement(char	elementId)	{

stringArgs.put(elementId,	new	StringArgumentMarshaler());

}

…

private	void	setStringArg(char	argChar)	throws	ArgsException	{

currentArgument++;

try	{

stringArgs.get(argChar).setString(args[currentArgument]);
}	catch	(ArrayIndexOutOfBoundsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorCode	=	ErrorCode.MISSING_STRING;

throw	new	ArgsException();

}

}

…

public	String	getString	(char	arg)	{

Args.ArgumentMarshaler	am	=	stringArgs.get(arg);
return	am	==	null	?	“”	:	am.getString();

}

…

private	class	ArgumentMarshaler	{

private	boolean	booleanValue	=	false;

private	String	stringValue;

public	void	setBoolean(boolean	value)	{

booleanValue	=	value;

}

public	boolean	getBoolean()	{

return	booleanValue;

}

public	void	setString(String	s)	{
stringValue	=	s;

}

}

public	String	getString()	{
return	stringValue	==	null	?	“”	:	stringValue;

}
}

De	nuevo,	 estos	cambios	 se	 realizaron	 individualmente	para	conservar	 las
pruebas,	 aunque	 fallaran.	 Si	 una	 prueba	 fallaba,	 me	 aseguraba	 de	 que	 fuera
correcta	antes	de	continuar	con	el	siguiente	cambio.

Ya	 debería	 reconocer	 mi	 intención.	 Tras	 incluir	 el	 comportamiento	 de
señalización	 en	 la	 clase	base	ArgumentMarshaler,	 comencé	 a	 transferirlo	 a	 las
variantes,	 para	 de	 esta	 forma	 mantener	 el	 funcionamiento	 mientras	 cambiaba
gradualmente	la	forma	del	programa.

El	siguiente	paso	consistía	en	transferir	la	funcionalidad	del	argumento	int
a	ArgumentMarshaler.	De	nuevo,	no	hubo	sorpresas.

private	Map<Character,	ArgumentMarshaler>	intArgs	=
new	HashMap<Character,	ArgumentMarshaler>();

…

private	void	parseIntegerSchemaElement(char	elementId)	{

intArgs.put(elementId,	new	IntegerArgumentMarshaler());
}

…

private	void	setIntArg(char	argChar)	throws	ArgsException	{

currentArgument++;

String	parameter	=	null;

try	{

parameter	=	args[currentArgument];

intArgs.get(argChar).setInteger(Integer.parseInt(parameter));
}	catch	(ArrayIndexOutOfBoundsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorCode	=	ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();

}	catch	(NumberFormatException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorParameter	=	parameter;

errorCode	=	ErrorCode.INVALID_INTEGER;

throw	new	ArgsException();

}

}

…

public	int	getInt(char	arg)	{

Args.ArgumentMarshaler	am	=	intArgs.get(arg);
return	am	==	null	?	0	:	am.getInteger();

}

…

private	class	ArgumentMarshaler	{

private	boolean	booleanValue	=	false;

private	String	stringValue;

private	int	integerValue;

public	void	setBoolean(boolean	value)	{

booleanValue	=	value;

}

public	boolean	getBoolean()	{

return	booleanValue;

}

public	void	setString(String	s)	{

stringValue	=	s;

}

public	String	getString()	{

return	stringValue	==	null	?	“”	:	stringValue;

}

public	void	setInteger(int	i)	{
integerValue	=	i;

}

public	int	getInteger()	{
return	integerValue;

}
}

Tras	 transferir	 la	 señalización	a	ArgumentMarshaler,	 comencé	a	 transferir
la	funcionalidad	a	las	variantes.	El	primer	paso	fue	pasar	la	función	setBoolean
a	 BooleanArgumentMarshaller	 y	 garantizar	 su	 correcta	 invocación.	 Para	 ello
creé	un	método	set	abstracto.

private	abstract	class	ArgumentMarshaler	{
protected	boolean	booleanValue	=	false;
private	String	stringValue;

private	int	integerValue;

public	void	setBoolean(boolean	value)	{

booleanValue	=	value;

}

public	boolean	getBoolean()	{

return	booleanValue;

}

public	void	setString(String	s)	{

stringValue	=	s;

}

public	String	getString()	{

return	stringValue	==	null	?	“”	:	stringValue;

}

public	void	set	Integer(int	i)	{

integerValue	=	i;

}

public	int	getInteger()	{

return	integerValue;

}

public	abstract	void	set(String	s);
}

Tras	ello,	implementé	el	método	set	en	BooleanArgumentMarshaller.
private	class	BooleanArgumentMarshaler	extends	ArgumentMarshaler	{

public	void	set(String	s)	{
booleanValue	=	true;

}
}

Y	por	último	cambié	la	invocación	de	setBoolean	por	la	de	set.
private	void	setBooleanArg(char	argChar,	boolean	value)	{

booleanArgs.get(argChar).set(“true”);
}

Las	pruebas	seguían	siendo	satisfactorias.	Como	este	cambio	hacía	que	set
se	implementara	en	BooleanArgumentMarshaler,	eliminé	el	método	setBoolean
de	la	clase	base	ArgumentMarshaler.

La	 función	 abstracta	 set	 acepta	 un	 argumento	 String	 pero	 la
implementación	 de	 BooleanArgumentMarshaler	 no	 lo	 usa.	 He	 incluido	 el
argumento	 porque	 sabía	 que	 StringArgumentMarshaler	 e
IntegerArgumentMarshaler	lo	utilizarían.

Tras	 ello,	 el	 objetivo	 era	 implementar	 el	 método	 get	 en
BooleanArgumentMarshaler.	 La	 implementación	 de	 funciones	 get	 siempre	 es
escabrosa	 ya	 que	 el	 tipo	 devuelto	 tiene	 que	 ser	 Object	 y	 en	 este	 caso	 debe
convertirse	a	Boolean.

public	boolean	getBoolean(char	arg)	{

Args.ArgumentMarshaler	am	=	booleanArgs.get(arg);

return	am	!=	null	&&	(Boolean)am.get();
}

Para	compilarlo,	añadí	la	función	get	a	ArgumentMarshaler.
private	abstract	class	ArgumentMarshaler	{

…

public	Object	get()	{
return	null;

}
}

Se	 compila	 y	 las	 pruebas	 fallan.	 Para	 que	 vuelvan	 a	 funcionar,	 basta	 con
convertir	get	en	abstracto	e	implementarlo	en	BooleanArgumentMarshaler.

private	abstract	class	ArgumentMarshaler	{

protected	boolean	booleanValue	=	false;

…

public	abstract	Object	get();
}

private	class	BooleanArgumentMarshaler	extends	ArgumentMarshaler	{

public	void	set	(String	s)	{

booleanValue	=	true;

}

public	Object	get()	{
return	booleanValue;

}
}

De	 nuevo,	 las	 pruebas	 son	 satisfactorias.	 Ahora	 tanto	 get	 como	 set	 se
implementan	 en	 BooleanArgumentMarshaler.	 Esto	 me	 permite	 eliminar	 la
antigua	 función	 getBoolean	 de	 ArgumentMarshaler,	 cambiar	 la	 variable
protegida	booleanValue	a	BooleanArgumentMarshaler	y	convertirla	en	privada.

Repetí	el	mismo	patrón	de	cambios	con	las	cadenas.	Implementé	set	y	get,

eliminé	las	funciones	sin	usar	y	desplacé	las	variables.
private	void	setStringArg(char	argChar)	throws	ArgsException	{

currentArgument++;

try	{

stringArgs.get(argChar).set(args[currentArgument]);
}	catch	(ArrayIndexOutOfBoundsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorCode	=	ErrorCode.MISSING_STRING;

throw	new	ArgsException();

}

}

…

public	String	getString(char	arg)	{

Args.ArgumentMarshaler	am	=	stringArgs.get(arg);

return	am	==	null	?	“”	:	(String)	am.get();
}

…

private	abstract	class	ArgumentMarshaler	{

private	int	integerValue;

public	void	setInteger(int	i)	{

integerValue	=	i;

}

public	int	getInteger()	{

return	integerValue;

}

public	abstract	void	set(String	s);

public	abstract	Object	get();

}

private	class	BooleanArgumentMarshaler	extends	ArgumentMarshaler	{

private	boolean	booleanValue	=	false;

public	void	set(String	s)	{

booleanValue	=	true;

}

public	Object	get()	{

return	booleanValue;

}

}

private	class	StringArgumentMarshaler	extends	ArgumentMarshaler	{

private	String	stringValue	=	“”;

public	void	set(String	s)	{

stringValue	=	s;
}

public	Object	get()	{

return	stringValue;
}

}

private	class	IntegerArgumentMarshaler	extends	ArgumentMarshaler	{

public	void	set(String	s){

}

public	Object	get()	{

return	null;

}

}

}

Por	 último,	 repetí	 el	 proceso	 con	 los	 enteros.	Resulta	más	 complicado	 ya
que	 los	 enteros	 deben	 analizarse	 y	 la	 operación	 de	 análisis	 puede	 generar	 una

excepción,	 pero	 el	 resultado	 es	 más	 indicado	 ya	 que	 el	 concepto	 de
NumberFormatException	se	oculta	totalmente	en	IntegerArgumentMarshaler.

private	boolean	isIntArg(char	argChar)	{	return	intArgs.containsKey(argChar);	}

private	void	setIntArg(char	argChar)	throws	ArgsException	{

currentArgument++;

String	parameter	=	null;

try	{

parameter	=	args[currentArgument];

intArgs.get(argChar).set(parameter);
}	catch	(ArrayIndexOutOfBoundsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

errorCode	=	ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();

}	catch	(ArgsException	e)	{
valid	=	false;

errorArgumentId	=	argChar;

errorParameter	=	parameter;

errorCode	=	ErrorCode.INVALID_INTEGER;

throw	e;
}

}

…

private	void	setBooleanArg(char	argChar)	{

try	{
booleanArgs.get(argChar).set(“true”);

}	catch	(ArgsException	e)	{

}
}

…

public	int	getInt(char	arg)	{

Args.ArgumentMarshaler	am	=	intArgs.get(arg);

return	am	==	null	?	0	:	(Integer)	am.get();
}

…

private	abstract	class	ArgumentMarshaler	{

public	abstract	void	set(String	s)	throws	ArgsException;

public	abstract	Object	get();

}

…

private	class	IntegerArgumentMarshaler	extends	ArgumentMarshaler	{

private	int	intValue	=	0;

public	void	set(String	s)	throws	ArgsException	{
try	{

intValue	=	Integer.parseInt(s);
}	catch	(NumberFormatException	s)	{

throw	new	ArgsException();

}
}

public	Object	get()	{

return	intValue;
}

}

Evidentemente,	 las	pruebas	seguían	funcionando.	Tras	ello,	me	deshice	de
las	distintas	asignaciones	de	la	parte	superior	del	algoritmo,	 lo	que	hace	que	el
sistema	 sea	mucho	más	 genérico.	 Sin	 embargo,	 no	 las	 puede	 eliminar	 ya	 que
afectaría	 a	 la	 integridad	 del	 sistema.	 En	 su	 lugar,	 añadí	 un	 nuevo	 Map	 para
ArgumentMarshaler	y,	tras	ello,	cambié	uno	a	uno	los	métodos	para	que	usaran
la	nueva	asignación	en	lugar	de	las	originales.

public	class	Args	{

…

private	Map<Character,	ArgumentMarshaler>	booleanArgs	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Map<Character,	ArgumentMarshaler>	stringArgs	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Map<Character,	ArgumentMarshaler>	intArgs	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Map<Character,	ArgumentMarshaler>	marshalers	=
new	HashMap<Character,	ArgumentMarshaler>();

…

private	void	parseBooleanSchemaElement(char	elementId)	{

ArgumentMarshaler	m	=	new	BooleanArgumentMarshaler();
booleanArgs.put(elementId,	m);

marshalers.put(elementId,	m);
}

private	void	parseIntegerSchemaElement(char	elementId)	{

ArgumentMarshaler	m	=	new	IntegerArgumentMarshaler();
intArgs.put(elementId,	m);

marshalers.put(elementId,	m);
}

private	void	parseStringSchemaElement(char	elementId)	{

ArgumentMarshaler	m	=	new	StringArgumentMarshaler();
stringArgs.put(elementId,	m);

marshalers.put(elementId,	m);
}

Las	pruebas	seguían	funcionando.	Tras	ello,	cambié	isBooleanArg	de	esto:
private	boolean	isBooleanArg(char	argChar)	{

return	booleanArgs.containsKey(argChar);

}

a	este	otro:
private	boolean	isBooleanArg(char	argChar)	{

ArgumentMarshaler	m	=	marshalers.get(argChar);
return	m	instanceof	BooleanArgumentMarshaler;

}

Las	pruebas	funcionaban,	por	lo	que	apliqué	el	mismo	cambio	en	isIntArg
e	isStringArg.

private	boolean	isIntArg(char	argChar)	{

ArgumentMarshaler	m	=	marshalers.get(argChar);
return	m	instanceof	IntegerArgumentMarshaler;

}

private	boolean	isStringArg(char	argChar)	{

ArgumentMarshaler	m	=	marshalers.get(argChar);
return	m	instanceof	StringArgumentMarshaler;

}

Las	pruebas	eran	correctas,	por	lo	que	eliminé	las	invocaciones	duplicadas
de	marshalers.get:

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);
if	(isBooleanArg(m))

setBooleanArg(argChar);

else	if	(isStringArg(m))
setStringArg(argChar);

else	if	(isIntArg(m))
setIntArg(argChar);

else

return	false;

return	true;

}

private	boolean	isIntArg	(ArgumentMarshaler	m)	{
return	m	instanceof	IntegerArgumentMarshaler;

}

private	boolean	isStringArg	(ArgumentMarshaler	m)	{
return	m	instanceof	StringArgumentMarshaler;

}

private	boolean	isBooleanArg	(ArgumentMarshaler	m)	{
return	m	instanceof	BooleanArgumentMarshaler;

}

Los	 tres	 argumentos	 isxxxArg	 ya	 no	 tenían	 sentido,	 de	 modo	 que	 los
reubiqué:

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	instanceof	BooleanArgumentMarshaler)
setBooleanArg(argChar);

else	if	(m	instanceof	StringArgumentMarshaler)
setStringArg(argChar);

else	if	(m	instanceof	IntegerArgumentMarshaler)
setIntArg(argChar);

else

return	false;

return	true;

}

Tras	 ello,	 empecé	 a	 usar	 la	 asignación	 marshalers	 en	 las	 funciones	 set,
dividiendo	 el	 uso	 de	 las	 otras	 tres	 asignaciones.	 Comencé	 por	 los	 elementos
boolean.

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	instanceof	BooleanArgumentMarshaler)

setBooleanArg(m);
else	if	(m	instanceof	StringArgumentMarshaler)

setStringArg(argChar);

else	if	(m	instanceof	IntegerArgumentMarshaler)

setIntArg(argChar);

else

return	false;

return	true;

}

…

private	void	setBooleanArg(ArgumentMarshaler	m)	{
try	{

m.set(“true”);	//	era:	booleanArgs.get(argChar).set(“true”);
}	catch	(ArgsException	e)	{

}

}

Las	pruebas	seguían	siendo	correctas	de	modo	que	repetí	la	operación	con
las	 cadenas	 y	 los	 enteros.	 De	 esta	 manera	 se	 puede	 integrar	 parte	 del
desagradable	código	de	gestión	de	excepciones	en	la	función	setArgument.

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

try	{
if	(m	instanceof	BooleanArgumentMarshaler)

setBooleanArg(m);

else	if	(m	instanceof	StringArgumentMarshaler)

setStringArg(m);
else	if	(m	instanceof	IntegerArgumentMarshaler)

setIntArg(m);
else

return	false;

}	catch	(ArgsException	e)	{
valid	=	false;
errorArgumentId	=	argChar;
throw	e;

}
return	true;

}

private	void	setIntArg(ArgumentMarshaler	m)	throws	ArgsException	{
currentArgument++;

String	parameter	=	null;

try	{

parameter	=	args[currentArgument];

m.set(parameter);
}	catch	(ArrayIndexOutOfBoundsException	e)	{

errorCode	=	ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();

}	catch	(ArgsException	e)	{

errorParameter	=	parameter;

errorCode	=	ErrorCode.INVALID_INTEGER;

throw	e;

}

}

private	void	setStringArg(ArgumentMarshaler	m)	throws	ArgsException	{
currentArgument++;

try	{

m.set(args[currentArgument]);
}	catch	(ArrayIndexOutOfBoundsException	e)	{

errorCode	=	ErrorCode.MISSING_STRING;

throw	new	ArgsException();

}

}

Ya	podía	eliminar	las	tres	asignaciones	antiguas.	Primero,	debía	cambiar	la
función	getBoolean	de:

public	boolean	getBoolean(char	arg)	{

Args.ArgumentMarshaler	am	=	booleanArgs.get(arg);

return	am	!=	null	&&	(Boolean)	am.get();

}

a:
public	boolean	getBoolean(char	arg)	{

Args.ArgumentMarshaler	am	=	marshalers.get(arg);

boolean	b	=	false;
try	{

b	=	am	!=	null	&&	(Boolean)	am.get();
}	catch	(ClassCastException	e)	{

b	=	false;

}

return	b;
}

Este	último	cambio	puede	parecer	sorprendente.	¿Por	qué	de	repente	decidí
enfrentarme	a	ClassCastException?	Por	tener	una	serie	de	pruebas	de	unidad	y
otra	 serie	 independiente	 de	 pruebas	 de	 aceptación	 creadas	 en	 FitNesse.	 Las
pruebas	de	FitNesse	garantizan	que	si	se	invoca	getBoolean	en	un	argumento	no
Booleano,	 se	 obtiene	 false.	 No	 sucede	 lo	mismo	 con	 las	 pruebas	 de	 unidad.
Hasta	el	momento,	sólo	había	ejecutado	las	pruebas	de	unidad[93].

Este	último	cambio	me	permitió	extraer	otro	uso	de	la	asignación	boolean:
private	void	parseBooleanSchemaElement(char	elementId)	{

ArgumentMarshaler	m	=	new	BooleanArgumentMarshaler();

booleanArgs.put(elementId,	m);
marshalers.put(elementId,	m);

}

Y	ahora	ya	podemos	eliminar	la	asignación	boolean.
public	class	Args	{

…

private	Map<Character,	ArgumentMarshaler>	booleanArgs	=
new	HashMap<Character,	ArgmentMarshaler>();
private	Map<Character,	ArgumentMarshaler>	stringArgs	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Map<Character,	ArgumentMarshaler>	intArgs	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Map<Character,	ArgumentMarshaler>	marshalers	=

new	HashMap<Character,	ArgumentMarshaler>();

…

Tras	ello,	 cambié	 los	argumentos	String	 e	Integer	 de	 la	misma	 forma	y
limpié	los	valores	boolean.

private	void	parseBooleanSchemaElement(char	elementId)	{

marshalers.put(elementId,	new	BooleanArgumentMarshaler());
}

private	void	parseIntegerSchemaElement(char	elementId)	{

marshalers.put(elementId,	new	IntegerArgumentMarshaler());
}

private	void	parseStringSchemaElement(char	elementId)	{

marshalers.put(elementId,	new	StringArgumentMarshaler());
}

…

public	String	getString(char	arg)	{

Args.ArgumentMarshaler	am	=	marshalers.get(arg);
try	{

return	am	null	?	“”	:	(String)	am.get();

}	catch	(ClassCastException	e)	{
return	“”;

}
}

public	int	getInt(char	arg)	{

Args.ArgumentMarshaler	am	=	marshalers.get(arg);
try	{

return	am	==	null	?	0	:	(Integer)	am.get();

}	catch	(Exception	e)	{
return	0;

}
}

…

public	class	Args	{

…

private	Map<Character,	ArgumentMarshaler>	stringArgs	=
new	HashMap<Character,	ArgumentMarshaler>();
private	Map<Character,	ArgumentMarshaler>	intArgs	=
new	HashMap<Character,	ArgumentMarshaler>();
private	Map<Character,	ArgumentMarshaler>	marshalers	=

new	HashMap<Character,	ArgumentMarshaler>();

…

Seguidamente,	dispuse	en	 línea	 los	 tres	métodos	parse	 ya	que	no	 servían
para	mucho:

private	void	parseSchemaElement(String	element)	throws	ParseException	{

char	elementId	=	element.charAt(0);

String	elementTail	=	element.substring(1);

validateSchemaElementId(elementId);

if	(isBooleanSchemaElement(elementTail))

marshalers.put(elementId,	new	BooleanArgumentMarshaler());
else	if	(isStringSchemaElement(elementTail))

marshalers.put(elementId,	new	StringArgumentMarshaler());
else	if	(isIntegerSchemaElement(elementTail))	{

marshalers.put(elementId,	new	IntegerArgumentMarshaler());
}	else	{

throw	new	ParseException(String.format(

“Argument:	%c	has	invalid	format:	%s.”,	elementId,	elementTail),	0);

}

}

Es	el	momento	de	ver	 la	estructura	completa.	El	Listado	14-12	muestra	 la
clase	Args	actual.

Listado	14-12
Args.java	(tras	la	primera	refactorización)

package	com.objectmentor.utilities.getopts;

import	java.text.ParseException;

import	java.util.*;

public	class	Args	{

private	String	schema;

private	String[]	args;

private	boolean	valid	=	true;

private	Set<Character>	unexpectedArguments	=	new	TreeSet<Character>();

private	Map<Character,	ArgumentMarshaler>	marshalers	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Set<Character>	argsFound	=	new	HashSet<Character>();

private	int	currentArgument;

private	char	errorArgumentId	=	‘\0’;

private	String	errorParameter	=	“TILT”;

private	ErrorCode	errorCode	=	ErrorCode.OK;

private	enum	ErrorCode	{

OK,	MISSING_STRING,	MISSING_INTEGER,	INVALID_INTEGER,	UNEXPECTED_ARGUMENT}

public	Args(String	schema,	String[]	args)	throws	ParseException	{

this.schema	=	schema;

this.args	=	args;

valid	=	parse();

}

private	boolean	parse()	throws	ParseException	{

if	(schema.length()	==	0	&&	args.length	==	0)

return	true;

parseSchema();

try	{

parseArguments();

}	catch	(ArgsException	e)	{

}

return	valid;

}

private	boolean	parseSchema()	throws	ParseException	{

for	(String	element	:	schema.split(“,”))	{

if	(element.length()	>	0)	{

String	trimmedElement	=	element.trim();

parseSchemaElement(trimmedElement);

}

}

return	true;

}

private	void	parseSchemaElement(String	element)	throws	ParseException	{

char	elementId	=	element.charAt(0);

String	elementTail	=	element.substring(1);

validateSchemaElementId(elementId);

if	(isBooleanSchemaElement(elementTail))

marshalers.put(elementId,	new	BooleanArgumentMarshaler());

else	if	(isStringSchemaElement(elementTail))

marshalers.put(elementId,	new	StringArgumentWarshaler());

else	if	(isIntegerSchemaElement(elementTail))	{

marshalers.put(elementId,	new	IntegerArgumentMarshaler());

}	else	{

throw	new	ParseException(String.format(

“Argument:	%c	has	invalid	format:	%s.”,	elementId,	elementTail),	0);

}

}

private	void	validateSchemaElementId(char	elementId)	throws	ParseException	{

if	(!Character.isLetter(elementId))	{

throw	new	ParseException(

“Bad	character:”	+	elementId	+	“in	Args	format:	”	+	schema,	0);

}

}

private	boolean	isStringSchemaElement(String	elementTail)	{

return	elementTail.equals(“*”);

}

private	boolean	isBooleanSchemaElement(String	elementTail)	{

return	elementTail.length()	==	0;

}

private	boolean	isIntegerSchemaElement(String	elementTail)	{

return	elementTail.equals(“#”);

}

private	boolean	parseArguments()	throws	ArgsException	{

for	(currentArgument=0;	currentArgument<args.length;	currentArgument++)	{

String	arg	=	args[currentArgument];

parseArgument(arg);

}

return	true;

}

private	void	parseArgument(String	arg)	throws	ArgsException	{

if	(arg.startsWith(“-”))

parseElements(arg);

}

private	void	parseElements(String	arg)	throws	ArgsException	{

for	(int	i	=	1;	i	<	arg.length();	i++)

parseElement(arg.charAt(i));

}

private	void	parseElement(char	argChar)	throws	ArgsException	{

if	(setArgument(argChar))

argsFound.add(argChar);

else	{

unexpectedArguments.add(argChar);

errorCode	=	ErrorCode.UNEXPECTED_ARGUMENT;

valid	=	false;

}

}

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

try	{

if	(m	instanceof	BooleanArgumentMarshaler)

setBooleanArg(m);

else	if	(m	instanceof	StringArgumentMarshaler)

setStringArg(m);

else	if	(m	instanceof	IntegerArgumentMarshaler)

setIntArg(m);

else

return	false;

}	catch	(ArgsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

throw	e;

}

return	true;

}

private	void	setIntArg(ArgumentMarshaler	m)	throws	ArgsException	{

currentArgument++;

String	parameter	=	null;

try	{

parameter	=	args[currentArgument];

m.set(parameter);

}	catch	(ArrayIndexOutOfBoundsException	e)	{

errorCode	=	ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();

}	catch	(ArgsException	e)	{

errorParameter	=	parameter;

errorCode	=	ErrorCode.INVALID_INTEGER;

throw	e;

}

}

private	void	setStringArg(ArgumentMarshaler	m)	throws	ArgsException	{

currentArgument++;

try	{

m.set	(args[currentArgument]);

}	catch	(ArrayIndexOutOfBoundsException	e)	{

errorCode	=	ErrorCode.MISSING_STRING;

throw	new	ArgsException();

}

}

private	void	setBooleanArg(ArgumentMarshaler	m)	{

try	{

m.set(“true”);

}	catch	(ArgsException	e)	{

}

}

public	int	cardinality()	{

return	argsFound.size();

}

public	String	usage()	{

if	(schema.length()	>	0)

return	=	“-[”	+	schema	+	“]”;

else

return	“”;

}

public	String	errorMessage()	throws	Exception	{

switch	(errorCode)	{

case	OK:

throw	new	Exception(“TILT:	Should	not	get	here.”);

case	UNEXPECTED_ARGUMENT:

return	unexpectedArgumentMessage();

case	MISSING_STRING:

return	String.format(“Could	not	find	string	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_INTEGER:

return	String.format(“Argument	-%c	expects	an	integer	but	was	‘%s’.”,

errorArgumentId,	errorParameter);

case	MISSING_INTEGER:

return	String.format(“Could	not	find	integer	parameter	for	-%c.”,

errorArgumentId);

}

return	“”;

}

private	String	unexpectedArgumentMessage()	{

StringBuffer	message	=	new	StringBuffer(“Argument(s)	-”);

for	{char	c	:	unexpectedArguments)	{

message.append(c);

}

message.append(“	unexpected.”);

return	message.toString();

}

public	boolean	getBoolean(char	arg)	{

Args.ArgumentMarshaler	am	=	marshalers.get(arg);

boolean	b	=	false;

try	{

b	=	am	!=	null	&&	(Boolean)	am.get();

}	catch	(ClassCastException	e)	{

b	=	false;

}

return	b;

}

public	String	getString(char	arg)	{

Args.ArgumentMarshaler	am	=	marshalers.get	(arg);

try	{

return	am	==	null	?	“”	:	(String)	am.get();

}	catch	(ClassCastException	e)	{

return	“”;

}

}

public	int	getInt(char	arg)	{

Args.ArgumentMarshaler	am	=	marshalers.get(arg);

try	{

return	am	==	null	?	0	:	(Integer)	am.get();

}	catch	(Exception	e)	{

return	0;

}

}

public	boolean	has(char	arg)	{

return	argsFound.contains(arg);

}

public	boolean	isValid()	{

return	valid;

}

private	class	ArgsException	extends	Exception	{

}

private	abstract	class	ArgumentMarshaler	{

public	abstract	void	set(String	s)	throws	ArgsException;

public	abstract	Object	get();

}

private	class	BooleanArgumentMarshaler	extends	ArgumentMarshaler	{

private	boolean	booleanValue	=	false;

public	void	set(String	s)	{

booleanValue	=	true;

}

public	Object	get()	{

return	booleanValue;

}

}

private	class	StringArgumentMarshaler	extends	ArgumentMarshaler	{

private	String	stringValue	=	“”;

public	void	set(String	s)	{

stringValue	=	s;

}

public	Object	get()	{

return	stringValue;

}

}

private	class	IntegerArgumentMarshaler	extends	ArgumentMarshaler	{

private	int	intValue	=	0;

public	void	set(String	s)	throws	ArgsException	{

try	{

intValue	=	Integer.parseInt(s);

}	catch	(NumberFormatException	e)	{

throw	new	ArgsException();

}

}

public	Object	get()	{

return	intValue;

}

}

}

Tras	 todo	 este	 esfuerzo,	 es	 un	 tanto	 decepcionante.	 La	 estructura	 ha
mejorado	 pero	 todavía	 hay	 demasiadas	 variables	 en	 la	 parte	 superior;	 se
mantiene	un	 terrible	 caso	de	 tipos	 en	setArgument;	 y	 todas	 las	 funciones	set.
Sin	mencionar	 el	 procesamiento	 de	 errores.	 Todavía	 nos	 queda	mucho	 trabajo
por	hacer.

Mi	intención	es	eliminar	el	caso	de	tipos	de	setArgument	[G23]	y	que	sólo
incluya	 una	 invocación	 a	 ArgumentMarshaler.set.	 Para	 ello,	 debo	 desplazar
setIntArg,	setStringArg	y	setBooleanArg	a	las	correspondientes	variantes	de
ArgumentMarshaler.	Pero	hay	un	problema.

Si	se	fija	atentamente	en	setIntArg,	comprobará	que	usa	dos	variables	de
instancia:	 args	 y	 currentArg.	 Para	 desplazar	 setIntArg	 hasta
BooleanArgumentMarshaler,	 tengo	 que	 pasar	 args	 y	 currentArgs	 como
argumentos	de	 función.	Muy	desagradable	 [F1].	Resultaría	más	 indicado	pasar
un	 argumento	 y	 no	 dos.	 Afortunadamente,	 la	 solución	 es	 sencilla.	 Podemos
convertir	 la	matriz	args	en	list	y	pasar	Iterator	a	 las	funciones	set.	Para	el
siguiente	cambio	necesité	diez	pasos,	y	superar	todas	las	pruebas	tras	cada	uno.
Pero	 sólo	 mostraremos	 el	 resultado.	 Debería	 determinar	 la	 mayoría	 de	 estos
pequeños	pasos.

public	class	Args	{

private	String	schema;

private	String[]	args;
private	boolean	valid	=	true;

private	Set<Character>	unexpectedArguments	=	new	TreeSet<Character>();

private	Map<Character,	ArgumentMarshaler>	marshalers	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Set<Character>	argsFound	=	new	HashSet<Character>();

private	Iterator<String>	currentArgument;
private	char	errorArgumentId	=	‘\0’;

private	String	errorParameter	=	“TILT”;

private	ErrorCode	errorCode	=	ErrorCode.OK;

private	List<String>	argsList;

private	enum	ErrorCode	{

OK,	MISSING_STRING,	MISSING_INTEGER,	INVALID_INTEGER,	UNEXPECTED_ARGUMENT	}

public	Args(String	schema.	String[]	args)	throws	ParseException	{

this.schema	=	schema;

argsList	=	Arrays.asList(args);
valid	=	parse();

}

private	boolean	parse()	throws	ParseException	{

if	(schema.length()	==	0	&&	argsList.size()	==	0)
return	true;

parseSchema();

try	{

parseArguments();

}	catch	(ArgsException	e)	{

}

return	valid;

}

…

private	boolean	parseArguments()	throws	ArgsException	{

for	(currentArgument	=	argsList.iterator();	currentArgument.hasNext();)	{
String	arg	=	currentArgument.next();
parseArgument(arg);

}

return	true;

}

…

private	void	setIntArg(ArgumentMarshaler	m)	throws	ArgsException	{

String	parameter	=	null;

try	{

parameter	=	currentArgument.next();
m.set(parameter);

}	catch	(NoSuchElementException	e)	{
errorCode	=	ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();

}	catch	(ArgsException	e)	{

errorParameter	=	parameter;

errorCode	=	ErrorCode.INVALID_INTEGER;

throw	e;

}

}

private	void	setStringArg(ArgumentMarshaler	m)	throws	ArgsException	{

try	{

m.set	(currentArgument.next());
}	catch	(NoSuchElementException	e)	{

errorCode	=	ErrorCode.MISSING_STRING;

throw	new	ArgsException();

}

}

Son	 pequeños	 cambios	 que	 conservan	 el	 funcionamiento	 de	 las	 pruebas.
Ahora	 podemos	 empezar	 a	 desplazar	 las	 funciones	 set	 a	 las	 correspondientes
variantes.	Primero,	debemos	realizar	el	siguiente	cambio	en	setArgument:

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	==	null)
return	false;

try	{

if	(m	instanceof	BooleanArgumentMarshaler)

setBooleanArg(m);

else	if	(m	instanceof	StringArgumentMarshaler)

setStringArg(m);

else	if	(m	instanceof	IntegerArgumentMarshaler)

setIntArg(m);

else
return	false;

}	catch	(ArgsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

throw	e;

}

return	true;

}

Es	 un	 cambio	 importante	 ya	 que	 queremos	 eliminar	 totalmente	 la	 cadena
if-else.	Por	tanto,	debemos	excluir	la	condición	de	error.

Ya	 podemos	 empezar	 a	 desplazar	 las	 funciones	 set.	 La	 función
setBooleanArg	 es	 trivial,	 de	 modo	 que	 la	 prepararemos	 en	 primer	 lugar.	 El
objetivo	 es	 cambiar	 la	 función	 setBooleanArg	 para	 redirigirla	 a
BooleanArgumentMarshaler.

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	==	null)

return	false;

try	{

if	(m	instanceof	BooleanArgumentMarshaler)

setBooleanArg(m,	currentArgument);
else	if	(m	instanceof	StringArgumentMarshaler)

setStringArg(m);

else	if	(m	instanceof	IntegerArgumentMarshaler)

setIntArg(m);

}	catch	(ArgsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

throw	e;

}

return	true;

}

private	void	setBooleanArg	(ArgumentMarshaler	m,

Iterator<String>	currentArgument)
throws	ArgsException	{

try	{
m.set(“true”);

catch	(ArgsException	e)	{
}

}

¿No	 acabamos	 de	 incluir	 el	 procesamiento	 de	 excepciones?	 Añadir
elementos	para	después	excluirlos	es	habitual	en	los	procesos	de	refactorización.
Los	 pasos	 reducidos	 y	 la	 necesidad	 de	 que	 las	 pruebas	 sigan	 siendo	 correctas
implican	 que	 los	 elementos	 cambien	 de	 posición.	 La	 refactorización	 es	 como
resolver	el	cubo	de	Rubik.	Se	necesitan	muchos	pasos	pequeños	para	lograr	un
objetivo	mayor.	Cada	paso	habilita	el	siguiente.

Se	preguntará	por	qué	pasamos	iterator	si	setBooleanArg	no	lo	necesita.
Pues	porque	setIntArg	y	setStringArg	sí.	Y	como	el	objetivo	es	implementar
las	 tres	 funciones	a	 través	de	un	método	abstracto	en	ArgumentMarshaller,	 es
necesario	pasarlo	a	setBooleanArg.

Ahora	 setBooleanArg	 no	 sirve	 de	 nada.	 Si	 hubiera	 una	 función	 set	 en
ArgumentMarshaler,	podríamos	invocarla	directamente.	Es	el	momento	de	crear
dicha	 función.	 El	 primer	 paso	 consiste	 en	 añadir	 el	 nuevo	método	 abstracto	 a
ArgumentMarshaler.

private	abstract	class	ArgumentMarshaler	{

public	abstract	void	set(Iterator<String>	currentArgument)
throws	ArgsException;

public	abstract	void	set	(String	s)	throws	ArgsException;

public	abstract	Object	get();

}

Evidentemente,	 esto	 afecta	 a	 todas	 las	 variantes,	 de	 modo	 que
implementamos	el	nuevo	método	en	cada	una.

private	class	BooleanArgumentMarshaler	extends	ArgumentMarshaler	{

private	boolean	booleanValue	=	false;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{
booleanValue	=	true;

}

public	void	set(String	s)	{

booleanValue	=	true;
}

public	Object	get()	{

return	booleanValue;

}

}

private	class	StringArgumentMarshaler	extends	ArgumentMarshaler	{

private	String	stringValue	=	“”;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

}
public	void	set(String	s)	{

stringValue	=	s;

}

public	Object	get()	{

return	stringValue;

}

}

private	class	IntegerArgumentMarshaler	extends	ArgumentMarshaler	{

private	int	intValue	=	0;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

}
public	void	set(String	s)	throws	ArgsException	{

try	{

intValue	=	Integer.parseInt(s);

}	catch	(NumberFormatException	e)	{

throw	new	ArgsException();

}

}

public	Object	get()	{

return	intValue;

}

}

Y	ahora	ya	podemos	eliminar	setBooleanArg:
private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	==	null)

return	false;

try	{

if	(m	instanceof	BooleanArgumentMarshaler)

m.set(currentArgument);
else	if	(m	instanceof	StringArgumentMarshaler)

setStringArg(m);

else	if	(m	instanceof	IntegerArgumentMarshaler)

setIntArg(m);

}	catch	(ArgsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

throw	e;

}

return	true;

}

Las	pruebas	siguen	siendo	satisfactorias	y	la	función	set	se	implementa	en
Boolean	 ArgumentMarshaler.	 Podemos	 repetir	 la	 operación	 con	 las	 cadenas	 y
los	enteros.

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	==	null)

return	false;

try	{

if	(m	instanceof	BooleanArgumentMarshaler)

m.set(currentArgument);

else	if	(m	instanceof	StringArgumentMarshaler)

m.set(currentArgument);
else	if	(m	instanceof	IntegerArgumentMarshaler)

m.set(currentArgument);

}	catch	(ArgsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

throw	e;

}

return	true;

}

private	class	StringArgumentMarshaler	extends	ArgumentMarshaler	{

private	String	stringValue	=	“”;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

try	{
stringValue	=	currentArgument.next();

}	catch	(NoSuchElementException	e)	{
errorCode	=	ErrorCode.MISSING_STRING;
throw	new	ArgsException();

}
}

public	void	set(String	s){

}

public	Object	get()	{

return	stringValue;

}

}

private	class	IntegerArgumentMarshaler	extends	ArgumentMarshaler	{

private	int	intValue	=	0;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

String	parameter	=	null;
try	{

parameter	=	currentArgument.next();
set(parameter);

}	catch	(NoSuchElementException	e)	{
errorCode	=	ErrorCode.MISSING_INTEGER;
throw	new	ArgsException();

}	catch	(ArgsException	e)	{
errorParameter	=	parameter;
errorCode	=	ErrorCode.INVALID_INTEGER;
throw	e;

}
}

public	void	set(String	s)	throws	ArgsException	{

try	{

intValue	=	Integer.parseInt(s);

}	catch	(NumberFormatException	e)	{

throw	new	ArgsException();

}

}

public	Object	get()	{

return	intValue;

}

}

Y	el	golpe	de	gracia:	se	elimina	el	caso	de	tipos.
private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	==	null)

return	false;

try	{

m.set(currentArgument);

return	true;

}	catch	(ArgsException	e)	{

valid	=	false;

errorArgumentId	=	argChar;

throw	e;

}

}

Ya	podemos	deshacernos	de	 las	 funciones	de	IntegerArgumentMarshaler
y	limpiar	el	resto.

private	class	IntegerArgumentMarshaler	extends	ArgumentMarshaler	{

private	int	intValue	=	0

public	void	set	(Iterator<String>	currentArgument)	throws	ArgsException	{

String	parameter	=	null;

try	{

parameter	=	currentArgument.next();

intValue	=	Integer.parseInt(parameter);
}	catch	(NoSuchElementException	e)	{

errorCode	=	ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();

}	catch	(NumberFormatException	e)	{
errorParameter	=	parameter;

errorCode	=	ErrorCode.INVALID_INTEGER;

throw	new	ArgsException();

}

}

public	Object	get()	{

return	intValue;

}

}

También	podemos	convertir	ArgumentMarshaler	en	una	interfaz.
private	interface	ArgumentMarshaler	{

void	set	(Iterator<String>	currentArgument)	throws	ArgsException;

Object	get();

}

Veamos	ahora	lo	sencillo	que	resulta	añadir	un	nuevo	tipo	de	argumento	a
la	estructura.	Apenas	necesitaremos	cambios	y	 los	que	apliquemos	tendrán	que
ser	aislados.	En	primer	lugar,	añadimos	un	nuevo	caso	de	prueba	para	comprobar
que	 el	 argumento	 double	 funciona	 correctamente:	 public	 void	 testSimpleDoublePresent()	 throws

Exception	{

Args	args	=	new	Args(“x##”,	new	String[]	{“-x”,“42.3”});

assertTrue(args.isValid());

assertEquals(1,	args.cardinality());

assertTrue(args.has(‘x’));

assertEquals(42.3,	args.getDouble(‘x’),	.001);

}

Limpiamos	el	código	de	análisis	de	esquemas	y	añadimos	 la	detección	##
para	el	tipo	de	argumento	double.

private	void	parseSchemaElement(String	element)	throws	ParseException	{

char	elementId	=	element.charAt(0);

String	elementTail	=	element.substring(1);

validateSchemaElementId(elementId);

if	(elementTail.length()	==	0)
marshalers.put(elementId,	new	BooleanArgumentMarshaler());

else	if	(elementTail.equals(“*”))
marshalers.put(elementId,	new	StringArgumentMarshaler());

else	if	(elementTail.equals(“#”))
marshalers.put(elementId,	new	IntegerArgumentMarshaler());

else	if	(elementTail.equals(“##”))
marshalers.put(elementId,	new	DoubleArgumentMarshaler());

else

throw	new	ParseException(String.format(

“Argument:	%c	has	invalid	format:	%s.”,	elementId,	elementTail),	0);

}

Seguidamente,	creamos	la	clase	DoubleArgumentMarshaler.
private	class	DoubleArgumentMarshaler	implements	ArgumentMarshaler	{

private	double	doubleValue	=	0;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{
String	parameter	=	null;
try	{

parameter	=	currentArgument.next();
doubleValue	=	Double.parseDouble(parameter);

}	catch	(NoSuchElementException	e)	{
errorCode	=	ErrorCode.MISSING_DOUBLE;
throw	new	ArgsException();

}	catch	(NumberFormatException	e)	{
errorParameter	=	parameter;
errorCode	=	ErrorCode.INVALID_DOUBLE;
throw	new	ArgsException();

}

}

public	Object	get()	{
return	doubleValue;

}

}

Esto	nos	obliga	a	añadir	un	nuevo	código	de	error	(ErrorCode).
private	enum	ErrorCode	{

OK,	MISSING_STRING,	MISSING_INTEGER,	INVALID_INTEGER,	UNEXPECTED_ARGUMENT,

MISSING_DOUBLE,	INVALID_DOUBLE}

Y	necesitamos	una	función	getDouble.
public	double	getDouble(char	arg)	{

Args.ArgumentMarshaler	am	=	marshalers.get(arg);
try	{

return	am	=	null	?	0	:	(Double)	am.get();
}	catch	(Exception	e)	{

return	0.0;

}

}

Y	 todas	 las	 pruebas	 son	 correctas.	 Ha	 sido	 sencillo.	 A	 continuación

comprobamos	 que	 el	 procesamiento	 de	 errores	 funciona	 correctamente.	 El
siguiente	 caso	 de	 prueba	 comprueba	 que	 se	 declare	 un	 error	 si	 se	 proporciona
una	cadena	que	no	se	puede	analizar	a	un	argumento	##.

public	void	testInvalidDouble()	throws	Exception	{

Args	args	=	new	Args(“x##”,	new	String[]	{“-x”,	“Forty	two”});

assertFalse(args.isValid());

assertEquals(0,	args.cardinality());

assertFalse(args.has(‘x’));

assertEquals(0,	args.getInt(‘x’));

assertEquals(“Argument	-x	expects	a	double	but	was	‘Forty	two’.”,

args.errorMessage());

}

public	String	errorMessage()	throws	Exception	{

switch	(errorCode)	{

case	OK:

throw	new	Exception(“TILT:	Should	not	get	here.”);

case	UNEXPECTED_ARGUMENT:

return	unexpectedArgumentMessage();

case	MISSING_STRING:

return	String.format(“Could	not	find	string	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_INTEGER:

return	String.format(“Argument	-%c	expects	an	integer	but	was	‘%s’.”,

errorArgumentId,	errorParameter);

case	MISSING_INTEGER:

return	String.format(“Could	not	find	integer	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_DOUBLE:
return	String.format(“Argument	-%c	expects	a	double	but	was	‘%s’.”,

errorArgumentId,	errorParameter);
case	MISSING_DOUBLE:

return	String.format(“Could	not	find	double	parameter	for	-%c”,
errorArgumentId);

}

return	“”;

}

Y	 las	 pruebas	 son	 satisfactorias.	 La	 siguiente	 prueba	 garantiza	 que	 se
detecte	correctamente	la	ausencia	de	un	argumento	double.

public	void	testMissingDouble()	throws	Exception	{
Args	args	=	new	Args(“x##”,	new	String[]{"-x"});
assertFalse	(args.isValid());
assertEquals(0,	args.cardinality());
assertFalse(args.has(‘x’));
assertEquals(0.0,	args.getDouble(‘x’),	0.01);
assertEquals(“Could	not	find	double	parameter	for	-x.”,

args.errorMessage());

}

Es	correcto.	La	incluimos	para	que	el	ejemplo	resulte	más	completo.
El	código	de	excepciones	no	es	atractivo	y	no	pertenece	realmente	a	la	clase

Args.	 También	 generamos	 ParseException,	 que	 no	 nos	 pertenece.	 Por	 ello,
combinamos	 todas	 las	 excepciones	 en	 una	 única	 clase	 ArgsException	 y	 la
incluimos	en	su	propio	módulo.

public	class	ArgsException	extends	Exception	{
private	char	errorArgumentId	=	‘\0’;
private	String	errorParameter	=	“TILT”;
private	ErrorCode	errorCode	=	ErrorCode.OK;

public	ArgsException()	{}

public	ArgsException(String	message)	{	super(message);	}

public	enum	ErrorCode	{
OK,	MISSING_STRING,	MISSING_INTEGER,	INVALID_INTEGER,	UNEXPECTED_ARGUMENT,
MISSING_DOUBLE,	INVALID_DOUBLE	}

}
…

public	class	Args	{

…

private	char	errorArgumentId	=	‘\0’;

private	String	errorParameter	=	“TILT”;

private	ArgsException.ErrorCode	errorCode	=	ArgsException.ErrorCode.OK;
private	List<String>	argsList;

public	Args(String	schema,	String[]	args)	throws	ArgsException	{
this.schema	=	schema;

argsList	=	Arrays.asList(args);

valid	=	parse();

}

private	boolean	parse()	throws	ArgsException	{

if	(schema.length()	==	0	&&	argsList.size()	==	0)

return	true;

parseSchema();

try	{

parseArguments();

}	catch	(ArgsException	e)	{
}

return	valid;

}

private	boolean	parseSchema()	throws	ArgsException	{
…

}

private	void	parseSchemaElement(String	element)	throws	ArgsException	{
…

else

throw	new	ArgsException(
String.format(“Argument:	%c	has	invalid	format:	%s.”,

elementId,	elementTail));

}

private	void	validateSchemaElementId(char	elementId)	throws	ArgsException	{
if	(!Character.isLetter(elementId))	{

throw	new	ArgsException(
“Bad	character:”	+	elementId	+	“in	Args	format:	”	+	schema);

}

}

…

private	void	parseElement(char	argChar)	throws	ArgsException	{
if	(setArgument(argChar))

argsFound.add(argChar);

else	{

unexpectedArguments.add(argChar);

errorCode	=	ArgsException.ErrorCode.UNEXPECTED_ARGUMENT;
valid	=	false;

}

}

…

private	class	StringArgumentMarshaler	implements	ArgumentMarshaler	{

private	String	stringValue	=	“”;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

try	{

stringValue	=	currentArgument.next();

}	catch	(NoSuchElementException	e)	{

errorCode	=	ArgsException.ErrorCode.MISSING_STRING;
throw	new	ArgsException();

}

}

public	Object	get()	{

return	stringValue;

}

}

private	class	IntegerArgumentMarshaler	implements	ArgumentMarshaler	{

private	int	intValue	=	0;

public	void	set	(Iterator<String>	currentArgument)	throws	ArgsException	{
String	parameter	=	null;

try	{

parameter	=	currentArgument.next();

intValue	=	Integer.parseInt(parameter);

}	catch	(NoSuchElementException	e)	{

errorCode	=	ArgsException.ErrorCode.MISSING_INTEGER;

throw	new	ArgsException();
}	catch	(NumberFormatException	e)	{

errorParameter	=	parameter;

errorCode	=	ArgsException.ErrorCode.INVALID_INTEGER;
throw	new	ArgsException();

}

}

public	Object	get()	{

return	intValue;

}

}

private	class	DoubleArgumentMarshaler	implements	ArgumentMarshaler	{

private	double	doubleValue	=	0;

public	void	set(Iterator<String>	currentArgument)	throws	ArgsException	{

String	parameter	=	null;

try	{

parameter	=	currentArgument.next();

doubleValue	=	Double.parseDouble(parameter);

}	catch	(NoSuchElementException	e)	{

errorCode	=	ArgsException.ErrorCode.MISSING_DOUBLE;
throw	new	ArgsException();

}	catch	(NumberFormatException	e)	{

errorParameter	=	parameter;

errorCode	=	ArgsException.ErrorCode.INVALID_DOUBLE;
throw	new	ArgsException);

}

}

public	Object	get()	{

return	doubleValue;

}

}

}

Muy	 bien.	 Ahora,	 Args	 solamente	 genera	 ArgsException.	 Al	 desplazar
ArgsException	a	un	módulo	propio,	podemos	añadir	a	dicho	módulo	gran	parte
del	 código	 de	 error	 y	 extraerlo	 del	 módulo	 Args.	 Es	 una	 posición	 natural	 y
evidente	 para	 incluir	 todo	 el	 código	 y	 nos	 permitirá	 limpiar	 posteriormente	 el
módulo	Args.

Ya	hemos	separado	el	código	de	excepciones	y	de	error	del	módulo	Args
(véanse	 los	 listados	 del	 14-13	 al	 14-16).	 Para	 ello	 realizamos	 una	 serie	 de	 30
pasos	mínimos	y	las	pruebas	fueron	satisfactorias	entre	todos	ellos.

Listado	14-13
ArgsTest.java.

package	com.objectmentor.utilities.args;

import	junit.framework.TestCase;

public	class	ArgsTest	extends	TestCase	{

public	void	testCreateWithNoSchemaOrArguments()	throws	Exception	{

Args	args	=	new	Args(“”,	new	String[0]);

assertEquals(0,	args.cardinality());

}

public	void	testWithNoSchemaButWithOneArgument()	throws	Exception	{

try	{

new	Args(“”,	new	String[]{“-x”});

fail();

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,

e.getErrorCode());

assertEquals(‘x’,	e.getErrorArgumentId());

}

}

public	void	testWithNoSchemaButWithMultipleArguments()	throws	Exception	{

try	{

new	Args(“”,	new	String[]{“-x”,	“-y”});

fail();

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,

e.getErrorCode());

assertEquals(‘x’,	e.getErrorArgumentId());

}

}

public	void	testNonLetterSchema()	throws	Exception	{

try	{

new	Args(“*”,	new	String[]{});

fail(“Args	constructor	should	have	thrown	exception”);

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME,

e.getErrorCode());

assertEquals(‘*’,	e.getErrorArgumentId());

}

}

public	void	testInvalidArgumentFormat()	throws	Exception	{

try	{

new	Args(“f~”,	new	String[]{});

fail(“Args	constructor	should	have	throws	exception”);

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.INVALID_FORMAT,	e.getErrorCode());

assertEquals(‘f’,	e.getErrorArgumentId());

}

}

public	void	testSimpleBooleanPresent()	throws	Exception	{

Args	args	=	new	Args(“x”,	new	String	[]{“-x”});

assertEquals(1,	args.cardinality());

assertEquals(true,	args.getBoolean(‘x’));

}

public	void	testSimpleStringPresent()	throws	Exception	{

Args	args	=	new	Args(“x*”,	new	String[]{“-x”,	“param”});

assertEquals(1,	args.cardinality());

assertTrue(args.has(‘x’));

assertEquals(“param”,	args.getString(‘x’));

}

public	void	testMissingStringArgument()	throws	Exception	{

try	{

new	Args(“x*”,	new	String[]{"-x"});

fail();

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.MISSING_STRING,	e.getErrorCode());

assertEquals(‘x’,	e.getErrorArgumentId());

}

}

public	void	testSpacesInFormat()	throws	Exception	{

Args	args	=	new	Args(“x,	y”,	new	String[]{“-xy”});

assertEquals(2,	args.cardinality());

assertTrue(args.has(‘x’));

assertTrue(args.has(‘y’));

}

public	void	testSimpleIntPresent()	throws	Exception	{

Args	args	=	new	Args(“x#”,	new	String[]{“-x”,	“42”});

assertEquals(1,	args.cardinality());

assertTrue(args.has(‘x’));

assertEquals(42,	args.getInt(‘x’));

}

public	void	testInvalidInteger()	throws	Exception	{

try	{

new	Args(“x#”,	new	String[]	{“-x”,	“Forty	two”});

fail();

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.INVALID_INTEGER,	e.getErrorCode());

assertEquals(‘x’,	e.getErrorArgumentId());

assertEquals(“Forty	two”,	e.getErrorParameter());

}

}

public	void	testMissingInteger()	throws	Exception	{

try	{

new	Args(“x#”,	new	String[]{“-x”});

fail();

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.MISSING_INTEGER,	e.getErrorCode());

assertEquals(‘x’,	e.getErrorArgumentId());

}

}

public	void	testSimpleDoublePresent()	throws	Exception	{

Args	args	=	new	Args(“x##”,	new	String[](“-x”,	“42.3”});

assertEquals(1,	args.cardinality());

assertTrue(args.has(‘x’));

assertEquals(42.3,	args.getDouble(‘x’),	.001);

}

public	void	testInvalidDouble()	throws	Exception	{

try	{

new	Args(“x##”,	new	String	[]{“-x”,	“Forty	two”});

fail();

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.INVALID_DOUBLE,	e.getErrorCode());

assertEquals(‘x’,	e.getErrorArgumentId());

assertEquals(“Forty	two”,	e.getErrorParameter());

}

}

public	void	testMissingDouble()	throws	Exception	{

try	{

new	Args(“x##”,	new	String[]{“-x”});

fail();

}	catch	(ArgsException	e)	{

assertEquals(ArgsException.ErrorCode.MISSING_DOUBLE,	e.getErrorCode());

assertEquals(‘x’,	e.getErrorArgumentId());

}

}

}

Listado	14-14
ArgsExceptionTest.java.

public	class	ArgsExceptionTest	extends	TestCase	{

public	void	testUnexpectedMessage()	throws	Exception	{

ArgsException	e	=

new	ArgsException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,

‘x’,	null);

assertEquals(“Argument	-x	unexpected.”,	e.errorMessage());

}

public	void	testMissingStringMessage()	throws	Exception	{

ArgsException	e	=	new	ArgsException(ArgsException.ErrorCode.MISSING_STRING,

‘x’,	null);

assertEquals(“Could	not	find	string	parameter	for	–x.”,	e.errorMessage());

}

public	void	testInvalidIntegerMessage()	throws	Exception	{

ArgsException	e	=

new	ArgsException(ArgsException.ErrorCode.INVALID_INTEGER,

‘x’,	“Forty	two”);

assertEquals(“Argument	–x	expects	an	integer	but	was	‘Forty	two’.”,

e.errorMessage());

}

public	void	testMissingIntegerMessage()	throws	Exception	{

ArgsException	e	=

new	ArgsException(ArgsException.ErrorCode.MISSING_INTEGER,	‘x’,	null);

assertEquals(“Could	not	find	integer	parameter	for	-x.”,	e.errorMessage());

}

public	void	testInvalidDoubleMessage()	throws	Exception	{

ArgsException	e	=	new	ArgsException(ArgsException.ErrorCode.INVALID_DOUBLE,

‘x’,	“Forty	two”);

assertEquals(“Argument	-x	expects	a	double	but	was	‘Forty	two’.”,

e.errorMessage());

}

public	void	testMissingDoubleMessage()	throws	Exception	{

ArgsException	e	=	new	ArgsException(ArgsException.ErrorCode.MISSING_DOUBLE,

‘x’,	null);

assertEquals(“Could	not	find	double	parameter	for	-x.”,	e.errorMessage());

}

}

Listado	14-15
ArgsException.java.

public	class	ArgsException	extends	Exception	{

private	char	errorArgumentId	=	‘\0’;

private	String	errorParameter	=	“TILT”;

private	ErrorCode	errorCode	=	ErrorCode.OK;

public	ArgsException()	{}

public	ArgsException(String	message)	{super(message);}

public	ArgsException(ErrorCode	errorCode)	{

this.errorCode	=	errorCode;

}

public	ArgsException(ErrorCode	errorCode,	String	errorParameter)	{

this.errorCode	=	errorCode;

this.errorParameter	=	errorParameter;

}

public	ArgsException(ErrorCode	errorCode,	char	errorArgumentId,

String	errorParameter)	{

this.errorCode	=	errorCode;

this.errorParameter	=	errorParameter;

this.errorArgumentId	=	errorArgumentId;

}

public	char	getErrorArgumentId()	{

return	errorArgumentId;

}

public	void	setErrorArgumentId(char	errorArgumentId)	{

this.errorArgumentId	=	errorArgumentId;

}

public	String	getErrorParameter()	{

return	errorParameter;

}

public	void	setErrorParameter(String	errorParameter)	{

this.errorParameter	=	errorParameter;

}

public	ErrorCode	getErrorCode()	{

return	errorCode;

}

public	void	setErrorCode(ErrorCode	errorCode)	{

this.errorCode	=	errorCode;

}

public	String	errorMessage()	throws	Exception	{

switch	(errorCode)	{

case	OK:

throw	new	Exception(“TILT:	Should	not	get	here.”);

case	UNEXPECTED_ARGUMENT:

return	String.format(“Argument	-%c	unexpected.”,	errorArgumentId);

case	MISSING_STRING:

return	String.format(“Could	not	find	string	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_INTEGER:

return	String.format(“Argument	-%c	expects	an	integer	but	was	‘%s’.”,

errorArgumentId,	errorParameter);

case	MISSING_INTEGER:

return	String.format(“Could	not	find	integer	parameter	for	-%c.”,

errorArgumentId);

case	INVALID_DOUBLE:

return	String.format(“Argument	-%c	expects	a	double	but	was	‘%s’.”,

errorArgumentId,	errorParameter);

case	MISSING_DOUBLE:

return	String.format(“Could	not	find	double	parameter	for	-%c.”,

errorArgumentId);

}

return	“”;

}

public	enum	ErrorCode	{

OK,	INVALID_FORMAT,	UNEXPECTED_ARGUMENT,	INVALID_ARGUMENT_NAME,

MISSING_STRING,

MISSING_INTEGER,	INVALID_INTEGER,

MISSING_DOUBLE,	INVALID_DOUBLE}

}

Listado	14-16
Args.java.

public	class	Args	{

private	String	schema;

private	Map<Character,	ArgumentMarshaler>	marshalers	=

new	HashMap<Character,	ArgumentMarshaler>();

private	Set<Character>	argsFound	=	new	HashSet<Character>();

private	Iterator<String>	currentArgument;

private	List<String>	argsList;

public	Args(String	schema,	String[]	args)	throws	ArgsException	{

this.schema	=	schema;

argsList	=	Arrays.asList(args);

parse();

}

private	void	parse()	throws	ArgsException	{

parseSchema();

parseArguments();

}

private	boolean	parseSchema()	throws	ArgsException	{

for	(String	element	:	schema.split(“,”))	{

if	(element.length()	>	0)	{

parseSchemaElement(element.trim());

}

}

return	true;

}

private	void	parseSchemaElement(String	element)	throws	ArgsException	{

char	elementId	=	element.charAt(0);

String	elementTail	=	element.substring(1);

validateSchemaElementId(elementId);

if	(elementTail.length()	==	0)

marshalers.put(elementId,	new	BooleanArgumentMarshaler());

else	if	(elementTail.equals(“*”))

marshalers.put(elementId,	new	StringArgumentMarshaler());

else	if	(elementTail.equals(“#”))

marshalers.put(elementId,	new	IntegerArgumentMarshaler());

else	if	(elementTail.equals(“##”))

marshalers.put(elementId,	new	DoubleArgumentMarshaler());

else

throw	new	ArgsException(ArgsException.ErrorCode.INVALID_FORMAT,

elementId,	elementTail);

}

private	void	validateSchemaElementId(char	elementId)	throws	ArgsException	{

if	(!Character.isLetter(elementId))	{

throw	new	ArgsException(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME,

elementId,	null);

}

}

private	void	parseArguments()	throws	ArgsException	{

for	(currentArgument	=	argsList.iterator();	currentArgument.hasNext();)	{

String	arg	=	currentArgument.next();

parseArgument(arg);

}

}

private	void	parseArgument(String	arg)	throws	ArgsException	{

if	(arg.startsWith(“-”))

parseElements(arg);

}

private	void	parseElements(String	arg)	throws	ArgsException	{

for	(int	i	=	1;	i	<	arg.length();	i++)

parseElement(arg.charAt(i));

}

private	void	parseElement(char	argChar)	throws	ArgsException	{

if	(setArgument(argChar))

argsFound.add(argChar);

else	{

throw	new	ArgsException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,

argChar,	null);

}

}

private	boolean	setArgument(char	argChar)	throws	ArgsException	{

ArgumentMarshaler	m	=	marshalers.get(argChar);

if	(m	==	null)

return	false;

try	{

m.set(currentArgument);

return	true;

}	catch	(ArgsException	e)	{

e.setErrorArgumentId(argChar);

throw	e;

}

}

public	int	cardinality()	{

return	argsFound.size();

}

public	String	usage()	{

if	(schema.length()	>	0)

return	"-["	+	schema	+	“]”;

else

return	“”;

}

public	boolean	getBoolean(char	arg)	{

ArgumentMarshaler	am	=	marshalers.get(arg);

boolean	b	=	false;

try	{

b	=	am	!=	null	&&	(Boolean)	am.get();

}	catch	(ClassCastException	e)	{

b	=	false;

}

return	b;

}

public	String	getString(char	arg)	{

ArgumentMarshaler	am	=	marshalers.get(arg);

try	{

return	am	==	null	?	“”	:	(String)	am.get();

}	catch	(ClassCastException	e)	{

return	“”;

}

}

public	int	getInt(char	arg)	{

ArgumentMarshaler	am	=	marshalers.get(arg);

try	{

return	am	==	null	?	0	:	(Integer)	am.get();

}	catch	(Exception	e)	{

return	0;

}

}

public	double	getDouble(char	arg)	{

ArgumentMarshaler	am	=	marshalers.get(arg);

try	{

return	am	==	null	?	0	:	(Double)	am.get();

}	catch	(Exception	e)	{

return	0.0;

}

}

public	boolean	has(char	arg)	{

return	argsFound.contains(arg);

}

}

La	 mayoría	 de	 los	 cambios	 realizados	 en	 la	 clase	 Args	 han	 sido
eliminaciones.	 Gran	 parte	 del	 código	 se	 extrajo	 de	 Args	 y	 se	 añadió	 a
ArgsException.	 Perfecto.	 También	 cambiamos	 todos	 los	 elementos
ArgumentMarshaller	a	sus	propios	archivos.	Mejor	todavía.

El	diseño	de	software	correcto	se	basa	gran	parte	en	las	particiones,	en	crear
zonas	adecuadas	para	incluir	distintos	tipos	de	código.	Esta	separación	hace	que
el	código	sea	más	fácil	de	entender	y	mantener.

Especialmente	 interesante	 es	 el	método	errorMessage	 de	ArgsException.
Incumple	claramente	el	SRP	al	incluir	el	formato	de	mensajes	de	error	en	Args.
Args	debe	centrarse	en	el	procesamiento	de	argumentos,	no	en	el	formato	de	los
mensajes	 de	 error.	 Sin	 embargo,	 ¿realmente	 tiene	 sentido	 incluir	 el	 código	 de
formato	de	mensajes	de	error	en	ArgsException?

Francamente	es	un	compromiso.	Los	usuarios	que	no	deseen	los	mensajes
de	error	proporcionados	por	ArgsException	tendrán	que	crear	los	suyos	propios,
pero	la	utilidad	de	mensajes	de	error	ya	preparados	es	evidente.

Ya	debería	haberse	dado	cuenta	de	la	distancia	recorrida	con	respecto	a	la
solución	 mostrada	 al	 inicio	 del	 capítulo.	 Las	 transformaciones	 finales	 puede
examinarlas	por	su	cuenta.

Conclusión

No	 basta	 con	 que	 el	 código	 funcione.	 El	 código	 que	 funciona	 suele	 ser
incorrecto.	 Los	 programadores	 que	 se	 conforman	 con	 código	 funcional	 no	 se
comportan	 de	 forma	 profesional.	 Puede	 que	 teman	 que	 no	 tienen	 tiempo	 para
mejorar	 la	 estructura	 y	 el	 diseño	 del	 código,	 pero	 discrepo.	 No	 hay	 nada	 que
afecte	más	negativamente	a	un	proyecto	de	desarrollo	que	el	código	incorrecto.
Los	plazos	incorrectos	se	pueden	rehacer	y	los	requisitos	equivocados	se	pueden
volver	a	definir.	La	dinámica	 incorrecta	de	un	equipo	se	puede	 reparar	pero	el
código	incorrecto	se	corrompe	y	se	convierte	en	una	carga	que	arrastra	al	equipo
completo.	He	visto	equipos	dominados	por	el	desastre	que	han	generado	y	que
han	dominado	su	destino.

Evidentemente,	 el	 código	 incorrecto	 se	 puede	 limpiar	 pero	 resulta	 muy
costoso.	Cuando	el	código	se	corrompe	los	módulos	se	insinúan	unos	a	otros	y
generan	 multitud	 de	 dependencias	 ocultas	 y	 entrelazadas.	 La	 localización	 y
división	 de	 dependencias	 antiguas	 es	 una	 tarea	 larga	 y	 complicada.	 Por	 otra
parte,	resulta	relativamente	sencillo	mantener	código	limpio.	Si	comete	un	error

en	un	módulo,	es	más	fácil	limpiarlo	directamente.	Mejor	todavía,	si	cometió	un
error	hace	cinco	minutos,	es	muy	fácil	limpiarlo	ahora.

Por	 tanto,	 la	 solución	 consiste	 en	 mantener	 el	 código	 limpio	 y	 sencillo
siempre	que	se	pueda	y	no	dejar	que	llegue	a	corromperse.

15
Aspectos	internos	de	JUnit

JUnit	es	una	de	las	estructuras	de	Java	más	conocidas.	De	concepción	sencilla,
definición	 precisa	 y	 documentación	 elegante.	 ¿Y	 su	 código?	 En	 este	 capítulo
analizaremos	un	ejemplo	extraído	de	la	estructura	JUnit.

La	estructura	JUnit

JUnit	ha	tenido	muchos	autores,	comenzando	por	Kent	Beck	y	Eric	Gamma	en
un	vuelo	a	Atlanta.	Kent	quería	aprender	Java	y	Eric	quería	saber	más	sobre	la
estructura	 de	 pruebas	 Smalltalk	 de	 Kent.	 “¿Hay	 algo	 más	 natural	 que	 dos
fanáticos	 enciendan	 sus	 portátiles	 y	 empiecen	 a	 escribir	 código?”[94]	 Tras	 tres
horas	de	trabajo	de	altura,	habían	creado	los	fundamentos	de	JUnit.

El	 módulo	 que	 analizaremos	 es	 un	 inteligente	 fragmento	 de	 código	 que
permite	identificar	errores	de	comparación	de	cadenas.	El	nombre	del	módulo	es
ComparisonCompactor.	 Dadas	 dos	 cadenas	 diferentes,	 como	 ABCDE	 y	 ABXDE,
muestra	la	diferencia	entre	ambas	generando	una	cadena	como	<…B[X]D…>.

Podríamos	explicarlo	más,	pero	los	casos	de	prueba	son	mejores.	Fíjese	en
el	 Listado	 15-1	 para	 comprender	 los	 requisitos	 de	 este	 módulo.	 Analice	 la
estructura	de	las	pruebas.	¿Podrían	ser	más	simples	o	más	evidentes?

Listado	15-1
ComparisonCompactorTest.java.

package	junit.tests.framework;

import	junit.framework.ComparisonCompactor;

import	junit.framework.TestCase;

public	class	ComparisonCompactorTest	extends	TestCase	{

public	void	testMessage()	{

String	failure=	new	ComparisonCompactor(0,	“b”,	“c”).compact(“a”);

assertTrue(“a	expected:<[b]>	but	was:<[c]>”.equals(failure));

}

public	void	testStartSame()	{

String	failure=	new	ComparisonCompactor(1,	“ba”,	“bc”).compact(null);

assertEquals(“expected:<b[a]>	but	was:<b[c]>”,	failure);

}

public	void	testEndSame()	{

String	failure=	new	ComparisonCompactor(1,	“ab”,	“cb”).compact(null);

assertEquals(“expected:<[a]b>	but	was:<[c]b>”,	failure);

}

public	void	testSame()	{

String	failure=	new	ComparisonCompactor(1,	“ab”,	“ab”).compact(null);

assertEquals(“expected:<ab>	but	was:<ab>”,	failure);

}

public	void	testNoContextStartAndEndSame()	{

String	failure=	new	ComparisonCompactor(0,	“abc”,	“adc”).compact(null);

assertEquals(“expected:<…[b]…>	but	was:<…[d]…>”,	failure);

}

public	void	testStartAndEndContext()	{

String	failure=	new	ComparisonCompactor(1,	“abc”,	“adc”).compact(null);

assertEquals(“expected:<a[b]c>	but	was:<a[d]c>”,	failure);

}

public	void	testStartAndEndContextWithEllipses()	{

String	failure=

new	ComparisonCompactor(1,	“abcde”,	“abfde”).compact(null);

assertEquals(“expected:<…b[c]d…>	but	was:<…b[f]d…>”,	failure);

}

public	void	testComparisonErrorStartSameComplete()	{

String	failure=	new	ComparisonCompactor(2,	“ab”,	“abc”).compact(null);

assertEquals(“expected:<ab[]>	but	was:<ab[c]>”,	failure);

}

public	void	testComparisonErrorEndSameComplete()	{

String	failure=	new	ComparisonCompactor(0,	“bc”,	“abc”).compact(null);

assertEquals(“expected:<[]…>	but	was:<[a]…>”,	failure);

}

public	void	testComparisonErrorEndSameCompleteContext()	{

String	failure=	new	ComparisonCompactor(2,	“bc”,	“abc”).compact(null);

assertEquals(“expected:<[]bc>	but	was:<[a]bc>”,	failure);

}

public	void	testComparisonErrorOverlapingMatches()	{

String	failure=	new	ComparisonCompactor(0,	“abc”,	“abbc”).compact(null);

assertEquals(“expected:<…[]…>	but	was:<…[b]…>”,	failure);

}

public	void	testComparisonErrorOverlapingMatchesContext()	{

String	failure=	new	ComparisonCompactor(2,	“abc”,	“abbc”).compact(null);

assertEquals(“expected:<ab[]c>	but	was:<ab[b]c>”,	failure);

}

public	void	testComparisonErrorOverlapingMatches2()	{

String	failure=	new	ComparisonCompactor(0,	“abcdde”,

“abcde”).compact(null);

assertEquals(“expected:<…[d]…>	but	was:<…[]…>”,	failure);

}

public	void	testComparisonErrorOverlapingMatches2Context()	{

String	failure=

new	ComparisonCompactor(2,	“abcdde”,	“abcde”).compact(null);

assertEquals(“expected:<…cd[d]e>	but	was:<…cd[]e>”,	failure);

}

public	void	testComparisonErrorWithActualNull()	{

String	failure=	new	ComparisonCompactor(0,	“a”,	null).compact(null);

assertEquals(“expected:<a>	but	was:<null>”,	failure);

}

public	void	testComparisonErrorWithActualNullContext()	{

String	failure=	new	ComparisonCompactor(2,	“a”,	null).compact(null);

assertEquals(“expected:<a>	but	was:<null>”,	failure);

}

public	void	testComparisonErrorWithExpectedNull()	{

String	failure=	new	ComparisonCompactor(0,	null,	“a”).compact(null);

assertEquals(“expected:<null>	but	was:<a>”,	failure);

}

public	void	testComparisonErrorWithExpectedNullContext()	{

String	failure=	new	ComparisonCompactor(2,	null,	“a”).compact(null);

assertEquals(“expected:<null>	but	was:<a>”,	failure);

}

public	void	testBug609972()	{

String	failure=	new	ComparisonCompactor(10,	“S&P500”,	“0”).compact(null);

assertEquals(“expected:<[S&P50]0>	but	was:<[]0>”,	failure);

}

}

Realicé	 un	 análisis	 de	 alcance	 de	 código	 en	 ComparisonCompactor	 con
estas	 pruebas.	 El	 código	 se	 cubre	 en	 un	 100	 por	 100.	 Cada	 línea,	 cada
instrucción	if	y	cada	bucle	for	se	ejecuta	con	las	pruebas.	De	este	modo	sé	que
el	código	funciona	y	sus	autores	me	merecen	el	mayor	de	los	respetos.

El	 código	 ComparisonCompactor	 se	 reproduce	 en	 el	 Listado	 15-2.
Examínelo.	Creo	que	lo	encontrará	bien	distribuido,	razonablemente	expresivo	y
estructuralmente	sencillo.	Cuando	termine,	lo	diseccionaremos.

Listado	15-2

ComparisonCompactor.java	(Original).

package	junit.framework;

public	class	ComparisonCompactor	{

private	static	final	String	ELLIPSIS	=	“…”;

private	static	final	String	DELTA_END	=	“]”;

private	static	final	String	DELTA_START	=	“[”;

private	int	fContextLength;

private	String	fExpected;

private	String	fActual;

private	int	fPrefix;

private	int	fSuffix;

public	ComparisonCompactor(int	contextLength,

String	expected,

String	actual)	{

fContextLength	=	contextLength;

fExpected	=	expected;

fActual	=	actual;

}

public	String	compact(String	message)	{

if	(fExpected	==	null	||	fActual	==	null	||	areStringsEqual())

return	Assert.format(message,	fExpected,	fActual);

findCommonPrefix();

findCommonSuffix();

String	expected	=	compactString(fExpected);

String	actual	=	compactString(fActual);

return	Assert.format(message,	expected,	actual);

}

private	String	compactString(String	source)	{

String	result	=	DELTA_START	+

source.substring(fPrefix,	source.length()	-

fSuffix	+	1)	+	DELTA_END;

if	(fPrefix	>	0)

result	=	computeCommonPrefix()	+	result;

if	(fSuffix	>	0)

result	=	result	+	computeCommonSuffix();

return	result;

}

private	void	findCommonPrefix()	{

fPrefix	=	0;

int	end	=	Math.min(fExpected.length(),	fActual.length());

for	(;	fPrefix	<	end;	fPrefix++)	{

if	(fExpected.charAt(fPrefix)	!=	fActual.charAt(fPrefix))

break;

}

}

private	void	findCommonSuffix()	{

int	expectedSuffix	=	fExpected.length()	-	1;

int	actualSuffix	=	fActual.length()	-	1;

for	(;

actualSuffix	>=	fPrefix	&&	expectedSuffix	>=	fPrefix;

actualSuffix--,	expectedSuffix--)	{

if	(fExpected.charAt(expectedSuffix)	!=	fActual.charAt(actualSuffix))

break;

}

fSuffix	=	fExpected.length()	-	expectedSuffix;

}

private	String	computeCommonPrefix()	{

return	(fPrefix	>	fContextLength	?	ELLIPSIS	:	“”)	+

fExpected.substring(Math.max(0,	fPrefix	-	fContextLength),

fPrefix);

}

private	String	computeCommonSuffix()	{

int	end	=	Math.min(fExpected.length()	-	fSuffix	+	1	+	fContextLength,

fExpected.length());

return	fExpected.substring(fExpected.length()	-	fSuffix	+	1,	end)	+

(fExpected.length()	-	fSuffix	+	1	<	fExpected.length()	-

fContextLength	?	ELLIPSIS	:	“”);

}

private	boolean	areStringsEqual()	{

return	fExpected.equals(fActual);

}

}

Puede	 que	 tenga	 varias	 quejas	 sobre	 el	 módulo.	 Incluye	 expresiones
extensas	y	extraños	elementos	+1.	Pero	en	general,	está	bastante	bien.	Después
de	todo,	podría	haber	sido	como	el	Listado	15-3.

Listado	15-3
ComparisonCompator.java	(defactorizado)

package	junit.framework;

public	class	ComparisonCompactor	{

private	int	ctxt;

private	String	s1;

private	String	s2;

private	int	pfx;

private	int	sfx;

public	ComparisonCompactor(int	ctxt,	String	s1,	String	s2)	{

this.ctxt	=	ctxt;

this.s1	=	s1;

this.s2	=	s2;

}

public	String	compact(String	msg)	{

if	(s1	==	null	||	s2	==	null	||	s1.equals(s2))

return	Assert.format(msg,	s1,	s2);

pfx	=	0;

for	(;	pfx	<	Math.min(s1.length(),	s2.length());	pfx++)	{

if	(s1.charAt(pfx)	!=	s2.charAt(pfx))

break;

}

int	sfx1	=	s1.length()	-	1;

int	sfx2	=	s2.length()	-	1;

for	(;	sfx2	>=	pfx	&&	sfx1	>=	pfx;	sfx2--,	sfx1--)	{

if	(s1.charAt(sfx1)	!=	s2.charAt(sfx2))

break;

}

sfx	=	s1.length()	-	sfx1;

String	cmp1	=	compactString(s1);

String	cmp2	=	compactString(s2);

return	Assert.format(msg,	cmp1,	cmp2);

}

private	String	compactString(String	s)	{

String	result	=

“[”	+	s.substring(pfx,	s.length()	-	sfx	+	1)	+	“]”;

if	(pfx	>	0)

result	=	(pfx	>	ctxt	?	“…”	:	“”)	+

s1.substring(Math.max(0,	pfx	-	ctxt),	pfx)	+	result;

if	(sfx	>	0)	{

int	end	=	Math.min(s1.length()	-	sfx	+	1	+	ctxt,	s1.length());

result	=	result	+	(s1.substring(s1.length()	-	sfx	+	1,	end)	+

(s1.length()	-	sfx	+	1	<	s1.length()	-	ctxt	?	“…”	:	“”));

}

return	result;

}

}

Aunque	los	autores	hicieron	un	buen	trabajo	con	este	módulo,	la	Regla	del
Boy	 Scout[95]	 muestra	 que	 podrían	 haberlo	 dejado	 más	 limpio	 de	 lo	 que	 se
encontró.	 ¿Cómo	 podemos	 mejorar	 el	 código	 original	 del	 Listado	 15-2?	 Lo
primero	que	no	necesitamos	es	el	prefijo	f	de	las	variables	miembro	[N6].	Los
entornos	actuales	hacen	que	este	tipo	de	código	de	ámbito	sea	redundante,	por	lo

que	eliminaremos	todas	las	f.
private	int	contextLength;

private	String	expected;

private	String	actual;

private	int	prefix;

private	int	suffix;

Tras	 ello,	 tenemos	 una	 condicional	 sin	 encapsular	 al	 inicio	 de	 la	 función
compact	[G28].

public	String	compact(String	message)	{

if	(expected	==	null	||	actual	==	null	||	areStringsEqual())
return	Assert.format(message,	expected,	actual);

findCommonPrefix();

findCommonSuffix();

String	expected	=	compactString(this.expected);

String	actual	=	compactString(this.actual);

return	Assert.format(message,	expected,	actual);

}

Es	necesario	encapsular	esta	condicional	para	que	nuestra	intención	sea	más
clara.	Por	tanto,	extraemos	un	método	que	la	explique.

public	String	compact(String	message)	{

if	(shouldNotCompact())
return	Assert.format(message,	expected,	actual);

findCommonPrefix();

findCommonSuffix();

String	expected	=	compactString(this.expected);

String	actual	=	compactString(this.actual);

return	Assert.format(message,	expected,	actual);

}

private	boolean	shouldNotCompact()	{
return	expected	==	null	||	actual	==	null	||	areStringsEqual();

}

En	 la	 función	compact,	this.expected	 y	this.actual	 no	 son	demasiado
relevantes.	Sucede	al	cambiar	el	nombre	de	fExpected	por	expected.	¿Por	qué
esta	función	tiene	variables	con	los	mismos	nombres	que	las	variables	miembro?
¿No	representan	cosas	diferentes?[N4].	Los	nombres	deben	ser	exclusivos.

String	compactExpected	=	compactString(expected);
String	compactActual	=	compactString(actual);

Los	 negativos	 son	más	 difíciles	 de	 entender	 que	 los	 positivos	 [G29].	 Por
ello,	invertimos	esa	instrucción	if	para	cambiar	el	sentido	de	la	condicional.

public	String	compact(String	message)	{

if	(canBeCompacted())	{
findCommonPrefix();

findCommonSuffix();

String	compactExpected	=	compactString(expected);

String	compactActual	=	compactString(actual);

return	Assert.format(message,	compactExpected,	compactActual);

}	else	{

return	Assert.format(message,	expected,	actual);

}

}

private	boolean	canBeCompacted()	{
return	expected	!=	null	&&	actual	!=	null	&&	!areStringsEqual();

}

El	 nombre	 de	 la	 función	 es	 extraño	 [N7].	Aunque	 compacta	 las	 cadenas,

puede	 que	 lo	 haga	 si	 canBeCompacted	 devuelve	 false.	 Al	 asignar	 el	 nombre
compact	 a	 esta	 función	 se	 oculta	 el	 efecto	 secundario	 de	 la	 comprobación	 de
errores.	 Además,	 la	 función	 devuelve	 un	 mensaje	 con	 formato,	 no	 sólo	 las
cadenas	 compactadas.	 Por	 tanto,	 el	 nombre	 de	 la	 función	 debería	 ser
formatCompactedComparison.	De	esta	forma,	se	lee	mejor	junto	al	argumento	de
la	función:	public	String	formatCompactedComparison(String	message)	{

El	 cuerpo	 de	 la	 instrucción	 if	 es	 donde	 se	 realiza	 la	 verdadera
compactación	de	 las	 cadenas.	Debemos	 extraerlo	 como	método	con	 el	 nombre
compactExpectedAndActual.	 Sin	 embargo,	 queremos	 que	 la	 función
formatCompactedComparison	 realice	 todo	 el	 formato.	 La	 función	 compact…
sólo	 debe	 realizar	 la	 compactación	 [G30],	 de	 modo	 que	 la	 dividimos	 de	 esta
forma:	…

private	String	compactExpected;
private	String	compactActual;

…

public	String	formatCompactedComparison(String	message)	{

if	(canBeCompacted())	{

compactExpectedAndActual();
return	Assert.format(message,	compactExpected,	compactActual);

}	else	{

return	Assert.format(message,	expected,	actual);

}

}

private	void	compactExpectedAndActual()	{
findCommonPrefix();

findCommonSuffix();

compactExpected	=	compactString(expected);

compactActual	=	compactString(actual);

}

Para	ello,	hemos	tenido	que	ascender	compactExpected	y	compactActual	a
variables	miembro.	No	me	 gusta	 la	 forma	 en	 que	 las	 dos	 últimas	 líneas	 de	 la
nueva	 función	 devuelven	 variables	 pero	 las	 dos	 primeras	 no	 lo	 hacen.	 No
utilizan	convenciones	coherentes	[G11].	Debemos	cambiar	findCommonPrefix	y
findCommonSuffix	para	que	devuelvan	los	valores	de	prefijo	y	sufijo.

private	void	compactExpectedAndActual()	{

prefixIndex	=	findCommonPrefix();
suffixIndex	=	findCommonSuffix();
compactExpected	=	compactString(expected);

compactActual	=	compactString(actual);

}

private	int	findCommonPrefix()	{
int	prefixIndex	=	0;
int	end	=	Math.min(expected.length(),	actual.length());

for	(;	prefixIndex	<	end;	prefixIndex++)	{
if	(expected.charAt(prefixIndex)	!=	actual.charAt(prefixIndex))

break;

}

return	prefixIndex;
}

private	int	findCommonSuffix()	{
int	expectedSuffix	=	expected.length()	-	1;

int	actualSuffix	=	actual.length()	-	1;

for	(;	actualSuffix	>=	prefixIndex	&&	expectedSuffix	>=	prefixIndex;
actualSuffix--,	expectedSuffix--)	{

if	(expected.charAt(expectedSuffix)	!=	actual.charAt(actualSuffix))

break;

}

return	expected.length()	-	expectedSuffix;

}

También	debemos	cambiar	los	nombres	de	las	variables	miembro	para	que
sean	más	preciosas	[N1],	ya	que	en	el	fondo	son	índices.

Al	 examinar	 findCommonSuffix	 vemos	 una	 conexión	 temporal	 oculta
[G31];	depende	de	que	prefixIndex	se	calcule	por	findCommonPrefix.	Si	estas
dos	funcione	se	invocan	de	forma	desordenada,	la	sesión	de	depuración	posterior
sería	 complicada.	 Por	 ello,	 para	 mostrar	 esta	 combinación	 temporal,	 haremos
que	findCommonSuffix	acepte	prefixIndex	como	argumento.

private	void	compactExpectedAndActual()	{

prefixIndex	=	findCommonPrefix();

suffixIndex	=	findCommonSuffix(prefixIndex);
compactExpected	=	compactString(expected);

compactActual	=	compactString(actual);

}

private	int	findCommonSuffix(int	prefixIndex)	{
int	expectedSuffix	=	expected.length()	-	1;

int	actualSuffix	=	actual.length()	-	1;

for	(;	actualSuffix	>=	prefixIndex	&&	expectedSuffix	>=	prefixIndex;

actualSuffix--,	expectedSuffix--)	{

if	(expected.charAt(expectedSuffix)	!=	actual.charAt(actualSuffix))

break;

}

return	expected.length()	-	expectedSuffix;

}

No	me	convence	del	todo.	El	hecho	de	pasar	prefixIndex	como	argumento
es	 un	 tanto	 arbitrario	 [G32].	 Permite	 establecer	 el	 orden	 pero	 no	 explica	 la
necesidad	del	mismo.	Otro	programador	podría	deshacer	esta	operación	ya	que
no	 se	 indica	 en	 ningún	momento	 para	 qué	 sirve	 el	 parámetro.	 Adoptemos	 un
enfoque	diferente.

private	void	compactExpectedAndActual()	{

findCommonPrefixAndSuffix();
compactExpected	=	compactString(expected);

compactActual	=	compactString(actual);

}

private	void	findCommonPrefixAndSuffix()	{
findCommonPrefix();
int	expectedSuffix	=	expected.length()	-	1;

int	actualSuffix	=	actual.length()	-	1;

for	(;

actualSuffix	>=	prefixIndex	&&	expectedSuffix	>=	prefixIndex;

actualSuffix--,	expectedSuffix--

)	{

if	(expected.charAt(expectedSuffix)	!=	actual.charAt(actualSuffix))

break;

}

suffixIndex	=	expected.length()	-	expectedSuffix;

}

private	void	findCommonPrefix()	{
prefixIndex	=	0;

int	end	=	Math.min(expected.length(),	actual.length());

for	(;	prefixIndex	<	end;	prefixIndex++)

if	(expected.charAt(prefixIndex)	!=	actual.charAt(prefixIndex))

break;

}

Devolvemos	 findCommonPrefix	 y	 findCommonSuffix	 a	 su	 posición
original,	 cambiamos	 el	 nombre	 de	 findCommonSuffix	 por
findCommonPrefixAndSuffix	y	hacemos	que	 invoque	findCommonPrefix	antes
de	hacer	nada	más.	De	ese	modo	se	establece	 la	naturaleza	 temporal	de	ambas

funciones	 de	 forma	 más	 evidente	 que	 antes.	 Además,	 se	 muestra	 el	 mínimo
atractivo	de	findCommonPrefixAndSuffix,	que	limpiaremos	a	continuación:	private
void	findCommonPrefixAndSuffix()	{

findCommonPrefix();

int	suffixLength	=	1;

for	(;	!suffixOverlapsPrefix(suffixLength);	suffixLength++)	{

if	(charFromEnd(expected,	suffixLength)	!=

charFromEnd(actual,	suffixLength))

break;

}

suffixIndex	=	suffixLength;

}

private	char	charFromEnd(String	s,	int	i)	{

return	s.charAt(s.length()-i);}

private	boolean	suffixOverlapsPrefix(int	suffixLength)	{

return	actual.length()	-	suffixLength	<	prefixLength	||

expected.length()	-	suffixLength	<	prefixLength;

}

Mucho	 mejor.	 Muestra	 que	 suffixIndex	 es	 en	 realidad	 la	 longitud	 del
sufijo	 y	 que	 su	 nombre	 no	 es	 correcto.	 Lo	 mismo	 sucede	 con	 prefixIndex,
aunque	 en	 ese	 caso	 índice	 y	 longitud	 son	 sinónimos.	 Incluso	 así,	 es	 más
coherente	 usar	 length.	 El	 problema	 es	 que	 la	 variable	 suffixIndex	 no	 es	 de
base	cero,	sino	de	base	1	y	no	es	una	verdadera	longitud.	Éste	es	el	motivo	de	la
abundancia	 de	 +1	 en	 computeCommonSuffix	 [G33].	 Lo	 corregimos.	 En	 el
Listado	15-4	puede	ver	el	resultado.

Listado	15-4
ComparisonCompactor.java	(versión	intermedia).

public	class	ComparisonCompactor	{

…

private	int	suffixLength;
…

private	void	findCommonPrefixAndSuffix()	{

findCommonPrefix();

suffixLength	=	0;
for	(;	!suffixOverlapsPrefix(suffixLength);	suffixLength++)	{

if	(charFromEnd(expected,	suffixLength)	!=

charFromEnd(actual,	suffixLength))

break;

}

}

private	char	charFromEnd(String	s,	int	i)	{

return	s.charAt(s.length()	-	i	-	1);
}

private	boolean	suffixOverlapsPrefix(int	suffixLength)	{

return	actual.length()	-	suffixLength	<=	prefixLength	||
expected.length()	-	suffixLength	<=	prefixLength;

}

…

private	String	compactString(String	source)	{

String	result	=

DELTA_START	+

source.substring(prefixLength,	source.length()	-	suffixLength)	+
DELTA_END;

if	(prefixLength	>	0)

result	=	computeCommonPrefix()	+	result;

if	(suffixLength	>	0)
result	=	result	+	computeCommonSuffix();

return	result;

}

…

private	String	computeCommonSuffix()	{

int	end	=	Math.min(expected.length()	-	suffixLength	+
contextLength,	expected.length()

);

return

expected.substring(expected.length()	-	suffixLength,	end)	+
(expected.length()	-	suffixLength	<

expected.length()	-	contextLength	?

ELLIPSIS	:	“”);

}

Cambiamos	 +1	 en	 computeCommonSuffix	 por	 un	 -1	 en	 charFromEnd,
donde	tiene	sentido,	y	dos	operadores	<=	en	suffixOverlapsPrefix,	totalmente
correctos.	 De	 este	 modo	 podemos	 cambiar	 el	 nombre	 de	 suffixIndex	 por
suffixLength,	lo	que	mejora	considerablemente	la	legibilidad	del	código.

Pero	 hay	 un	 problema.	 Al	 comenzar	 a	 eliminar	 los	 +1,	 me	 fijé	 en	 la
siguiente	línea	de	compactstring:

if	(suffixLength	>	0)

Búsquela	 en	 el	 Listado	 15-4.	 Como	 ahora	 suffixLength	 es	 una	 unidad
menos	 que	 antes,	 debemos	 cambiar	 el	 operador	 >	 por	 >=.	 Pero	 eso	 no	 tiene
sentido.	Ahora	sí.	Significa	que	no	tenía	sentido	antes	y	que	seguramente	fuera
un	 error.	 Bueno,	 no	 del	 todo.	 Tras	 un	 análisis	 detallado,	 vemos	 que	 ahora	 la
instrucción	if	impide	que	se	añada	un	sufijo	de	longitud	cero.	Antes	de	realizar
el	cambio,	la	instrucción	if	no	funcionaba	ya	que	suffixIndex	nunca	podía	ser
menos	de	uno.

Esto	cuestiona	ambas	 instrucciones	if	en	compactString.	Parece	como	si
se	 pudieran	 eliminar.	 Por	 ello,	 las	 comentamos	 y	 ejecutamos	 las	 pruebas.
Satisfactorias.	 Reestructuremos	 compactString	 para	 eliminar	 las	 instrucciones
if	sobrantes	y	simplificar	la	función	[G9].

private	String	compactString(String	source)	{

return

computeCommonPrefix()	+

DELTA_START	+

source.substring(prefixLength,	source.length()	-	suffixLength)	+

DELTA_END	+

computeCommonSuffix();

}

Mucho	 mejor.	 Ahora	 vemos	 que	 la	 función	 compactString	 simplemente
combina	los	fragmentos.	Probablemente	lo	podríamos	limpiar	más,	en	pequeñas
operaciones,	pero	en	lugar	de	desarrollar	el	resto	de	los	cambios,	mostraremos	el
resultado	final	en	el	Listado	15-5.

Listado	15-5
ComparisonCompactor.java	(versión	definitiva).

package	junit.framework;

public	class	ComparisonCompactor	{

private	static	final	String	ELLIPSIS	=	“…”;

private	static	final	String	DELTA_END	=	“]”;

private	static	final	String	DELTA_START	=	“[”;

private	int	contextLength;

private	String	expected;

private	String	actual;

private	int	prefixLength;

private	int	suffixLength;

public	ComparisonCompactor(

int	contextLength,	String	expected,	String	actual

)	{

this.contextLength	=	contextLength;

this.expected	=	expected;

this.actual	=	actual;

}

public	String	formatCompactedComparison(String	message)	{

String	compactExpected	=	expected;

String	compactActual	=	actual;

if	(shouldBeCompacted())	{

findCommonPrefixAndSuffix();

compactExpected	=	compact(expected);

compactActual	=	compact(actual);

}

return	Assert.format(message,	compactExpected,	compactActual);

}

private	boolean	shouldBeCompacted()	{

return	!shouldNotBeCompacted();

}

private	boolean	shouldNotBeCompacted()	{

return	expected	==	null	||

actual	==	null	||

expected.equals(actual);

}

private	void	findCommonPrefixAndSuffix()	{

findCommonPrefix();

suffixLength	=	0;

for	(;	!suffixOverlapsPrefix();	suffixLength++)	{

if	(charFromEnd(expected,	suffixLength)	!=

charFromEnd(actual,	suffixLength)

)

break;

}

}

private	char	charFromEnd(String	s,	int	i)	{

return	s.charAt(s.length()	-	i	-	1);

}

private	boolean	suffixOverlapsPrefix()	{

return	actual.length()	-	suffixLength	<=	prefixLength	||

expected.length()	-	suffixLength	<=	prefixLength;

}

private	void	findCommonPrefix()	{

prefixLength	=	0;

int	end	=	Math.min(expected.length(),	actual.length());

for	(;	prefixLength	<	end;	prefixLength++)

if	(expected.charAt(prefixLength)	!=	actual.charAt(prefixLength))

break;

}

private	String	compact(String	s)	{

return	new	StringBuilder()

.append(startingEllipsis())

.append(startingContext())

.append(DELTA_START)

.append(delta(s))

.append(DELTA_END)

.append(endingContext())

.append(endingEllipsis())

.toString();

}

private	String	startingEllipsis()	{

return	prefixLength	>	contextLength	?	ELLIPSIS	:	“”;

}

private	String	startingContext()	{

int	contextStart	=	Math.max(0,	prefixLength	-	contextLength);

int	contextEnd	=	prefixLength;

return	expected.substring(contextStart,	contextEnd);

}

private	String	delta(String	s)	{

int	deltaStart	=	prefixLength;

int	deltaEnd	=	s.length()	-	suffixLength;

return	s.substring(deltaStart,	deltaEnd);

}

private	String	endingContext()	{

int	contextStart	=	expected.length()	-	suffixLength;

int	contextEnd	=

Math.min(contextStart	+	contextLength,	expected.length());

return	expected.substring(contextStart,	contextEnd);

}

private	String	endingEllipsis()	{

return	(suffixLength	>	contextLength	?	ELLIPSIS	:	“”);

}

}

Bastante	 atractivo.	 El	 módulo	 se	 separa	 en	 un	 grupo	 de	 funciones	 de
análisis	y	otro	grupo	de	funciones	de	síntesis.	Se	ordenan	topológicamente	para
que	la	definición	de	cada	función	aparezca	donde	realmente	se	usa.	Primero	se
muestran	 las	 funciones	 de	 análisis	 y	 después	 las	 de	 síntesis.	 Si	 se	 fija
atentamente,	 verá	 que	 he	 invertido	 algunas	 de	 las	 decisiones	 adoptadas
inicialmente.	 Por	 ejemplo,	 he	 añadido	 algunos	 métodos	 extraídos	 a
formatCompactedComparison	 y	 he	 modificado	 el	 sentido	 de	 la	 expresión
shouldNotBeCompacted.	 Es	 algo	 habitual.	 A	 menudo,	 un	 cambio	 de
refactorización	 lleva	 a	 otro	 que	 a	 su	 vez	 lleva	 a	 deshacer	 el	 primero.	 La
refactorización	 es	 un	 proceso	 iterativo	 de	 ensayo	 y	 error,	 e	 inevitablemente
converge	en	algo	que	consideramos	digno	de	un	profesional.

Conclusión

Hemos	cumplido	la	Regla	del	Boy	Scout.	Hemos	dejado	este	módulo	más	limpio
de	como	lo	encontramos.	No	es	que	no	estuviera	limpio	originalmente,	ya	que	el
trabajo	de	sus	autores	es	excelente,	pero	cualquier	módulo	se	puede	mejorar	y	es
nuestra	responsabilidad	dejar	el	código	más	limpio	de	lo	que	lo	encontramos.

16
Refactorización	de	SerialDate

Si	 visita	 http://www.jfree.org/jcommon/index.php,	 encontrará	 la	 biblioteca
JCommon.	En	su	interior	incluye	el	paquete	org.jfree.date	y,	dentro	de	éste,
la	clase	SerialDate.	Vamos	a	analizar	esta	clase.

El	 autor	 de	 SerialDate	 es	 David	 Gilbert.	 David	 es	 un	 programador
experimentado	 y	 competente.	 Como	 veremos,	 muestra	 un	 elevado	 grado	 de
profesionalidad	 y	 disciplina	 en	 su	 código.	En	 lo	 que	 a	 éste	 respecta,	 se	 puede
considerar	de	calidad.	Y	voy	a	despedazarlo.

No	es	un	 acto	de	malicia,	 ni	 tampoco	me	creo	mejor	 que	David	y	 con	 el
derecho	de	 juzgar	 su	 código.	De	hecho,	 si	 leyera	 algún	 código	que	he	 creado,
seguramente	tendría	que	objetar	muchos	aspectos	del	mismo.	No	es	un	acto	de
arrogancia.	Lo	que	voy	a	hacer	no	es	más	que	una	revisión	profesional,	algo	con
lo	que	todos	deberíamos	sentirnos	cómodos	y	algo	que	deberíamos	agradecer	si
alguien	lo	hace.	A	través	de	las	críticas	es	como	podemos	aprender,	como	hacen

médicos,	pilotos	o	abogados.	Y	nosotros,	como	programadores,	también	tenemos
que	aprender	a	hacerlo.

Otra	 cosa	 más	 sobre	 David	 Gilbert:	 es	 más	 que	 un	 buen	 programador.
David	ha	 tenido	el	valor	y	 la	buena	voluntad	de	ofrecer	este	código	al	público
gratuitamente,	para	que	cualquiera	pueda	usarlo	y	examinarlo.	¡Bien	hecho!

SerialDate	(véase	el	Listado	B-1)	es	una	clase	que	representa	una	fecha	en
Java.	¿Para	qué	se	necesita	una	clase	que	represente	una	fecha	si	Java	ya	cuenta
con	 java.util.Date	 y	 java.util.Calendar,	 entre	 otras?	 El	 autor	 creó	 esta
clase	como	respuesta	a	un	problema	que	yo	también	he	padecido.	El	comentario
de	 su	 Javadoc	 inicial	 (línea	 67)	 lo	 explica.	 Podríamos	 cuestionar	 su	 intención,
pero	yo	también	he	sufrido	este	problema	y	se	agradece	una	clase	sobre	fechas
en	lugar	de	horas.

Primero,	conseguir	que	funcione

Hay	varias	pruebas	de	unidad	en	la	clase	SerialDateTests	(véase	el	Listado	B-
2).	Todas	son	satisfactorias.	Desafortunadamente,	un	 rápido	examen	demuestra
que	 no	 comprueban	 todos	 los	 aspectos	 [T1].	 Por	 ejemplo,	 al	 realizar	 una
búsqueda	de	usos	en	el	método	MonthCodeToQuarter	 (línea	334)	se	 indica	que
no	se	usa	[F4].	Por	lo	tanto,	las	pruebas	de	unidad	no	lo	comprueban.	Por	ello,
recurrí	a	Clover	para	ver	el	alcance	de	las	pruebas	de	unidad.	Clover	indicó	que
las	pruebas	sólo	ejecutan	91	de	las	185	instrucciones	ejecutables	de	SerialDate
(aproximadamente	 el	 50	 por	 100)	 [T2].	 El	 mapa	 de	 alcance	 muestra	 grandes
fragmentos	de	código	sin	ejecutar	desperdigados	por	la	clase.

Mi	 objetivo	 era	 comprender	 la	 clase	 y	 refactorizarla,	 algo	 que	 no	 podía
lograr	sin	una	cobertura	mayor	de	las	pruebas.	Por	ello	diseñé	mi	propia	suite	de
pruebas	de	unidad	independientes	(véase	el	Listado	B-4).

Si	se	fija	en	las	pruebas,	comprobará	que	muchas	están	comentadas,	ya	que
no	se	superaron.	Representan	un	comportamiento	que	considero	debería	incluirse
en	SerialDate.	Por	tanto,	al	refactorizar	SerialDate,	intentaré	que	estas	pruebas
funcionen.

Incluso	con	algunas	de	las	pruebas	comentadas,	el	informe	de	Clover	indica
que	ahora	ejecutan	170	 (el	92	por	ciento)	de	 las	185	 instrucciones	ejecutables.
Un	gran	resultado	que	creo	que	puedo	mejorar.

Las	primeras	pruebas	comentadas	(líneas	23-63)	son	un	tanto	pretenciosas.
El	programa	no	fue	diseñado	para	superar	estas	pruebas,	pero	el	comportamiento
me	 parecía	 evidente	 [G2].	 Desconozco	 por	 qué	 se	 ha	 creado	 el	 método
testWeekdayCodeToString	 pero	 ya	 que	 está	 ahí,	 parece	 obvio	 que	 no	 debe

distinguir	entre	mayúsculas	y	minúsculas.	El	diseño	de	las	pruebas	fue	sencillo
[T3]	y	más	todavía	que	fueran	satisfactorias;	simplemente	cambié	las	líneas	259
y	263	para	usar	equalsIgnoreCase.

Comenté	las	pruebas	de	las	líneas	32	y	45	ya	que	no	estaba	seguro	de	si	las
abreviaturas	tues	y	thurs	se	admitían	o	no.	Las	pruebas	de	las	líneas	153	y	154
no	 se	 superaron,	 aunque	 deberían	 haberlo	 hecho	 [G2].	 Podemos	 corregirlas,
junto	 a	 las	 pruebas	 de	 las	 líneas	 163	 a	 la	 213,	 si	 realizamos	 los	 siguientes
cambios	en	la	función	stringToMonthCode.
	457	 	if	((result	<	1)	||	(result	>	12))	{	result	=	-1;	

	458	 	for	(int	i	=	0;	i	<	monthNames.length;	i++)	{	

	459	 	if	(s.equalsIgnoreCase(shortMonthNames[i]))	{	

	460	 	result	=	i	+	1;	

	461	 	break;	

	462	 	}	

	463	 	if	(s.equalsIgnoreCase(monthNames[i]))	{	

	464	 	result	=	i	+	1;	

	465	 	break;	

	466	 	}	

	467	 	}	

	468	 	}	

La	 prueba	 comentada	 de	 la	 línea	 318	 descubre	 un	 error	 en	 el	 método
getFollowingDayOfWeek	(línea	672).	El	25	de	diciembre	de	2004	fue	sábado	y	el
siguiente	sábado	fue	el	1	de	enero	de	2005.	Sin	embargo,	al	ejecutar	la	prueba,
vemos	que	getFollowingDayOfWeek	devuelve	el	25	de	diciembre	como	siguiente
sábado	 después	 del	 25	 de	 diciembre,	 un	 error	 evidente	 [G3],	 [T1].	 Vemos	 el
problema	en	la	línea	685.	Es	un	error	de	condición	de	límite	típico	[T5].	Debería
ser	lo	siguiente:	685	if	(baseDOW	>=	targetWeekday)	{

Conviene	 destacar	 que	 esta	 función	 sufrió	 una	 reparación	 anterior.	 El
historial	 de	 cambios	 (línea	 43)	 muestra	 que	 se	 corrigieron	 los	 errores	 en
getPreviousDayOfWeek,	 getFollowingDayOfWeek	 y	 getNearestDayOfWeek

[T6].
La	prueba	de	unidad	testGetNearestDayOfWeek	(línea	329),	que	prueba	el

método	 getNearestDayOfWeek	 (línea	 705),	 inicialmente	 no	 era	 tan	 extensa	 y
completa.	 Añadí	 multitud	 de	 casos	 de	 prueba	 ya	 que	 los	 iniciales	 no	 se
superaban	 [T6].	Puede	ver	 el	patrón	de	 fallos	 si	 se	 fija	 en	 los	 casos	de	prueba
comentados.	El	patrón	es	revelador	[T7].	Muestra	que	el	algoritmo	falla	si	el	día
más	 próximo	 es	 de	 una	 fecha	 futura.	 Evidentemente	 se	 trata	 de	 algún	 tipo	 de
error	de	condición	de	límite	[T5].

El	 patrón	 de	 alcance	 de	 las	 pruebas	 generado	 por	 Clover	 también	 es
interesante	 [T8].	 La	 línea	 719	 nunca	 se	 ejecuta,	 lo	 que	 significa	 que	 la
instrucción	if	de	la	línea	718	siempre	es	false,	pero	si	nos	fijamos	en	el	código,
indica	que	debe	ser	true.	La	variable	adjust	siempre	es	negativa	y	no	puede	ser
mayor	o	igual	a	4,	por	lo	que	el	algoritmo	es	incorrecto.

A	continuación	se	muestra	el	algoritmo	correcto:
int	delta	=	targetDOW	-	base.getDayOfWeek();

int	positiveDelta	=	delta	+	7;

int	adjust	=	positiveDelta	%	7;

if	(adjust	>	3)

adjust	-=	7;

return	SerialDate.addDays	(adjust,	base);

Por	 último,	 las	 pruebas	 de	 la	 líneas	 417	 y	 429	 se	 pueden	 superar	 si	 se
genera	 IllegalArgumentException	 en	 lugar	 de	 devolver	 una	 cadena	 de	 error
desde	weekInMonthToString	y	relativeToString.	Con	estos	cambios,	todas	las
pruebas	de	unidad	 se	 superan	y	creo	que	ahora	SerialDate	 funciona.	Llega	el
momento	de	hacer	que	sea	correcta.

Hacer	que	sea	correcta

Describiremos	SerialDate	de	arriba	a	abajo	para	mejorarla	en	nuestro	recorrido.
Aunque	no	lo	veamos	en	este	análisis,	ejecutaré	todas	las	pruebas	de	unidad	de
JCommon,	incluida	mi	prueba	de	unidad	mejorada	para	SerialDate,	con	todos	los
cambios	efectuados.	Por	ello,	 tenga	 la	seguridad	de	que	 todos	 los	cambios	que
vea	funcionan	para	JCommon.

En	la	línea	1	vemos	abundantes	comentarios	sobre	información	de	licencia,
derechos	 de	 autor,	 autores	 e	 historial	 de	 cambios.	 Asumo	 que	 hay	 ciertos
aspectos	 legales	 que	mostrar,	 por	 lo	 que	 los	 derechos	 de	 autor	 y	 las	 licencias
deben	 conservarse.	 Por	 otra	 parte,	 el	 historial	 de	 cambios	 es	 una	 rémora	 de	 la
década	de	1960.	Ahora	tenemos	herramientas	de	control	de	código	fuente	que	se
encargan	de	ello.	Hay	que	eliminar	este	historial	[C1].

La	 lista	de	 importación	que	comienza	en	 la	 línea	61	 se	puede	 reducir	por
medio	de	java.text.*	y	java.util.*.	[J1]

No	 me	 convence	 el	 formato	 HTML	 del	 Javadoc	 (línea	 67).	 Un	 archivo
fuente	 con	más	 de	 un	 lenguaje	me	 parece	 un	 problema.	Este	 comentario	 tiene
cuatro	 lenguajes:	 Java,	 español,	 Javadoc	y	 html	 [G1].	Con	 tantos	 lenguajes	 se
hace	difícil	mantener	la	coherencia.	Por	ejemplo,	la	ubicación	de	las	líneas	71	y
72	se	pierde	al	generar	el	Javadoc	y	además,	¿quién	quiere	ver		y		en	el
código	fuente?	Una	estrategia	más	acertada	consiste	en	rodear	el	comentario	con
<pre>	para	que	el	formato	del	código	fuente	se	conserve	en	el	Javadoc[96].

La	 línea	86	es	 la	declaración	de	 la	clase.	¿Por	qué	se	 le	asigna	el	nombre
SerialDate?	¿Qué	sentido	tiene	la	palabra	serial?	¿Es	porque	la	clase	se	deriva
de	Serializable?	Parece	improbable.

Basta	de	 adivinanzas.	Sé	por	qué	 (o	 al	menos	 eso	 creo)	 se	usa	 la	 palabra
serial.	 La	 clave	 se	 encuentra	 en	 las	 constantes	 SERIAL_LOWER_BOUND	 y

SERIAL_UPPER_BOUND	 de	 las	 líneas	 98	 y	 101.	Y	 una	 clave	 todavía	mejor	 es	 el
comentario	 de	 la	 línea	 830.	 El	 nombre	 de	 la	 clase	 es	 SerialDate	 ya	 que	 se
implementa	con	un	número	de	serie,	que	parece	ser	el	número	de	días	desde	el
30	de	diciembre	de	1899.

Pero	esto	supone	un	problema.	Por	un	lado,	el	 término	«número	de	serie»
no	es	 realmente	correcto.	Puede	ser	un	detalle	menor	pero	 la	 representación	es
más	un	desplazamiento	relativo	que	un	número	de	serie.	El	término	«número	de
serie»	tiene	que	ver	más	con	marcadores	de	identificación	de	productos	que	con
fechas.	 Por	 ello,	 no	 lo	 considero	 especialmente	 descriptivo	 [N1].	 Un	 término
más	descriptivo	sería	«ordinal».

El	segundo	problema	es	más	significativo.	El	nombre	SerialDate	 implica
una	implementación.	Esta	clase	es	abstracta.	No	es	necesario	que	implique	nada
sobre	la	implementación;	de	hecho,	es	aconsejable	ocultarla.	Por	ello,	creo	que	el
nombre	se	encuentra	en	un	nivel	de	abstracción	incorrecto	[N2].	En	mi	opinión,
el	nombre	de	esta	clase	debería	ser	simplemente	Date.

Desafortunadamente,	 hay	 demasiadas	 clases	 con	 el	 nombre	 Date	 en	 la
biblioteca	de	Java,	de	modo	que	no	es	el	más	adecuado.	Como	esta	clase	trabaja
con	días	y	no	horas,	podríamos	usar	Day,	pero	ya	se	usa	en	otros	muchos	puntos.
Al	final,	opté	por	DayDate	como	mejor	opción.

A	partir	 de	 ahora,	 usaremos	DayDate.	Recuerde	 que	 los	 listados	 que	 va	 a
leer	siguen	usando	SerialDate.

Entiendo	porque	DayDate	se	hereda	de	Comparable	y	Serializable.	¿Pero
de	 MonthConstants?	 La	 clase	 MonthConstants	 (véase	 el	 Listado	 B-3)	 es	 una
serie	de	constantes	finales	estáticas	que	definen	los	meses.	Heredar	de	clases	con
constantes	 es	 un	 viejo	 truco	 que	 los	 programadores	 de	 Java	 usan	 para	 evitar
expresiones	 como	 MonthConstants.January,	 pero	 es	 una	 mala	 idea	 [J2].
MonthConstants	debería	ser	una	enumeración.

public	abstract	class	DayDate	implements	Comparable,

Serializable	{

public	static	enum	Month	{

JANUARY(1),

FEBRUARY(2),

MARCH(3),

APRIL(4),

MAY(5),

JUNE(6),

JULY(7),

AUGUST(8),

SEPTEMBER(9),

OCTOBER(10),

NOVEMBER(11),

DECEMBER(12);

Month(int	index)	{

this.index	=	index;

}

public	static	Month	make(int	monthIndex)	{

for	(Month	m	:	Month.values())	{

if	(m.index	==	monthIndex)

return	m;

}

throw	new	IllegalArgumentException(“Invalid	month	index	”	+	monthIndex);

}

public	final	int	index;

}

Al	 cambiar	 MonthConstants	 por	 esta	 enumeración	 se	 modifica	 la	 clase
DayDate	y	todos	sus	usuarios.	Tardé	una	hora	en	realizar	todos	los	cambios.	Sin
embargo,	 las	 funciones	 que	 antes	 aceptaban	 un	 valor	 int	 para	 el	 mes,	 ahora
aceptan	 un	 enumerador	 Month.	 Esto	 significa	 que	 podemos	 deshacernos	 del
método	 isValidMonthCode	 (línea	 326)	 y	 de	 la	 comprobación	 de	 errores	 del
código	de	los	meses	como	en	monthCodeToQuarter	(línea	356)	[G5].	Tras	ello,
en	la	línea	91,	tenemos	serialVersionUID.	Esta	variable	se	usa	para	controlar	el
señalizador.	Si	 la	cambiamos,	con	 lo	que	 todos	 los	elementos	DayDate	escritos
con	 una	 versión	 antigua	 del	 software	 serán	 ilegibles	 y	 se	 generará
InvalidClassException.	 Si	 no	 declara	 la	 variable	 serialVersionUID,	 el
compilador	genera	una	automáticamente	y	será	diferente	cada	vez	que	modifique
el	módulo.	Ya	sé	que	 todos	 los	documentos	 recomiendan	el	control	manual	de
esta	 variable,	 pero	 creo	 que	 el	 control	 automático	 de	 la	 señalización	 es	 más
seguro	 [G4].	 Después	 de	 todo,	 prefiero	 depurar	 una	 InvalidClassException
que	 el	 extraño	 comportamiento	 que	 se	 produciría	 si	 me	 olvido	 de	 cambiar
serialVersionUID.	Por	ello,	eliminaré	la	variable,	al	menos	por	ahora[97].

Creo	 que	 el	 comentario	 de	 la	 línea	 93	 es	 redundante.	 Los	 comentarios
redundantes	sólo	sirven	para	acumular	mentiras	y	desinformación	[C2].	Por	ello
los	eliminaré.

Los	comentarios	de	las	líneas	97	y	100	hablan	sobre	números	de	serie,	que
ya	hemos	mencionado	antes	[C1].	Las	variables	que	describen	son	la	primera	y
última	 fecha	 posible	 que	DayDate	 puede	 describir.	 Podríamos	 hacer	 que	 fuera
más	claro	[N1].

public	static	final	int	EARLIEST_DATE_ORDINAL	=	2;	//	1/1/1900

public	static	final	int	LATEST_DATE_ORDINAL	=	2958465;	//	12/31/9999

Desconozco	 por	 qué	 EARLIEST_DATE_ORDINAL	 es	 2	 en	 lugar	 de	 0.	 El
comentario	de	la	línea	829	sugiere	que	tiene	que	ver	con	la	forma	de	representar
fechas	 en	 Microsoft	 Excel.	 Hay	 información	 mucho	 más	 completa	 en	 una
variante	de	DayDate:	SpreadsheetDate	(véase	el	Listado	B-5).	El	comentario	de
la	línea	71	describe	este	problema.

El	 problema	 parece	 relacionado	 con	 la	 implementación	 de
SpreadsheetDate	 y	 no	 con	 DayDate.	 Mi	 conclusión	 es	 que
EARLIEST_DATE_ORDINAL	 y	 LATEST_DATE_ORDINAL	 no	 pertenecen	 a	 DayDate	 y
deberían	cambiarse	a	SpreadsheetDate	[G6].

De	hecho,	una	búsqueda	en	el	código	demuestra	que	estas	variables	sólo	se
usan	 en	 SpreadsheetDate.	 Ni	 en	 DayDate,	 ni	 en	 otras	 clases	 de	 la	 estructura
JCommon.	Por	lo	tanto,	las	cambio	por	SpreadsheetDate.

Las	 siguientes	 variables,	 MINIMUM_YEAR_SUPPORTED	 y
MAXIMUM_YEAR_SUPPORTED	 (líneas	 104	 y	 107),	 constituyen	 un	 dilema.	 Parece
evidente	 que	 si	 DayDate	 es	 una	 clase	 abstracta	 que	 no	 dice	 nada	 sobre
implementación,	 no	 debería	 informarnos	 de	 un	 año	 mínimo	 o	 máximo.	 De
nuevo,	 siento	 la	 necesidad	 de	 cambiar	 las	 variables	 a	 SpreadsheetDate	 [G6].
Pero	 una	 búsqueda	 rápida	 de	 los	 usuarios	 de	 estas	 variables	muestra	 que	 otra
clase	 las	utiliza:	RelativeDayOfWeekRule	 (véase	el	Listado	B-6),	Vemos	dicho
uso	 en	 las	 líneas	 177	 y	 178,	 en	 la	 función	 getDate,	 donde	 se	 usan	 para
comprobar	que	el	argumento	de	getDate	sea	un	año	válido.	El	dilema	es	que	un
usuario	de	una	clase	abstracta	necesita	información	sobre	su	implementación.

Tendremos	que	proporcionar	esta	información	sin	contaminar	DayDate.	Por
lo	general,	obtendríamos	la	información	de	implementación	de	una	instancia	de
una	 variante.	 Sin	 embargo,	 la	 función	 getDate	 no	 recibe	 una	 instancia	 de
DayDate,	 aunque	 sí	 la	 devuelve,	 lo	 que	 significa	 que	 debe	 crearla	 en	 alguna
parte.	La	solución	está	en	 las	 líneas	187-205.	La	 instancia	DayDate	se	crea	por
medio	 de	 una	 de	 estas	 tres	 funciones:	 getPreviousDayOfWeek,
getNearestDayOfWeek	 o	getFollowingDayOfWeek.	 Si	 nos	 fijamos	 en	 el	 listado
DayDate,	 vemos	 que	 estas	 funciones	 (líneas	 638-724)	 devuelven	 una	 fecha
creada	 por	 addDays	 (línea	 571),	 que	 invoca	 createInstance	 (línea	 808),	 que
crea	SpreadsheetDate	[G7].

No	 es	 recomendable	 que	 las	 clases	 base	 conozcan	 sus	 variantes.	 Para
corregirlo,	 debemos	 usar	 el	 patrón	 de	 factoría	 abstracta[98]	 y	 crear
DayDateFactory.	Esta	factoría	creará	las	instancias	de	DayDate	que	necesitamos
y	 también	 responderá	 a	 preguntas	 sobre	 la	 implementación,	 como	 las	 fechas
máxima	y	mínima.

public	abstract	class	DayDateFactory	{

private	static	DayDateFactory	factory	=	new	SpreadsheetDateFactory();

public	static	void	set	Instance(DayDateFactory	factory)	{

DayDateFactory.factory	=	factory;

}

protected	abstract	DayDate	_makeDate(int	ordinal);

protected	abstract	DayDate	_makeDate(int	day,	DayDate.Month	month,	int	year);

protected	abstract	DayDate	_makeDate(int	day,	int	month,	int	year);

protected	abstract	DayDate	_makeDate(java.util.Date	date);

protected	abstract	int	_getMinimumYear();

protected	abstract	int	_getMaximumYear();

public	static	DayDate	makeDate(int	ordinal)	{

return	factory._makeDate(ordinal);

}

public	static	DayDate	makeDate(int	day,	DayDate.Month	month,	int	year)	{

return	factory._makeDate(day,	month,	year);

}

public	static	DayDate	makeDate(int	day,	int	month,	int	year)	{

return	factory._makeDate(day,	month,	year);

}

public	static	DayDate	makeDate(java.util.Date	date)	{

return	factory._makeDate(date);

}

public	static	int	getMinimumYear()	{

return	factory._getMinimumYear();

}

public	static	int	getMaximumYear()	{

return	factory._getMaximumYear();

}

}

Esta	 clase	 de	 factoría	 sustituye	 los	 métodos	 createInstance	 por	 métodos
makeDate,	 lo	 que	 mejora	 ligeramente	 los	 nombres	 [N1].	 De	 forma
predeterminada	 es	 SpreadsheetDateFactory	 pero	 se	 puede	 cambiar	 por	 otra
factoría.	 Los	 métodos	 estáticos	 delegados	 en	 métodos	 abstractos	 usan	 una
combinación	 de	 los	 patrones	 de	 instancia	 única[99],	 decorador[100]	 y	 factoría
abstracta	que	considero	muy	útil.	SpreadsheetDateFactory	 tiene	este	aspecto:
public	class	SpreadsheetDateFactory	extends	DayDateFactory	{

public	DayDate	_makeDate(int	ordinal)	{

return	new	SpreadsheetDate(ordinal);

}

public	DayDate	_makeDate(int	day,	DayDate.Month	month,	int	year)	{

return	new	SpreadsheetDate(day,	month,	year);

}

public	DayDate	_makeDate(int	day,	int	month,	int	year)	{

return	new	SpreadsheetDate(day,	month,	year);

}

public	DayDate	_makeDate(Date	date)	{

final	GregorianCalendar	calendar	=	new	GregorianCalendar();

calendar.setTime(date);

return	new	SpreadsheetDate(

calendar.get(Calendar.DATE),

DayDate.Month.make(calendar.get(Calendar.MONTH)	+	1),

calendar.get(Calendar.YEAR));

}

protected	int	_getMinimumYear()	{

return	SpreadsheetDate.MINIMUM_YEAR_SUPPORTED;

}

protected	int	_getMaximumYear()	{

return	SpreadsheetDate.MAXIMUM_YEAR_SUPPORTED;

}

}

Como	 puede	 apreciar,	 hemos	 enviado	 las	 variables
MINIMUM_YEAR_SUPPORTED	 y	 MAXIMUM_YEAR_SUPPORTED	 a	 SpreadsheetDate,
donde	pertenecen	[G6].

El	siguiente	problema	de	DayDate	son	las	constantes	de	días,	comenzando
en	la	línea	109.	Deberían	ser	otra	enumeración	[J3].	Ya	hemos	visto	este	patrón,
de	modo	que	no	lo	repetiremos.	Se	incluye	en	los	listados	definitivos.

Seguidamente,	 vemos	 una	 serie	 de	 tablas	 que	 comienzan	 en
LAST_DAY_OF_MONTH	(línea	140).	El	primer	problema	con	estas	tablas	es	que	los
comentarios	que	las	describen	son	redundantes	[C3].	Basta	con	sus	nombres,	de
modo	que	eliminamos	los	comentarios.

No	hay	motivos	para	que	 la	 tabla	no	 sea	privada	 [G8],	 ya	que	 existe	una
función	estática	lastDayOfMonth	que	proporciona	los	mismos	datos.

La	 siguiente	 tabla,	AGGREGATE_DAYS_TO_END_OF_MONTH,	 es	más	misteriosa,
ya	que	no	se	usa	en	ninguna	parte	de	la	estructura	JCommon	[G9],	de	modo	que

la	elimino.
Lo	mismo	sucede	con	LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.
La	siguiente	 tabla,	AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH,	sólo	se

usa	en	SpreadsheetDate	(líneas	434	y	473),	lo	que	me	hace	dudar	si	transferirla
a	SpreadsheetDate.	La	razón	de	no	cambiarla	es	que	la	tabla	no	es	específica	de
ninguna	 implementación	 concreta	 [G6].	 Por	 otra	 parte,	 sólo	 existe	 la
implementación	SpreadsheetDate,	de	modo	que	la	tabla	debe	acercarse	a	donde
se	 vaya	 a	 usar	 [G10],	 Para	 zanjar	 la	 duda	 y	 ser	 coherentes	 [G11],	 deberíamos
privatizar	 la	 tabla	 y	 mostrarla	 a	 través	 de	 una	 función	 como
julianDateOfLastDayOfMonth.	 Pero	 nadie	 parece	 que	 la	 necesita.	 Es	 más,	 la
tabla	 se	puede	cambiar	a	DayDate	 si	una	nueva	 implementación	de	DayDate	 la
necesita.	Así	que	la	cambiamos.

Lo	mismo	sucede	con	LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.
Tras	 ello,	 vemos	 tres	 grupos	 de	 constantes	 que	 se	 pueden	 convertir	 en

enumeraciones	(líneas	162-205).	La	primera	selecciona	una	semana	de	un	mes.
La	transformo	en	la	enumeración	WeekInMonth.

public	enum	WeekInMonth	{

FIRST(1),	SECOND(2),	THIRD(3),	FOURTH(4),	LAST(0);

public	final	int	index;

WeekInMonth(int	index)	{

this.index	=	index;

}

}

El	 segundo	grupo	de	 constantes	 (líneas	177-187)	 es	más	 complicado.	Las
constantes	 INCLUDE_NONE,	 INCLUDE_FIRST,	 INCLUDE_SECOND	 e	 INCLUDE_BOTH
se	usan	para	describir	si	las	fechas	finales	de	un	intervalo	deben	incluirse	en	el
mismo.	Matemáticamente,	se	describe	como	intervalo	abierto,	intervalo	a	medio
abrir	 e	 intervalo	 cerrado.	 Creo	 que	 resulta	 más	 claro	 con	 la	 nomenclatura
matemática	[N3],	de	modo	que	lo	cambio	por	la	enumeración	DateInterval	con
los	enumeradores	CLOSED,	CLOSED_LEFT,	CLOSED_RIGHT	y	OPEN.

El	tercer	grupo	de	constantes	(líneas	18-205)	describen	si	la	búsqueda	de	un
día	 concreto	 de	 la	 semana	 devuelve	 la	 última	 instancia,	 la	 siguiente	 o	 la	más
próxima.	 Decidir	 un	 nombre	 adecuado	 es	 complicado.	 Al	 final,	 opté	 por
WeekdayRange	con	los	enumeradores	LAST,	NEXT	y	NEAREST.

Puede	 que	 no	 esté	 de	 acuerdo	 con	 los	 nombres	 elegidos.	 Para	 mí	 tienen
sentido.	Lo	 importante	es	que	ahora	son	más	fáciles	de	cambiar	[J3].	Ya	no	se
pasan	como	enteros,	 sino	como	símbolos.	Puedo	usar	 la	 función	de	cambio	de
nombre	 de	mi	 IDE	 para	 cambiar	 los	 nombres	 o	 los	 tipos	 sin	 preocuparme	 de
haberme	 olvidado	 de	 un	 -1	 o	 un	 2	 en	 alguna	 parte	 del	 código	 o	 de	 que	 la
declaración	de	un	argumento	int	no	estén	bien	descrita.

El	campo	de	descripción	de	 la	 línea	208	no	parece	que	se	use	en	ninguna

parte.	 Lo	 elimino	 junto	 a	 sus	 elementos	 de	 acceso	 y	mutación	 [G9].	 También
elimino	el	constructor	predeterminado	de	 la	 línea	213	 [G12].	El	compilador	 se
encargará	de	generarlo.

Podemos	 ignorar	el	método	isValidWeekdayCode	 (líneas	216-238)	ya	que
lo	eliminamos	al	crear	la	enumeración	Day.

Llegamos	al	método	stringToWeekdayCode	 (líneas	242-270).	Los	Javadoc
que	 no	 suponen	 demasiado	 para	 la	 firma	 del	 método	 sobran	 [C3],	 [G12].	 El
único	valor	de	este	Javadoc	es	la	descripción	del	valor	devuelto	-1.	Sin	embargo,
como	cambiamos	a	la	enumeración	Day,	el	comentario	es	en	realidad	incorrecto
[C2].	 Ahora	 el	 método	 genera	 IllegalArgumentException.	 Por	 ello,
eliminamos	el	Javadoc.

También	 elimino	 las	 palabras	 clave	final	 de	 argumentos	 y	 declaraciones
de	variables,	ya	que	no	parecen	servir	de	mucho	[G12].	La	eliminación	de	final
no	 goza	 de	 gran	 aceptación.	 Por	 ejemplo,	 Robert	 Simmons[101]	 recomienda	 «…
diseminar	 final	 por	 la	 totalidad	 del	 código».	No	 estoy	 de	 acuerdo.	 Creo	 que
existen	 casos	 para	 usar	final,	 por	 ejemplo	 como	 constante	 ocasional,	 pero	 en
general,	esta	palabra	clave	apenas	añade	valor	y	suele	ser	un	estorbo.	Puede	que
lo	piense	porque	el	 tipo	de	errores	que	puede	capturar	final	ya	se	capturan	en
las	pruebas	de	unidad	que	he	creado.

Las	instrucciones	if	duplicadas	[G5]	del	bucle	for	(líneas	259	y	263)	son
irrelevantes,	 de	 modo	 que	 las	 conecté	 en	 una	 única	 instrucción	 if	 con	 el
operador	||.	También	usé	la	enumeración	Day	para	dirigir	el	bucle	for	y	realicé
otros	cambios	estéticos.

Este	método	no	pertenece	realmente	a	DayDate.	En	realidad	es	la	función	de
análisis	de	Day.	Por	 lo	 tanto,	 lo	cambié	a	 la	enumeración	Day,	 lo	que	hizo	que
aumentara	considerablemente	de	tamaño.	Como	el	concepto	de	Day	no	depende
de	DayDate,	extraje	la	enumeración	Day	de	la	clase	DayDate	a	un	archivo	propio
[G13].

También	 cambié	 la	 siguiente	 función,	 weekdayCodeToString	 (líneas	 272-
286)	a	la	enumeración	Day	y	le	asigné	el	nombre	toString.

public	enum	Day	{

MONDAY(Calendar.MONDAY),

TUESDAY(Calendar.TUESDAY),

WEDNESDAY(Calendar.WEDNESDAY),

THURSDAY(Calendar.THURSDAY),

FRIDAY(Calendar.FRIDAY),

SATURDAY(Calendar.SATURDAY),

SUNDAY(Calendar.SUNDAY);

public	final	int	index;

private	static	DateFormatSymbols	dateSymbols	=	new	DateFormatSymbols();

Day(int	day)	{

index	=	day;

}

public	static	Day	make(int	index)	throws	IllegalArgumentException	{

for	(Day	d	:	Day.values())

if	(d.index	==	index)

return	d;

throw	new	IllegalArgumentException(

String.format(“Illegal	day	index:	%d.”,	index));

}

public	static	Day	parse(String	s)	throws	IllegalArgumentException	{

String[]	shortWeekdayNames	=

dateSymbols.getShortWeekdays();

String[]	weekDayNames	=

dateSymbols.getWeekdays();

s	=	s.trim();

for	(Day	day	:	Day.values())	{

if	(s.equalsIgnoreCase(shortWeekdayNames[day.index])	||

s.equalsIgnoreCase(weekDayNames[day.index]))	{

return	day;

}

}

throw	new	IllegalArgumentException(

String.format(“%s	is	not	a	valid	weekday	string”,	s));

}

public	String	toString()	{

return	dateSymbols.getWeekdays()[index];

}

}

Hay	 dos	 funciones	 getMonths	 (líneas	 288-316).	 La	 primera	 invoca	 la
segunda.	 La	 segunda	 solamente	 se	 invoca	 desde	 la	 primera.	 Por	 ello,	 las	 he
combinado	 en	 una	 y	 las	 he	 simplificado	 considerablemente	 [G9],	 [G12],	 [F4].
Por	último,	he	cambiado	el	nombre	por	otro	más	descriptivo	[N1].

public	static	String[]	getMonthNames()	{

return	dateFormatSymbols.getMonths();

}

La	función	isValidMonthCode	(líneas	326-346)	es	ahora	irrelevante	gracias
a	la	enumeración	Month,	de	modo	que	la	elimino	[G9].

La	función	monthCodeToQuarter	 (líneas	356-375)	parece	sufrir	envidia	de
las	 características[102]	 [G14]	 y	 seguramente	 pertenezca	 a	 la	 enumeración	 Month
como	método	quarter,	motivo	por	el	que	la	sustituyo.

public	int	quarter()	{

return	1	+	(index-1)/3;

}

De	 este	 modo,	 la	 enumeración	 Month	 tiene	 tamaño	 suficiente	 como	 para
estar	en	una	clase	propia.	La	extraigo	de	DayDate	para	mantener	 la	coherencia
con	la	enumeración	Day	[G11],	[G13].

Los	 dos	 siguientes	métodos	 tienen	 el	 nombre	 monthCodeToString	 (líneas
377-426).	 Vemos	 de	 nuevo	 que	 uno	 invoca	 al	 otro	 con	 un	 indicador.	 No	 es
recomendable	pasar	un	indicador	como	argumento	de	una	función,	en	especial	si
dicho	 indicador	 sólo	 selecciona	 el	 formato	 del	 resultado	 [G15].	 Por	 tanto,
cambio	de	nombre,	simplifico	y	reestructuro	estas	funciones	y	las	incluyo	en	la
enumeración	Month	[N1],	[N3],	[C3],	[G14].

public	String	toString()	{

return	dateFormatSymbols.getMonths()[index	-	1];

}

public	String	toShortString()	{

return	dateFormatSymbols.getShortMonths()[index	–	1];

}

El	siguiente	método	es	stringToMonthCode	(líneas	428-472).	Lo	cambio	de
nombre,	lo	paso	a	la	enumeración	Month	y	lo	simplifico	[N1],	[N3],	[C3],	[G14],
[G12].

public	static	Month	parse(String	s)	{

s	=	s.trim();

for	(Month	m	:	Month.values())

if	(m.matches(s))

return	m;

try	{

return	make(Integer.parseInt(s));

}

catch	(NumberFormatException	e)	{}

throw	new	IllegalArgumentException(“Invalid	month	”	+	s);

}

private	boolean	matches(String	a)	{

return	s.equalsIgnoreCase(toString())	||

s.equalsIgnoreCase(toShortString());

}

El	método	 isLeapYear	 (líneas	 495-517)	 se	 puede	modificar	 para	 que	 sea
más	expresivo	[G16].

public	static	boolean	isLeapYear(int	year)	{

boolean	fourth	=	year	%	4	==	0;

boolean	hundredth	=	year	%	100	==	0;

boolean	fourHundredth	=	year	%	400	==	0;

return	fourth	&&	(!hundredth	||	fourHundredth);

}

La	 siguiente	 función,	 leapYearCount	 (líneas	 519-536)	 no	 pertenece
realmente	 a	 DayDate.	 Nadie	 la	 invoca,	 excepto	 los	 dos	 métodos	 de
SpreadsheetDate,	de	modo	que	la	desplazo	hacia	abajo	[G6].

La	 función	 lastDayOfMonth	 (líneas	 538-560)	 usa	 la	 matriz
LAST_DAY_OF_MONTH,	 que	en	 realidad	pertenece	a	 la	 enumeración	Month	 [G17],
por	lo	que	la	cambio	de	ubicación.	También	simplifico	la	función	y	aumento	su
expresividad	[G16].

public	static	int	lastDayOfMonth(Month	month,	int	year)	{

if	(month	==	Month.FEBRUARY	&&	isLeapYear(year))

return	month.lastDay()	+	1;

else

return	month.lastDay();

}

Ahora	 empieza	 a	 ponerse	 interesante.	 La	 siguiente	 función	 es	 addDays
(líneas	562-576).	En	primer	 lugar,	como	opera	en	 las	variables	de	DayDate,	no
debería	ser	estática	[G18].	La	cambio	por	un	método	de	instancia.	Por	otra	parte,
invoca	 la	 función	toSerial,	 cuyo	 nombre	 deberíamos	 cambiar	 por	toOrdinal
[N1].	Por	último,	el	método	se	puede	simplificar.

public	DayDate	addDays(int	days)	{

return	DayDateFactory.makeDate(toOrdinal()	+	days);

}

Lo	mismo	sucede	con	addMonths	(líneas	578-602).	Debería	ser	un	método
de	instancia	[G18].	El	algoritmo	es	un	tanto	complicado,	de	modo	que	recurro	a
la	 explicación	 de	 variables	 temporales[103]	 [G19]	 para	 que	 sea	más	 transparente.
También	cambio	el	nombre	del	método	getYYY	por	getYear	[N1].

public	DayDate	addMonths(int	months)	{

int	thisMonthAsOrdinal	=	12	*	getYear()	+	getMonth().index	-	1;

int	resultMonthAsOrdinal	=	thisMonthAsOrdinal	+	months;

int	resultYear	=	resultMonthAsOrdinal	/	12;

Month	resultMonth	=	Month.make(resultMonthAsOrdinal	%	12	+	1);

int	lastDayOfResultMonth	=	lastDayOfMonth(resultMonth,	resultYear);

int	resultDay	=	Math.min(getDayOfMonth(),	lastDayOfResultMonth);

return	DayDateFactory.makeDate(resultDay,	resultMonth,	resultYear);

}

La	función	addYears	(líneas	604-626)	es	similar	al	resto.
public	DayDate	plusYears(int	years)	{

int	resultYear	=	getYear()	+	years;

int	lastDayOfMonthInResultYear	=	lastDayOfMonth(getMonth(),	resultYear);

int	resultDay	=	Math.min(getDayOfMonth(),	lastDayOfMonthInResultYear);

return	DayDateFactory.makeDate(resultDay,	getMonth(),	resultYear);

}

Hay	algo	que	me	preocupa	sobre	el	cambio	de	estos	métodos	de	estáticos	a
métodos	de	instancia.	¿La	expresión	date.addDays(5)	aclara	que	el	objeto	date
no	 cambia	 y	 que	 se	 devuelve	 una	 nueva	 instancia	 de	 DayDate	 o	 se	 supone,
equivocadamente,	que	se	añaden	cinco	días	al	objeto	date?	Pensará	que	no	es	un
gran	problema,	pero	un	 fragmento	de	código	como	el	 siguiente	puede	ser	muy
engañoso	[G20].

DayDate	date	=	DateFactory.makeDate(5,	Month.DECEMBER,	1952);

date.addDays(7);	//	desplazar	la	fecha	una	semana

Un	lector	de	este	código	podría	aceptar	que	addDays	cambia	el	objeto	date,
de	 modo	 que	 necesitamos	 un	 nombre	 que	 acabe	 con	 la	 ambigüedad	 [N4]:
plusDays	 y	 plusMonths.	 Creo	 que	 la	 intención	 del	 método	 se	 captura
correctamente	por	medio	de	DayDate	date	=	oldDate.plusDays(5);

mientras	 que	 el	 siguiente	 no	 transmite	 con	 fluidez	 al	 lector	 que	 el	 objeto
date	ha	cambiado:

date.plusDays(5);

Los	 algoritmos	 son	 cada	 vez	 más	 interesantes.	 getPreviousDayOfWeek
(líneas	 628-660)	 funciona	 pero	 es	 complicado.	Tras	meditar	 en	 lo	 que	 sucedía
[G21],	pude	simplificarlo	y	aplicar	la	explicación	de	variables	temporales	[G19]
para	aclarar	su	significado.	También	lo	cambié	de	método	estático	a	método	de
instancia	 [G18]	 y	 me	 deshice	 del	 método	 de	 instancia	 duplicado	 [G5]	 (líneas
997-1008).

public	DayDate	getPreviousDayOfWeek(Day	targetDayOfWeek)	{

int	offsetToTarget	=	targetDayOfWeek.index	=	getDayOfWeek().index;

if	(offsetToTarget	>=	0)

offsetToTarget	-	7;

return	plusDays(offsetToTarget);

}

Sucede	 exactamente	 lo	 mismo	 con	 getFollowingDayOfWeek	 (líneas	 662-
693).

public	DayDate	getFollowingDayOfWeek(Day	targetDayOfWeek)	{

int	offsetToTarget	=	targetDayOfWeek.index	-	getDayOfWeek().index;

if	(offsetToTarget	<=	0)

offsetToTarget	+=	7;

return	plusDays(offsetToTarget);

}

La	 siguiente	 función	 es	 getNearestDayOfWeek	 (líneas	 695-726),	 que

corregimos	en	un	apartado	anterior.	Pero	esos	cambios	no	son	coherentes	con	el
patrón	 actual	 de	 las	 dos	 últimas	 funciones	 [G11].	 Por	 ello,	 recurro	 a	 la
explicación	de	variables	temporales	[G19]	para	aclarar	el	algoritmo.

public	DayDate	getNearestDayOfWeek(final	Day	targetDay)	{

int	offsetToThisWeeksTarget	=	targetDay.index	-	getDayOfWeek().index;

int	offsetToFutureTarget	=	(offsetToThisWeeksTarget	+	7)	%	7;

int	offsetToPreviousTarget	=	offsetToFutureTarget	-	7;

if	(offsetToFutureTarget	>	3)

return	plusDays(offsetToPreviousTarget);

else

return	plusDays(offsetToFutureTarget);

}

El	método	getEndOfCurrentMonth	(líneas	728-740)	es	un	tanto	extraño	ya
que	es	un	método	de	instancia	que	envidia	[G14]	a	su	propia	clase	aceptado	un
argumento	 DayDate.	 Lo	 convierto	 en	 un	 verdadero	 método	 de	 instancia	 y
clarifico	algunos	de	los	nombres.

public	DayDate	getEndOfMonth()	{

Month	month	=	getMonth();

int	year	=	getYear();

int	lastDay	=	lastDayOfMonth(month,	year);

return	DayDateFactory.makeDate(lastDay,	month,	year);

}

La	 refactorización	 de	 weekInMonthToString	 (líneas	 742-761)	 resultó	 ser
muy	 interesante.	 Mediante	 las	 herramientas	 de	 refactorización	 de	 mi	 IDE,
primero	cambié	el	método	a	la	enumeración	WeekInMonth	creada	antes	y	después
cambié	el	nombre	por	toString.	Tras	ello,	 lo	convertí	en	método	de	 instancia.
Todas	las	pruebas	fueron	correctas	(¿adivina	hacia	dónde	nos	dirigimos?).

Seguidamente,	eliminé	el	método.	Fallaron	cinco	afirmaciones	(líneas	411-
415	 del	 Listado	 B-4).	 Cambié	 estas	 líneas	 para	 usar	 los	 nombres	 de	 los
enumeradores	(FIRST,	SECOND,	etc.).	Las	pruebas	fueron	correctas.	¿Ve	por	qué?
¿Puede	 ver	 también	 por	 qué	 son	 necesarios	 estos	 pasos?	 La	 herramienta	 de
refactorización	 se	 encargó	 de	 que	 los	 invocadores	 anteriores	 de
weekInMonthToString	 invocaran	 ahora	 toString	 en	 el	 enumerador
weekInMonth	 ya	 que	 todos	 los	 enumeradores	 implementan	 toString	 para
devolver	sus	nombres…

Desafortunadamente,	me	pasé	de	listo.	A	pesar	de	la	elegancia	de	la	cadena
de	 refactorización,	 comprobé	 que	 los	 únicos	 usuarios	 de	 esta	 función	 eran	 las
pruebas	 que	 acababa	 de	 modificar,	 de	 modo	 que	 las	 eliminé.	 Así	 pues,	 tras
determinar	que	sólo	las	pruebas	invocaban	relativeToString	(líneas	765-781),
eliminé	directamente	la	función	y	sus	pruebas.

Hemos	 llegado	 a	 los	 métodos	 abstractos	 de	 esta	 clase	 abstracta.	 Y	 el
primero	es	toSerial	(líneas	838-844).	En	un	apartado	anterior	cambié	el	nombre
por	 toOrdinal.	 Al	 verlo	 en	 este	 contexto,	 decidí	 que	 el	 cambio	 de	 nombre
debería	ser	por	getOrdinalDay.	El	siguiente	método	abstracto	es	toDate	(líneas
838-844).	 Convierte	 DayDate	 en	 java.util.Date.	 ¿Por	 qué	 es	 abstracto?	 Si

analizamos	su	implementación	en	SpreadsheetDate	(líneas	198-207	del	Listado
B-5),	vemos	que	no	depende	de	la	implementación	de	esa	clase	[G6].	Por	tanto,
lo	desplazo	hacia	arriba.

Los	 métodos	 getYYYY,	 getMonth	 y	 getDayOfMonth	 son	 evidentemente
abstractos.	 Sin	 embargo,	 getDayOfWeek	 debería	 ascender	 desde
SpreadSheetDate	ya	que	no	depende	de	nada	de	lo	que	encontremos	en	DayDate
[G6].	¿O	sí?

Si	 se	 fija	 atentamente	 (línea	 247	 del	 Listado	B-5),	 verá	 que	 el	 algoritmo
depende	implícitamente	del	origen	del	día	ordinal	(es	decir,	el	día	de	la	semana
del	día	0).	Por	ello,	aunque	esta	función	carezca	de	dependencias	físicas	que	no
se	puedan	cambiar	a	DayDate,	cuenta	con	una	dependencia	 lógica.	Este	 tipo	de
dependencias	 lógicas	 me	 molestan	 [G22].	 Si	 algo	 lógico	 depende	 de	 la
implementación,	 también	debería	haber	 algo	 físico.	Además,	me	parece	que	 el
propio	algoritmo	podría	ser	genérico	y	que	debería	depender	en	menor	medida
de	la	implementación	[G6].	Por	tanto,	creé	un	método	abstracto	en	DayDate	con
el	nombre	getDayOfWeekForOrdinalZero	y	lo	implementé	en	SpreadsheetDate
para	 devolver	 Day.SATURDAY.	 Tras	 ello,	 envié	 el	 método	 getDayOfWeek	 a
DayDate	 y	 lo	 cambié	 para	 que	 invocara	 getOrdinalDay	 y
getDayOfWeekForOrdinalZero.

public	Day	getDayOfWeek()	{

Day	startingDay	=	getDayOfWeekForOrdinalZero();

int	startingOffset	=	startingDay.index	-	Day.SUNDAY.index;

return	Day.make((getOrdinalDay()	+	startingOffset)	%	7	+	1);

}

Fíjese	en	el	comentario	de	las	líneas	895-899.	¿Necesitamos	realmente	esta
repetición?	Como	de	costumbre,	eliminé	este	comentario	junto	a	los	demás.

El	 siguiente	 método	 es	 compare	 (líneas	 902-913).	 De	 nuevo,	 es
incorrectamente	abstracto	[G6],	por	lo	que	cambio	la	implementación	a	DayDate.
Además,	el	nombre	no	es	descriptivo	[N1].	En	realidad,	este	método	devuelve	la
diferencia	 en	 días	 desde	 el	 argumento,	 por	 lo	 que	 cambié	 el	 nombre	 por
daysSince.	Tampoco	existían	pruebas	para	este	método,	de	modo	que	las	creé.

Las	seis	siguientes	funciones	(líneas	915-980)	son	métodos	abstractos	que
deben	implementarse	en	DayDate,	por	lo	que	las	extraje	de	SpreadsheetDate.

La	 última	 función,	isInRange	 (líneas	 982-995),	 también	 debe	 extraerse	 y
refactorizarse.	 La	 instrucción	 switch	 no	 es	 agradable	 [G23]	 y	 se	 puede
modificar	si	enviamos	los	casos	a	la	enumeración	DateInterval.

public	enum	DateInterval	{

OPEN	{

public	boolean	isIn(int	d,	int	left,	int	right)	{

return	d	>	left	&&	d	<	right;

}

},

CLOSED_LEFT	{

public	boolean	isIn(int	d,	int	left,	int	right)	{

return	d	>=	left	&&	d	<	right;

}

},

CLOSED_RIGHT	{

public	boolean	isIn(int	d,	int	left,	int	right)	{

return	d	>	left	&&	d	<=	right;

}

},

CLOSED	{

public	boolean	isIn(int	d,	int	left,	int	right)	{

return	d	>=	left	&&	d	<=	right;

}

};

public	abstract	boolean	isIn(int	d,	int	left,	int	right);

}

public	boolean	isInRange(DayDate	d1,	DayDate	d2,	DateInterval	interval)	{

int	left	=	Math.min(d1.getOrdinalDay(),	d2.getOrdinalDay());

int	right	=	Math.max(d1.getOrdinalDay(),	d2.getOrdinalDay());

return	interval.isIn(getOrdinalDay(),	left,	right);

}

Con	esto	llegamos	al	final	de	DayDate.	Realizaremos	una	nueva	pasada	por
la	clase	completa	para	comprobar	cómo	fluye.	Primero,	el	comentario	inicial	está
desfasado,	de	modo	que	lo	reduzco	y	lo	mejoro	[C2].

Tras	 ello,	 desplazo	 las	 enumeraciones	 restantes	 a	 sus	 propios	 archivos
[G12].

Seguidamente,	 desplazo	 la	 variable	 estática	 (dateFormatSymbols)	 y	 tres
métodos	estáticos	 (getMonthNames,	isLeapYear,	lastDayOfMonth)	a	una	nueva
clase	con	el	nombre	DateUtil	[G6].

Cambio	 los	métodos	abstractos	a	una	posición	superior,	donde	pertenecen
[G24].

Cambio	Month.make	por	Month.fromInt	[N1]	y	repito	la	operación	con	las
demás	enumeraciones.	También	creo	un	método	de	acceso	toInt()	 para	 todas
las	enumeraciones	y	convierto	en	privado	el	campo	index.

Se	 produce	una	 interesante	 duplicación	 [G5]	 en	plusYears	 y	plusMonths
que	 conseguí	 eliminar	 extrayendo	 un	 nuevo	 método	 con	 el	 nombre
correctLastDayOfMonth,	lo	que	aclaraba	el	significado	de	los	tres	métodos.

Me	 deshice	 del	 número	 mágico	 1	 [G25]	 y	 lo	 sustituí	 por
Month.JANUARY.toInt()	 o	Day.SUNDAY.toInt(),	 según	 el	 caso.	Me	detuve	 en
limpiar	 los	 algoritmos	 de	 SpreadsheetDate.	 El	 resultado	 final	 se	 puede
comprobar	en	los	listados	B.7	a	B.16.

El	alcance	del	código	en	DayDate	se	ha	reducido	al	84.9	por	100,	no	porque
se	 pruebe	 una	 cantidad	 menor	 de	 funcionalidad,	 sino	 porque	 la	 clase	 se	 ha
reducido	 tanto	 que	 las	 líneas	 sin	 alcance	 tienen	 un	 peso	 mayor.	 Ahora,	 en
DayDate	 las	 pruebas	 se	 aplican	 a	 45	 de	 las	 53	 instrucciones	 ejecutables.	 Las
líneas	sin	alcance	son	tan	triviales	que	no	merece	la	pena	probarlas.

Conclusión

Otra	 vez	 hemos	 aplicado	 la	Regla	 del	Boy	Scout.	Hemos	 entregado	 el	 código

más	limpio	de	lo	que	lo	recibimos.	Nos	ha	llevado	tiempo,	pero	ha	merecido	la
pena.	El	alcance	de	las	pruebas	ha	aumentado,	hemos	corregido	algunos	errores
y	hemos	aclarado	y	reducido	el	 tamaño	del	código.	La	próxima	persona	que	lo
lea	 seguramente	 lo	 encontrará	más	 fácil	 de	 leer.	Y	probablemente	 esa	 persona
sea	capaz	de	limpiarlo	algo	más	de	lo	que	hemos	hecho	nosotros.

Bibliografía
	

[GOF]:	Design	Patterns:	Elements	of	Reusable	Object	Oriented	Software,
Gamma	et	al.,	Addison-Wesley,	1996.
[Simmons04]:	Hardcore	Java,	Robert	Simmons,	Jr.,	O’Reilly,	2004.
[Refactoring]:	Refactoring:	Improving	the	Design	of	Existing	Code,	Martin
Fowler	et	al.,	Addison-Wesley,	1999.
[Beck97]:	 Smalltalk	 Best	 Practice	 Patterns,	 Kent	 Beck,	 Prentice	 Hall,
1997.

17
Síntomas	y	heurística

En	su	magnífico	libro	Refactoring[104],	Martin	Fowler	identifica	diversos	síntomas
de	 código	 (Smells).	La	 lista	 que	mostramos	 a	 continuación	 incluye	muchos	 de
los	 síntomas	 de	 Martin	 y	 otros	 propios.	 También	 contiene	 otras	 perlas	 y
heurística	que	suelo	emplear	en	mi	trabajo.

Para	 compilar	 esta	 lista	 he	 examinado	 diversos	 programas	 y	 los	 he
refactorizado.	 Al	 aplicar	 un	 cambio,	 me	 preguntaba	 el	 por	 qué	 y	 anotaba	 el
motivo.	El	 resultado	es	una	extensa	 lista	de	aspectos	que	no	me	«huelen»	bien
cuando	leo	código.

La	 lista	 se	 debe	 leer	 de	 arriba	 a	 abajo,	 y	 también	 se	 puede	 usar	 como
referencia.

Comentarios

C1:	Información	inapropiada
No	 es	 apropiado	 que	 un	 comentario	 contenga	 información	 que	 se	 pueda
almacenar	en	otro	tipo	de	sistema	como	un	sistema	de	control	de	código	fuente,
de	seguimiento	de	problemas	o	de	mantenimiento	de	registros.	Los	historiales	de
cambios,	por	ejemplo,	abarrotan	los	archivos	de	código	con	abundante	texto	sin
interés	alguno.	Por	lo	general,	metadatos	como	autores,	fechas	de	modificación,
números	SPR	y	similares	no	deben	aparecer	en	los	comentarios.	Los	comentarios
deben	reservarse	para	notas	técnicas	sobre	el	código	y	el	diseño.

C2:	Comentario	obsoleto

Un	comentario	anticuado,	irrelevante	e	incorrecto	es	obsoleto.	Los	comentarios
envejecen	rápidamente.	Es	recomendable	no	escribir	un	comentario	que	vaya	a
quedar	 obsoleto.	 Si	 detecta	 un	 comentario	 obsoleto,	 conviene	 actualizarlo	 o
eliminarlo	 lo	 antes	 posible.	 Los	 comentarios	 obsoletos	 tienden	 a	 alejarse	 del
código	que	describían.	Se	convierten	en	islas	de	irrelevancia	y	desorientación	en
el	código.

C3:	Comentario	redundante

Un	comentario	es	redundante	si	describe	algo	que	ya	se	define	correctamente	por
sí	mismo.	Por	ejemplo:

i++;	//	incrementar	i

Otro	ejemplo	es	un	Javadoc	que	no	dice	más	(o	incluso	menos)	que	la	firma
de	una	función:

/**

*	@param	sellRequest

*	@return

*	@throws	ManagedComponentException

*/

public	SellResponse	beginSellItem(SellRequest	sellRequest)

throws	ManagedComponentException

Los	comentarios	deben	comunicar	lo	que	el	código	no	pueda	expresar	por	sí
mismo.

C4:	Comentario	mal	escrito

Un	comentario	que	merezca	la	pena	escribir	merece	la	pena	ser	leído.	Si	piensa
escribir	un	comentario,	asegúrese	de	que	es	el	mejor	que	puede	crear.	Elija	 las
palabras	 con	 atención.	Use	 gramática	 y	 puntuación	 correctas.	No	 divague.	No
afirme	lo	evidente.	Sea	breve.

C5:	Código	comentado
Me	 molesta	 ver	 grandes	 fragmentos	 de	 código	 comentado.	 ¿Quién	 sabe	 qué
antigüedad	tienen?	¿Quién	sabe	si	tiene	sentido	o	no?	Pero	nadie	lo	borra	porque
piensa	que	alguien	más	lo	necesita.

Ese	 código	 se	 estanca	 y	 se	 corrompe,	 y	 cada	 día	 que	 pasa	 es	 menos
relevante.	Invoca	funciones	que	ya	no	existen.	Usa	variables	cuyos	nombres	han
cambiado.	 Se	 rige	 por	 convenciones	 obsoletas.	 Contamina	 los	módulos	 en	 los
que	 aparece	 y	 distrae	 a	 los	 usuarios	 que	 lo	 leen.	 El	 código	 comentado	 es	 una
aberración.

Cuando	 vea	 código	 comentado,	 elimínelo.	No	 se	 preocupe,	 el	 sistema	 de
control	de	código	fuente	lo	recordará.	Si	alguien	lo	necesita,	puede	consultar	una
versión	anterior.	No	sufra	el	código	comentado	para	sobrevivir.

Entorno

E1:	La	generación	requiere	más	de	un	paso
La	 generación	 de	 un	 proyecto	 debería	 ser	 una	 operación	 sencilla.	 No	 debería
tener	 que	 comprobar	 demasiados	 elementos	 del	 control	 de	 código	 fuente.	 No
debería	 necesitar	 una	 secuencia	 de	 antiguos	 comandos	 ni	 secuencias	 de
comandos	 dependientes	 del	 contexto	 para	 generar	 cada	 elemento.	 No	 debería
tener	que	buscar	los	distintos	archivos	JAR,	XML	y	similares	necesarios	para	el
sistema.	Debería	finalizar	el	sistema	con	un	sencillo	comando	y	después	ejecutar
otro	igual	de	sencillo	para	generarlo.

svn	get	mySystem

cd	mySystem

ant	all

E2:	Las	pruebas	requieren	más	de	un	paso
Debería	poder	ejecutar	todas	las	pruebas	de	unidad	con	un	solo	comando.	En	el
mejor	de	los	casos,	debería	poder	ejecutarlas	pulsando	un	botón	de	su	IDE.	En	el
peor,	 debería	 poder	 ejecutar	 un	 único	 comando	 en	 una	 línea	 de	 comandos.	La
capacidad	 de	 ejecutar	 todas	 las	 pruebas	 es	 tan	 importante	 que	 debe	 ser	 algo
rápido,	sencillo	y	obvio.

Funciones

F1:	Demasiados	argumentos

Las	funciones	deben	tener	un	número	reducido	de	argumentos.	Lo	mejor	es	que
no	tengan,	seguido	de	uno,	dos	y	tres	argumentos.	Más	de	tres	ya	es	cuestionable
y	debería	evitarse	(véase	el	capítulo	3).

F2:	Argumentos	de	salida

Los	argumentos	de	salida	son	ilógicos.	El	lector	espera	que	los	argumentos	sean
entradas,	no	salidas.	Si	su	función	tiene	que	cambiar	el	estado	de	algo,	haga	que
cambie	el	estado	del	objeto	en	el	que	se	invoca	(véase	el	capítulo	3).

F3:	Argumentos	de	indicador

Los	 argumentos	 booleanos	 declaran	 abiertamente	 que	 la	 función	 hace	más	 de
una	cosa.	Resultan	confusos	y	deben	eliminarse	(véase	el	capítulo	3).

F4:	Función	muerta
Los	métodos	 que	 nunca	 se	 invocan	 deben	 descartarse.	La	 presencia	 de	 código
muerto	 es	 innecesaria.	No	 tema	 eliminar	 la	 función.	 Su	 sistema	 de	 control	 de
código	fuente	la	recordará.

General

G1:	Varios	lenguajes	en	un	archivo	de	código
Los	 modernos	 entornos	 de	 programación	 actuales	 permiten	 incluir	 varios
lenguajes	diferentes	en	el	mismo	archivo	de	código.	Por	ejemplo,	un	archivo	de
Java	puede	contener	fragmentos	de	XML,	HTML,	YAML,	JavaDoc,	JavaScript,
y	similares.	Además	de	HTML,	un	archivo	JSP	podría	 incluir	Java,	sintaxis	de
biblioteca	de	etiquetas,	comentarios	en	español,	Javadoc,	XML,	JavaScript,	etc.
Resulta	confuso	en	el	mejor	de	los	casos	y	un	desastre	en	el	peor.

Lo	ideal	sería	que	el	archivo	de	código	incluyera	un	solo	lenguaje	pero,	en
realidad,	 seguramente	 tendremos	 que	 usar	 más	 de	 uno.	 Debemos	 intentar
minimizar	 la	 cantidad	 y	 el	 alcance	 de	 los	 lenguajes	 adicionales	 en	 nuestros
archivos	de	código.

G2:	Comportamiento	evidente	no	implementado

De	 acuerdo	 al	Principio	 de	 la	 Mínima	 Sorpresa[105],	 una	 función	 o	 clase	 debe
implementar	los	comportamientos	que	otro	programador	esperaría.	Por	ejemplo,
imagine	una	función	que	traduce	el	nombre	de	un	día	en	una	enumeración	que
represente	dicho	día.

Day	day	=	DayDate.StringToDay(String	dayName);

Esperaríamos	 que	 la	 cadena	 «Monday»	 se	 tradujera	 en	 Day.MONDAY.
También	 esperaríamos	 la	 traducción	 de	 las	 abreviaturas	 habituales	 y	 que	 la
función	ignorara	mayúsculas	y	minúsculas.

Cuando	un	comportamiento	obvio	no	se	implementa,	los	lectores	y	usuarios
del	código	ya	no	dependen	de	su	intuición	sobre	los	nombres	de	las	funciones.
Pierden	su	confianza	en	el	autor	original	y	se	ven	obligados	a	leer	los	detalles	del
código.

G3:	Comportamiento	incorrecto	en	los	límites
Parece	 evidente	 afirmar	que	 el	 código	debe	 comportarse	de	 forma	correcta.	El
problema	 es	 que	 no	 nos	 damos	 cuenta	 de	 lo	 complicado	 que	 es	 dicho
comportamiento	 correcto.	 Los	 programadores	 suelen	 crear	 funciones	 que
esperan	que	 funcionen	y	confían	en	su	 intuición	más	que	en	comprobar	que	el
código	funciona	en	todos	los	casos	de	límites.

No	 existe	 sustituto	 para	 la	 meticulosidad.	 Las	 condiciones	 de	 límite,	 los
casos	 extremos,	 las	 excepciones,	 representan	 algo	 que	 puede	 confundir	 a	 un
algoritmo	 elegante	 e	 intuitivo.	No	 dependa	 de	 su	 intuición.	 Busque	 todas	 las
condiciones	de	límite	y	cree	pruebas	para	cada	una.

G4:	Medidas	de	seguridad	canceladas

Chernobyl	se	derritió	porque	el	director	de	la	central	ignoró	todos	y	cada	uno	de
los	 mecanismos	 de	 seguridad.	 Impedían	 que	 se	 realizara	 un	 experimento.	 El
resultado	 fue	 que	 el	 experimento	 no	 salió	 bien	 y	 el	 mundo	 fue	 testigo	 de	 la
primera	gran	catástrofe	nuclear	para	la	población.

Anular	 las	 medidas	 de	 seguridad	 es	 un	 riesgo.	 Puede	 que	 sea	 necesario
ejercer	el	 control	manual	 sobre	serialVersionUID	pero	 siempre	es	arriesgado.
La	 desactivación	 de	 determinadas	 advertencias	 del	 compilador	 (o	 de	 todas)
puede	 ayudarle	 a	 conseguir	 la	 generación,	 pero	 corre	 el	 riesgo	 de	 sufrir
interminables	 sesiones	 de	 depuración.	 Desactivar	 las	 pruebas	 que	 fallan	 y
convencerse	 de	 que	 conseguirá	 que	 después	 sean	 satisfactorias	 es	 tan	 erróneo
como	pensar	que	sus	tarjetas	de	crédito	son	dinero	gratuito.

G5:	Duplicación
Una	de	las	reglas	más	importantes	del	libro	y	que	debe	tomarse	muy	en	serio.	La
práctica	 totalidad	 de	 los	 autores	 que	 escriben	 sobre	 diseño	 de	 software
mencionan	 esta	 regla.	 Dave	 Thomas	 y	 Andy	 Hunt	 la	 denominaron	 principio
DRY[106]	(Don't	Repeat	Yourself,	No	repetirse).	Kent	Beck	la	convirtió	en	uno	de
los	principios	 fundamentales	de	 la	programación	Extreme	y	 la	denominó	«Una
sola	 vez».	 Ron	 Jeffries	 sitúa	 esta	 regla	 en	 segunda	 posición,	 por	 debajo	 de	 la
consecución	satisfactoria	de	todas	las	pruebas.

Siempre	 que	 vea	 duplicados	 en	 el	 código,	 indican	 una	 oportunidad	 de
abstracción	fallida.	La	duplicación	podría	convertirse	en	una	subrutina	o	en	otra
clase.	Al	 incluir	 la	duplicación	en	una	abstracción,	 aumenta	el	vocabulario	del
lenguaje	del	diseño.	Otros	programadores	pueden	usar	sus	creaciones	abstractas.
El	código	se	vuelve	más	rápido	y	menos	proclive	a	errores	ya	que	ha	aumentado
el	nivel	de	abstracción.

El	 caso	 más	 evidente	 de	 duplicación	 es	 la	 presencia	 de	 fragmentos	 de
código	 idéntico	 que	 parecen	 pegados	 repetidamente	 por	 el	 programador,	 sin
sentido.	Conviene	reemplazarlos	por	métodos	simples.

Una	 forma	 más	 sutil	 es	 la	 cadena	 switch/case	 o	 if/else	 que	 aparece
repetidamente	 en	 diversos	 módulos	 y	 que	 siempre	 prueba	 las	 mismas
condiciones.	Conviene	reemplazar	estas	cadenas	por	polimorfismo.

Y	más	sutiles	todavía	son	los	módulos	con	algoritmos	similares	pero	que	no
comparten	 las	 mismas	 líneas	 de	 código.	 Sigue	 siendo	 duplicación	 y	 debe

corregirse	por	medio	del	patrón	de	método	de	plantilla[107]	o	estrategia[108].
En	realidad,	la	mayoría	de	patrones	de	diseño	aparecidos	en	los	últimos	15

años	 son	 formas	 de	 eliminar	 la	 duplicación.	 Las	 Formas	 normales	 de	 Codd
también	son	una	estrategia	para	eliminar	la	duplicación	en	esquemas	de	base	de
datos.	 Incluso	 la	 programación	 orientada	 a	 objetos	 es	 una	 estrategia	 para
organizar	módulos	y	eliminar	la	duplicación.	No	debería	sorprenderle,	ya	que	se
trata	de	programación	estructurada.	Creo	que	el	objetivo	es	evidente:	localice	los
elementos	duplicados	y	elimínelos	siempre	que	pueda.

G6:	Código	en	un	nivel	de	abstracción	incorrecto
Es	 importante	 crear	 abstracciones	 que	 separen	 conceptos	 generales	 de	 nivel
superior	 de	 conceptos	 detallados	 de	 nivel	 inferior.	 Para	 ello,	 en	 ocasiones
creamos	 clases	 abstractas	 que	 contengan	 los	 conceptos	 de	 nivel	 superior	 y
variantes	 los	 de	 nivel	 inferior.	 Si	 lo	 hacemos,	 debemos	 asegurarnos	 de	 que	 la
separación	sea	completa.	Todos	los	conceptos	de	nivel	inferior	deben	estar	en	las
variantes	y	los	de	nivel	superior	en	la	clase	base.

Por	 ejemplo,	 constantes,	 variables	 o	 funciones	 de	 utilidad	 que	 solamente
pertenezcan	a	la	implementación	detallada	no	deben	aparecer	en	la	clase	base.	La
clase	base	no	debe	saber	nada	al	respecto	de	estos	elementos.

Esta	regla	también	se	aplica	a	archivos	fuente,	componentes	y	módulos.	El
diseño	 correcto	 de	 software	 requiere	 la	 separación	 de	 conceptos	 en	 distintos
niveles	 y	 su	 inclusión	 en	 contenedores	 diferentes.	 En	 ocasiones,	 dichos
contenedores	son	clases	base	o	variantes,	y	en	otros	casos	son	archivos	fuente,
módulos	 o	 componentes.	 Independientemente	 del	 caso,	 la	 separación	 debe	 ser
completa.	No	queremos	que	conceptos	de	nivel	inferior	y	superior	se	mezclen.

Fíjese	en	este	código:
public	interface	Stack	{

Object	pop()	throws	EmptyException;

void	push(Object	o)	throws	FullException;

double	percentFull();

class	EmptyException	extends	Exception	{}

class	FullException	extends	Exception	{}

}

La	 función	 percentFull	 se	 encuentra	 en	 el	 nivel	 de	 abstracción
equivocado.	Aunque	hay	implementaciones	de	Stack	en	las	que	el	concepto	de
amplitud	es	razonable,	otras	no	pueden	conocer	su	nivel	de	amplitud.	Por	tanto,
la	función	debería	incluirse	en	una	interfaz	derivada	como	BoundedStack.

Pensará	 que	 la	 implementación	 podría	 devolver	 cero	 si	 la	 pila	 no	 tuviera
límites.	El	problema	es	que	no	existen	pilas	totalmente	sin	límites.	No	se	puede
evitar	OutOfMemoryException	mediante	la	comprobación	de

stack.percentFull()	<	50.0.

La	implementación	de	esta	función	para	que	devuelva	0	sería	una	mentira.
La	 moraleja	 es	 que	 no	 puede	 mentir	 o	 escapar	 de	 una	 abstracción	 mal

ubicada.	 El	 aislamiento	 de	 abstracciones	 es	 una	 de	 las	 operaciones	 más
complicadas	para	los	desarrolladores	de	software	y	no	se	puede	corregir	cuando
se	realiza	de	forma	incorrecta.

G7:	Clases	base	que	dependen	de	sus	variantes

El	motivo	más	habitual	para	dividir	conceptos	en	clases	base	y	derivadas	es	para
que	los	conceptos	de	nivel	superior	de	la	clase	base	sean	independientes	de	los
de	 nivel	 inferior	 de	 las	 derivadas.	 Por	 ello,	 cuando	 vemos	 clases	 base	 que
mencionan	los	nombres	de	sus	variantes,	se	intuye	un	problema.	Por	lo	general,
las	clases	base	no	deben	saber	nada	sobre	su	derivadas.

Evidentemente,	hay	excepciones.	En	ocasiones,	 el	número	de	variantes	es
fijo	y	la	clase	base	tiene	código	que	elegir	entre	las	variantes.	Es	muy	habitual	en
implementaciones	 de	 equipos	 con	 estado	 finito.	 Sin	 embargo,	 en	 ese	 caso	 las
variantes	y	la	clase	base	están	íntimamente	unidas	y	siempre	se	implementan	en
el	 mismo	 archivo	 jar.	 En	 el	 caso	 general,	 deben	 implementarse	 en	 archivos
independientes.

Al	 implementar	variantes	y	clases	base	en	archivos	diferentes	y	garantizar
que	los	archivos	de	la	clase	base	desconocen	el	contenido	de	los	archivos	de	las
variantes	 podemos	 implementar	 nuestros	 sistemas	 en	 componentes	 discretos	 e
independientes.	 Al	 modificar	 dichos	 componentes,	 se	 pueden	 volver	 a
implementar	sin	necesidad	de	implementar	de	nuevo	los	componentes	base.	De
este	modo	 se	 reduce	 significativamente	 el	 impacto	 del	 cambio	 y	 se	 facilita	 el
mantenimiento	de	los	sistemas.

G8:	Exceso	de	información
Los	módulos	bien	definidos	tienen	interfaces	reducidas	que	nos	permiten	hacer
mucho	 con	 poco.	Los	módulos	 definidos	 de	 forma	 incorrecta	 tienen	 interfaces
más	 amplias	 que	 nos	 obligan	 a	 usar	 distintos	 gestos	 para	 realizar	 operaciones
sencillas.	 Una	 interfaz	 bien	 definida	 no	 ofrece	 demasiadas	 funciones	 y	 las
conexiones	 son	 reducidas.	 Una	 interfaz	 definida	 de	 forma	 incorrecta	 ofrece
multitud	de	funciones	que	invocar	y,	por	tanto,	las	conexiones	son	elevadas.	Los
buenos	 programadores	 de	 software	 aprenden	 a	 limitar	 la	 parte	 de	 sus	 clases	 y
módulos	 que	 muestran	 en	 sus	 interfaces.	 Cuantos	 menos	 métodos	 tenga	 una
clase,	 mejor.	 Cuantas	 menos	 variables	 conozca	 una	 función,	 mejor.	 Cuantas
menos	variables	de	instancia	tenga	una	clase,	mejor.

Oculte	sus	datos.	Oculte	sus	funciones	de	utilidad.	Oculte	sus	constantes	y
elementos	 temporales.	No	 cree	 clases	 con	multitud	 de	métodos	 y	 variables	 de
instancia.	 No	 cree	 multitud	 de	 variables	 y	 funciones	 protegidas	 para	 sus
subclases.	Concéntrese	en	crear	interfaces	concisas	y	de	tamaño	reducido.	Limite

la	información	para	reducir	las	conexiones.

G9:	Código	muerto
El	 código	 muerto	 es	 el	 que	 no	 se	 ejecuta.	 Se	 encuentra	 en	 el	 cuerpo	 de	 una
instrucción	if	que	comprueba	una	condición	que	no	sucede.	Se	encuentra	en	el
bloque	 catch	 de	 una	 instrucción	 try	 que	 carece	 de	 throws.	 Se	 encuentra	 en
pequeños	 métodos	 de	 utilidad	 que	 nunca	 se	 invocan	 o	 en	 condiciones
switch/case	inexistentes.

El	problema	del	código	muerto	es	que	con	el	tiempo	empieza	a	oler.	Cuanto
más	 antiguo	 es,	más	 profundo	 el	 hedor	 que	 despide.	 Se	 debe	 a	 que	 el	 código
muerto	no	 se	 actualiza	 al	 cambiar	 los	 diseños.	Sigue	compilándose	 pero	no	 se
rige	 por	 nuevas	 convenciones	 o	 reglas.	 Se	 creó	 en	 un	 momento	 en	 el	 que	 el
sistema	era	diferente.	Debe	tener	un	entierro	digno.	Bórrelo	del	sistema.

G10:	Separación	vertical
Variables	y	funciones	deben	definirse	cerca	de	donde	se	utilicen.	Las	variables
locales	deben	declararse	por	encima	de	su	primer	uso	y	deben	tener	un	reducido
ámbito	vertical.	No	deben	declararse	a	cientos	de	líneas	de	distancia	de	su	uso.

Las	 funciones	 privadas	 deben	 definirse	 justo	 debajo	 de	 su	 primer	 uso.
Pertenecen	 al	 ámbito	 de	 la	 clase	 completa	 pero	 conviene	 limitar	 la	 distancia
vertical	 entre	 las	 invocaciones	 y	 las	 definiciones.	 Para	 localizar	 una	 función
privada	debe	bastar	con	buscar	debajo	de	su	primer	uso.

G11:	Incoherencia

Si	 hace	 algo	 de	 una	 forma	 concreta,	 aplique	 la	 misma	 técnica	 a	 operaciones
similares.	Esto	entronca	con	el	principio	de	mínima	sorpresa.	Preste	atención	a
las	convenciones	que	elija	y,	una	vez	elegidas,	asegúrese	de	mantenerlas.	Si	en
una	 función	 concreta	 usa	 la	 variable	 response	 para	 almacenar
HttpServletResponse,	use	el	mismo	nombre	de	variable	en	las	demás	funciones
que	 usen	 objetos	 HttpServletResponse.	 Si	 asigna	 el	 nombre
processVerificationRequest	 a	 un	 método,	 use	 un	 nombre	 similar,	 como
processDeletionRequest,	 para	 los	 métodos	 que	 procesen	 otros	 tipos	 de
solicitudes.

Este	 tipo	 de	 coherencia,	 si	 se	 aplica	 repetidamente,	 facilita	 la	 lectura	 y
modificación	del	código.

G12:	Desorden

¿Para	qué	sirve	un	constructor	predeterminado	sin	implementación?	Únicamente
desordena	 el	 código	 y	 lo	 inunda	 de	 elementos	 sin	 sentido.	Variables	 sin	 usar,
funciones	 que	 nunca	 se	 invocan,	 comentarios	 que	 no	 añaden	 información,	etc.
Todos	 estos	 elementos	 sobran	 y	 deben	 eliminarse.	 Mantenga	 limpios	 sus
archivos,	bien	organizados	y	sin	elementos	sobrantes.

G13:	Conexiones	artificiales

Los	 elementos	 que	 no	 dependen	 unos	 de	 otros	 no	 deben	 conectarse	 de	 forma
artificial.	Por	ejemplo,	las	enumeraciones	generales	no	deben	incluirse	en	clases
más	 específicas	 ya	 que	 esto	 obliga	 a	 la	 aplicación	 a	 saber	 más	 sobre	 dichas
clases.	Lo	mismo	sucede	con	funciones	static	de	propósito	general	declaradas
en	clases	específicas.

Por	 lo	 general,	 una	 conexión	 artificial	 es	 la	 que	 se	 establece	 entre	 dos
módulos	 sin	 un	 propósito	 directo.	 Es	 el	 resultado	 de	 incluir	 una	 variable,
constante	o	función	en	una	ubicación	temporalmente	útil	pero	inadecuada.	Es	un
síntoma	de	falta	de	atención.

Piense	en	dónde	debe	declarar	sus	funciones,	constantes	y	variables.	No	las
deje	en	el	punto	más	cómodo.

G14:	Envidia	de	las	características
Uno	 de	 los	 síntomas	 de	 Martin	 Fowler[109].	 Los	 métodos	 de	 una	 clase	 deben
interesarse	por	las	variables	y	funciones	de	la	clase	a	la	que	pertenecen,	no	por
las	variables	y	 funciones	de	otras	 clases.	Cuando	un	método	usa	 elementos	de
acceso	 y	mutación	 de	 otro	 objeto	 para	manipular	 los	 datos	 de	 éste,	 envidia	 el
ámbito	de	la	clase	de	dicho	objeto.	Desea	formar	parte	de	la	otra	clase	para	tener
acceso	directo	a	las	variables	que	manipula.

Por	ejemplo:
public	class	HourlyPayCalculator	{

public	Money	calculateWeeklyPay(HourlyEmployee	e)	{

int	tenthRate	=	e.getTenthRate().getPennies();

int	tenthsWorked	=	e.getTenthsWorked();

int	straightTime	=	Math.min(400,	tenthsWorked);

int	overTime	=	Math.max(0,	tenthsWorked	-	straightTime);

int	straightPay	=	straightTime	*	tenthRate;

int	overtimePay	=	(int)Math.round(overTime*tenthRate*1.5);

return	new	Money(straightPay	+	overtimePay);

}

}

El	método	calculateWeeklyPay	 se	 acerca	al	objeto	HourlyEmployee	 para
obtener	los	datos	sobre	los	que	opera.	El	método	calculateWeeklyPay	envidia	el
ámbito	de	HourlyEmployee.	Su	deseo	es	formar	parte	de	HourlyEmployee.

Es	 recomendable	suprimir	 la	envidia	de	características	ya	que	muestra	 los
detalles	 internos	 de	 una	 clase	 a	 otra.	 Sin	 embargo,	 en	 ocasiones	 es	 un	 mal
necesario.	Fíjese	en	lo	siguiente:

public	class	HourlyEmployeeReport	{

private	HourlyEmployee	employee;

public	HourlyEmployeeReport(HourlyEmployee	e)	{

this.employee	=	e;

}

String	reportHours()	{

return	String.format(

“Name:	%s\tHours:%d.%1d\n”,

employee.getName(),

employee.getTenthsWorked()/10,

employee.getTenthsWorked()%10);

}

}

Evidentemente,	 el	método	reportHours	 envidia	 la	 clase	HourlyEmployee.
Por	otra	parte,	no	queremos	que	HourlyEmployee	tenga	que	conocer	el	formato
del	 informe.	 Al	 incluir	 la	 cadena	 de	 formato	 en	 la	 clase	 HourlyEmployee
incumpliríamos	 varios	 de	 los	 principios	 del	 diseño	 orientado	 a	 objetos[110].
Conectaría	 HourlyEmployee	 al	 formato	 del	 informe	 y	 lo	 mostraría	 en	 los
cambios	de	dicho	formato.

G15:	Argumentos	de	selector

No	 hay	 nada	 más	 abominable	 que	 un	 argumento	 false	 aislado	 al	 final	 de	 la
invocación	de	una	 función.	 ¿Qué	 significa?	 ¿Qué	cambiaría	 si	 fuera	true?	No
sólo	 el	 propósito	 de	 un	 argumento	 de	 selector	 es	 difícil	 de	 recordar,	 sino	 que
cada	argumento	de	selector	combina	varias	funciones	en	una.	Los	argumentos	de
selector	son	una	forma	indolente	de	evitar	dividir	una	función	de	gran	tamaño	en
otras	menores.	Fíjese	en	lo	siguiente:	public	int	calculateWeeklyPay(boolean	overtime)	{

int	tenthRate	=	getTenthRate();

int	tenthsWorked	=	getTenthsWorked();

int	straightTime	=	Math.min(400,	tenthsWorked);

int	overTime	=	Math.max(0,	tenthsWorked	-	straightTime);

int	straightPay	=	straightTime	*	tenthRate;

double	overtimeRate	=	overtime	?	1.5	:	1.0	*	tenthRate;

int	overtimePay	=	(int)Math.round(overTime*overtimeRate);

return	straightPay	+	overtimePay;

}

Esta	función	se	 invoca	con	true	si	 las	horas	extras	se	pagan	como	hora	y
media,	y	con	false	si	se	pagan	como	una	hora	normal.	Ya	es	bastante	malo	tener
que	 recordar	 lo	 que	 significa	 calculateWeeklyPay(false)	 cada	 vez	 que
aparezca.	Pero	lo	peor	de	esta	función	es	que	el	autor	ha	perdido	la	oportunidad
de	crear	lo	siguiente:	public	int	straightPay()	{

return	getTenthsWorked()	*	getTenthRate();

}

public	int	overTimePay()	{

int	overTimeTenths	=	Math.max(0,	getTenthsWorked()	-	400);

int	overTimePay	=	overTimeBonus(overTimeTenths);

return	straightPay()	+	overTimePay;

}

private	int	overTimeBonus(int	overTimeTenths)	{

double	bonus	=	0.5	*	getTenthRate()	*	overTimeTenths;

return	(int)	Math.round(bonus);

}

Evidentemente,	 los	 selectores	 no	 deben	 ser	 boolean.	 Pueden	 ser
enumeraciones,	enteros	u	otro	tipo	de	argumento	que	se	use	para	seleccionar	el
comportamiento	de	la	función.	Es	más	recomendable	tener	varias	funciones	que
pasar	código	a	una	función	para	seleccionar	el	comportamiento.

G16:	Intención	desconocida
Queremos	 que	 el	 código	 sea	 lo	 más	 expresivo	 posible.	 Expresiones	 extensas,
notación	Húngara	 y	 números	mágicos	 distorsionan	 la	 intención	 del	 autor.	 Por
ejemplo,	veamos	la	función	overTimePay	cómo	podría	haber	aparecido:

public	int	m_otCalc()	{

return	iThsWkd	*	iThsRte	+

(int)	Math.round(0.5	iThsRte

Math.max(0/	iThsWkd	-	400)

);

}

Aunque	parezca	reducida	y	densa,	también	es	prácticamente	impenetrable.

Es	recomendable	dedicar	tiempo	a	lograr	que	la	intención	de	nuestro	código	sea
aparente	para	nuestros	lectores.

G17:	Responsabilidad	desubicada

Una	 de	 las	 principales	 decisiones	 de	 un	 programador	 de	 software	 es	 dónde
ubicar	el	código.	Por	ejemplo,	dónde	incluir	la	constante	PI.	¿En	la	clase	Math?
¿Pertenece	a	la	clase	Trigonometry?	¿O	a	la	clase	Circle?

El	principio	de	mínima	sorpresa	vuelve	a	aparecer.	El	código	debe	ubicarse
donde	 el	 lector	 espera	 encontrarlo.	 La	 constante	 PI	 debe	 incluirse	 junto	 a	 la
declaración	de	las	funciones	trigonométricas.	La	constante	OVERTIME_RATE	debe
declararse	en	la	clase	HourlyPayCalculator.

En	 ocasiones	 presumimos	 de	 dónde	 añadimos	 una	 determinada
funcionalidad.	Incluimos	una	función	porque	nos	resulta	cómodo	pero	no	porque
sea	 intuitivo	para	el	 lector.	Por	ejemplo,	puede	que	 tengamos	que	 imprimir	un
informe	con	el	 total	de	horas	que	ha	 trabajado	un	empleado.	Podríamos	sumar
las	horas	en	el	código	que	imprime	el	informe	o	intentar	mantener	un	total	en	el
código	que	acepte	horarios	de	trabajo.

Una	 forma	 de	 tomar	 esta	 decisión	 consiste	 en	 analizar	 el	 nombre	 de	 las
funciones.	Imagine	que	el	módulo	del	informe	tiene	la	función	getTotalHours.
Imagine	también	que	el	módulo	que	acepta	horarios	de	trabajo	tiene	la	función
saveTimeCard.	 ¿Cuál	 de	 las	 dos,	 por	 nombre,	 implica	 que	 calcula	 el	 total?	La
respuesta	es	evidente.

Existen	 motivos	 de	 rendimiento	 para	 calcular	 el	 total	 como	 horarios	 de
trabajo	y	no	como	informe	impreso.	Es	correcto,	pero	el	nombre	de	las	funciones
debería	 reflejarlo.	 Por	 ejemplo,	 debería	 haber	 una	 función
computeRunningTotalOfHours	en	el	módulo	de	horarios.

G18:	Elementos	estáticos	incorrectos
Math.max	(double	a,	double	b)	es	un	método	estático	correcto.	No	opera	en
una	 única	 instancia;	 de	 hecho,	 sería	 un	 error	 tener	 que	 usar	 new

Math().max(a,b)	o	incluso	a.max(b).	Todos	los	datos	que	usa	max	provienen	de
sus	dos	argumentos,	no	de	un	objeto.	Además,	es	prácticamente	 imposible	que
queramos	 que	 Math.max	 sea	 polimórfico.	 Sin	 embargo,	 en	 ocasiones	 creamos
funciones	 estáticas	 que	 no	 deben	 serlo.	 Fíjese	 en	 este	 ejemplo:
HourlyPayCalculator.calculatePay(employee,	overtimeRate).

De	 nuevo,	 parece	 una	 función	 estática	 razonable.	 No	 opera	 en	 un	 objeto
concreto	 y	 recibe	 todos	 los	 datos	 de	 sus	 argumentos.	 Sin	 embargo,	 existe	 la
posibilidad	 de	 que	 queramos	 que	 sea	 polimórfica.	 Puede	 que	 queramos

implementar	 distintos	 algoritmos	 para	 calcular	 el	 precio	 de	 la	 hora,	 como	 por
ejemplo.	 OvertimeHourlyPayCalculator	 y
StraightTimeHourlyPayCalculator.	 En	 este	 caso,	 la	 función	 no	 debe	 ser
estática.	Debería	ser	una	función	miembro	no	estática	de	Employee.

Por	lo	general,	debe	decantarse	por	métodos	no	estáticos.	En	caso	de	duda,
convierta	 la	 función	 en	 no	 estática.	 Si	 realmente	 quiere	 que	 una	 función	 sea
estática,	asegúrese	de	que	nunca	querrá	que	sea	polimórfica.

G19:	Usar	variables	explicativas

Kent	Beck	escribió	sobre	este	tema	en	su	magnífico	libro	Smalltalk	Best	Practice
Patterns[111]	 y,	 más	 recientemente	 en	 Implementation	 Patterns[112].	 Una	 de	 las
técnicas	más	completas	para	que	un	programa	sea	legible	consiste	en	dividir	los
cálculos	 en	 valores	 intermedios	 almacenados	 en	 variables	 con	 nombres
descriptivos.	Fíjese	en	este	ejemplo	de	FitNesse:	Matcher	match	=	headerPattern.matcher(line);

if(match.find())

{

String	key	=	match.group(1);

String	value	=	match.group(2);

headers.put(key.toLowercase(),	value);

}

El	 simple	 uso	 de	 variables	 explicativas	 ilustra	 con	 claridad	 que	 el	 primer
grupo	comparado	es	la	clave	y	el	segundo	es	el	valor.

Es	complicado	excederse	en	esta	técnica.	Por	lo	general,	es	mejor	tener	más
variables	 explicativas	 que	 menos.	 Es	 sorprendente	 que	 un	 módulo	 opaco	 se
vuelva	más	transparente	con	tan	sólo	dividir	los	cálculos	en	valores	intermedios
con	los	nombres	adecuados.

G20:	Los	nombres	de	función	deben	indicar	lo	que	hacen
Fíjese	en	este	código:

Date	newDate	=	date.add(5);

¿Intuye	 que	 se	 añaden	 cinco	 días	 a	 la	 fecha	 o	 son	 semanas	 u	 horas?	 ¿La
instancia	date	cambia	y	la	función	simplemente	devuelve	un	nuevo	objeto	Date
sin	 cambiar	 el	 antiguo?	 Por	 la	 invocación	 no	 podemos	 saber	 qué	 hace	 la
función.

Si	 la	 función	añade	cinco	días	 a	 la	 fecha	y	después	 la	 cambia,	 el	 nombre
debería	ser	addDaysTo	o	increaseByDays.	Si,	por	otra	parte,	la	función	devuelve
una	nueva	fecha	con	cinco	días	más	pero	no	cambia	la	instancia	date,	el	nombre
debería	ser	daysLater	o	daysSince.

Si	tiene	que	fijarse	en	la	implementación	(o	documentación)	de	la	función
para	saber	qué	hace,	tendrá	que	elegir	un	nombre	más	apropiado	o	modificar	la
funcionalidad	 para	 que	 se	 pueda	 incluir	 en	 funciones	 con	 nombres	 más
acertados.

G21:	Comprender	el	algoritmo

Se	crea	gran	cantidad	de	código	extraño	porque	 los	autores	no	se	esfuerzan	en
comprender	 el	 algoritmo.	 Consiguen	 que	 algo	 funcione	 combinando
instrucciones	if	e	indicadores	sin	pararse	a	pensar	en	qué	sucede	realmente.

La	programación	es	una	 tarea	de	exploración.	Creemos	que	conocemos	el
algoritmo	 adecuado	 para	 algo	 pero	 después	 lo	 modificamos	 y	 variamos	 hasta
conseguir	que	funcione.	¿Cómo	sabemos	que	funciona?	Porque	supera	los	casos
de	prueba	que	pensamos.

No	 es	 un	 enfoque	 equivocado.	 De	 hecho,	 suele	 ser	 la	 única	 forma	 de
conseguir	que	una	función	haga	lo	que	pensamos	que	debe	hacer.	Sin	embargo,
no	basta	con	conseguir	que	funcione.

Antes	 de	 creer	 que	 hemos	 terminado	 con	 una	 función,	 asegúrese	 de
entender	 su	 funcionamiento.	No	basta	 con	que	 supere	 todas	 las	pruebas.	Tiene
que	estar	seguro[113]	de	que	la	solución	es	la	correcta.

Por	 lo	 general,	 la	 forma	 óptima	 de	 saberlo	 consiste	 en	 refactorizar	 la
función	en	algo	tan	limpio	y	expresivo	que	su	funcionamiento	sea	evidente.

G22:	Convertir	dependencias	lógicas	en	físicas
Si	un	módulo	depende	de	otro,	dicha	dependencia	debe	ser	física,	no	sólo	lógica.
El	módulo	dependiente	no	debe	asumir	aspectos	(es	decir,	dependencias	lógicas)
sobre	 el	 módulo	 del	 que	 depende.	 Por	 el	 contrario,	 debe	 solicitar	 de	 forma
explícita	al	módulo	toda	la	información	de	la	que	depende.

Por	 ejemplo,	 imagine	 que	 tiene	 que	 crear	 una	 función	 que	 imprima	 un
informe	 de	 las	 horas	 trabajadas	 por	 cada	 empleado.	 La	 clase	 HourlyReporter
recopila	los	datos	y	los	pasa	a	HourlyReportFormatter	para	imprimirlos	(véase
el	Listado	17-1).

Listado	17-1
HourlyReporter.java.

public	class	HourlyReporter	{

private	HourlyReportFormatter	formatter;

private	List<LineItem>	page;

private	final	int	PAGE_SIZE	=	55;

public	HourlyReporter(HourlyReportFormatter	formatter)	{

this.formatter	=	formatter;

page	=	new	ArrayList<LineItem>();

}

public	void	generateReport(List<HourlyEmployee>	employees)	{

for	(HourlyEmployee	e	:	employees)	{

addLineItemToPage(e);

if	(page.size()	==	PAGE_SIZE)

printAndClearItemList();

}

if	(page.size()	>	0)

printAndClearItemList();

}

private	void	printAndClearItemList()	{

formatter.format(page);

page.clear();

}

private	void	addLineItemToPage(HourlyEmployee	e)	{

LineItem	item	=	new	LineItem();

item.name	=	e.getName();

item.hours	=	e.getTenthsWorked()	/	10;

item.tenths	=	e.getTenthsWorked()	%	10;

page.add(item);

}

public	class	LineItem	{

public	String	name;

public	int	hours;

public	int	tenths;

}

}

Este	código	tiene	una	dependencia	lógica	que	no	se	ha	convertido	en	física.
¿La	 detecta?	 Es	 la	 constante	 PAGE_SIZE.	 ¿Para	 qué	 necesita	 HourlyReporter
saber	el	tamaño	de	la	página?	El	tamaño	de	la	página	debe	ser	responsabilidad	de
HourlyReportFormatter.	 La	 declaración	 de	 PAGE_SIZE	 en	 HourlyReporter
representa	una	responsabilidad	desubicada	[G17]	que	hace	que	HourlyReporter
asuma	que	conoce	el	 tamaño	que	debe	 tener	 la	página.	Esta	presunción	es	una
dependencia	 lógica.	HourlyReporter	 depende	 de	 que	HourlyReportFormatter
pueda	 procesar	 tamaños	 de	 página	 de	 hasta	 55.	 Si	 alguna	 implementación	 de
HourlyReportFormatter	no	puede	asumir	esos	 tamaños,	se	producirá	un	error.
Podemos	 convertir	 en	 física	 esta	 dependencia	 si	 creamos	 un	 nuevo	método	 en
HourlyReportFormatter	 con	 el	 nombre	 getMaxPageSize().	 Tras	 ello,
HourlyReporter	invoca	esta	función	en	lugar	de	usar	la	constante	PAGE_SIZE.

G23:	Polimorfismo	antes	que	If/Else	o	Switch/Case
Puede	parecer	una	sugerencia	extraña	dado	el	tema	descrito	en	el	capítulo	6.	En
este	 capítulo,	 afirmo	que	 las	 instrucciones	switch	 son	adecuadas	 en	partes	del
sistema	en	las	que	se	añadan	más	funciones	nuevas	que	tipos	nuevos.

Por	un	lado,	la	mayoría	usamos	instrucciones	switch	por	ser	una	solución
de	 fuerza	 bruta	 evidente,	 no	 por	 ser	 la	 solución	 perfecta.	 Por	 tanto,	 esta
heurística	nos	recuerda	que	debemos	considerar	el	uso	de	polimorfismo	antes	de
usar	switch.

Por	otra	parte,	los	casos	en	que	las	funciones	son	más	volátiles	que	los	tipos

son	escasos.	Por	tanto,	toda	instrucción	switch	es	sospechosa.
Suelo	aplicar	la	siguiente	regla	de	una	instrucción	switch:	No	puede	haber

más	 de	 una	 instrucción	 switch	 por	 cada	 tipo	 de	 selección.	 Los	 casos	 de	 esa
instrucción	 switch	 deben	 crear	 objetos	 polimórficos	 que	 ocupen	 el	 lugar	 de
otras	instrucciones	switch	similares	en	el	resto	del	sistema.

G24:	Seguir	las	convenciones	estándar
Todos	 los	 equipos	 deben	 seguir	 un	 estándar	 de	 diseño	 de	 código	 basado	 en
normas	 comunes	de	 la	 industria.	Este	 estándar	debe	 especificar	 aspectos	 como
dónde	declarar	variables	de	instancia,	cómo	asignar	nombres	a	clases,	métodos	y
variables,	 dónde	 añadir	 llaves,	etc.	 El	 equipo	 no	 debe	 necesitar	 un	 documento
que	describa	estas	convenciones	ya	que	su	código	proporciona	los	ejemplos.

Todos	 los	 miembros	 del	 equipo	 deben	 seguir	 estas	 convenciones,	 lo	 que
significa	que	no	importa	dónde	añada	cada	uno	las	llaves	mientras	todos	estén	de
acuerdo	en	dónde	añadirlas.

Si	 desea	 saber	 qué	 convenciones	 aplico,	 puede	 verlas	 en	 el	 código
refactorizado	de	los	listados	B.7	a	B.14	del	apéndice	B.

G25:	Sustituir	números	mágicos	por	constantes	con	nombre
Es	 probablemente	 una	 de	 las	 reglas	 más	 antiguas	 del	 desarrollo	 de	 software.
Recuerdo	haberla	leído	a	finales	de	la	década	de	1960	en	manuales	de	COBOL,
FORTRAN	 y	 PL/1.	 Por	 lo	 general,	 no	 es	 recomendable	 incluir	 números	 sin
procesar	en	el	código;	debe	ocultarlos	tras	constantes	con	nombres	correctos.	Por
ejemplo,	el	número	86	400	debe	ocultarse	tras	la	constante	SECONDS_PER_DAY.	Si
va	 a	 imprimir	 55	 líneas	 por	 página,	 la	 constante	 55	 debe	 ocultarse	 tras	 la
constante	LINES_PER_PAGE.

Algunas	constantes	 son	 tan	 fáciles	de	 reconocer	que	no	siempre	necesitan
una	constante	con	nombre	tras	la	que	ocultarse	mientras	se	usen	junto	a	código
explicativo.	Por	ejemplo:

double	milesWalked	=	feetWalked/5280.0;

int	dailyPay	=	hourlyRate	*	8;

double	circumference	=	radius	*	Math.PI	*	2;

¿Necesitamos	 realmente	 las	 constantes	 FEET_PER_MILE,

WORK_HOURS_PER_DAY	 y	 TWO	 en	 los	 ejemplos	 anteriores?	 El	 último	 caso	 es
absurdo.	 Existen	 ciertas	 fórmulas	 en	 las	 que	 las	 constantes	 se	 escriben	 mejor
como	números	 sin	 procesar.	 Puede	 cuestionar	 el	 caso	 de	WORK_HOURS_PER_DAY
ya	que	las	leyes	o	las	convenciones	pueden	cambiar.	Por	otra	parte,	esa	fórmula

se	lee	perfectamente	si	se	incluye	el	8	por	lo	que	no	es	necesario	añadir	17	más.
En	el	caso	de	FEET_PER_MILE,	el	número	5280	es	una	constante	tan	conocida	y
exclusiva	 que	 los	 lectores	 la	 reconocerán	 aunque	 se	 muestre	 de	 forma
independiente	en	una	página	sin	contexto	alguno.

Constantes	 como	 3.141592653589793	 también	 son	 conocidas	 y
reconocibles.	 Sin	 embargo,	 la	 probabilidad	 de	 errores	 es	 alta	 y	 no	 conviene
mostrarlas	tal	cual.	Siempre	que	alguien	ve	3.1415927535890793,	sabe	que	es	π,
y	 no	 se	 molestan	 en	 examinarlo	 (¿ha	 visto	 el	 error	 de	 un	 dígito?).	 Tampoco
queremos	que	la	gente	use	3.14,	3.14159,	3.142,	y	similares.	Por	lo	tanto,	es	una
suerte	contar	con	Math.PI.

El	término	número	mágico	no	sólo	se	aplica	a	números,	sino	a	todo	símbolo
que	tenga	un	valor	que	no	sea	descriptivo	por	sí	mismo.	Por	ejemplo:

assertEquals(7777,	Employee.find(“John	Doe”).employeeNumber());

En	 esta	 afirmación	 hay	 dos	 números	mágicos.	 El	 primero	 es	 obviamente
7777,	 aunque	 no	 significa	 que	 no	 sea	 obvio.	 El	 segundo	 es	 «John	 Doe»	 y	 su
cometido	tampoco	está	claro.

“John	 Doe”	 es	 el	 nombre	 del	 empleado	 #7777	 en	 una	 conocida	 base	 de
datos	 de	 pruebas	 creada	 por	 nuestro	 equipo.	 Todo	 el	 mundo	 sabe	 que	 al
conectarse	a	la	base	de	datos,	ya	cuenta	con	varios	empleados	con	sus	valores	y
atributos.	 Además,	 «John	 Doe»	 representa	 el	 único	 empleado	 por	 horas	 de	 la
base	de	datos.	Por	tanto,	la	prueba	debería	ser	la	siguiente:	assertEquals(

HOURLY_EMPLOYEE_ID,

Employee.find(HOURLY_EMPLOYEE_NAME).employeeNumber());

G26:	Precisión
Esperar	 que	 la	 primera	 coincidencia	 de	 una	 consulta	 sea	 la	 única	 es	 una
ingenuidad.	El	uso	de	números	de	coma	flotante	para	representar	divisas	es	casi
un	delito.	Evitar	bloqueos	y/o	 la	administración	de	 transacciones	por	creer	que
las	actualizaciones	concurrentes	no	son	posibles	es	pura	indolencia.	Declarar	una
variable	como	ArrayList	cuando	se	necesita	List	es	un	exceso	de	restricciones.
Crear	 todas	 las	variables	como	protected	de	forma	predeterminada	es	falta	de
restricciones.

Al	adoptar	una	decisión	en	el	código,	debe	hacerlo	de	forma	precisa.	Debe
saber	por	qué	la	adopta	y	cómo	afrontará	las	excepciones.	No	sea	indolente	sobre
la	precisión	de	sus	decisiones.	Si	decide	invocar	una	función	que	pueda	devolver
null,	 asegúrese	 de	 comprobar	 null.	 Si	 consulta	 el	 que	 considera	 el	 único
registro	 de	 una	 base	 de	 datos,	 asegúrese	 de	 que	 el	 código	 comprueba	 que	 no
haya	otros.	Si	tiene	que	trabajar	con	divisas,	use	enteros[114]	y	aplique	el	redondeo

correcto.	Si	existe	la	posibilidad	de	una	actualización	concurrente,	asegúrese	de
implementar	algún	tipo	de	mecanismo	de	bloqueo.

En	 el	 código,	 la	 ambigüedad	 y	 las	 imprecisiones	 son	 el	 resultado	 de
desacuerdos	o	de	indolencia.	En	cualquier	caso,	elimínelas.

G27:	Estructura	sobre	convención
Aplique	 las	 decisiones	 de	 diseño	 con	 estructura	 y	 no	 convenciones.	 Las
convenciones	 de	 nomenclatura	 son	 correctas	 pero	 resultan	 inferiores	 a
estructuras	que	refuerzan	 la	compatibilidad.	Por	ejemplo,	 los	casos	switch	con
enumeraciones	 de	 nombres	 correctos	 son	 inferiores	 a	 clases	 base	 con	métodos
abstractos.	 No	 estamos	 obligados	 a	 implementar	 siempre	 la	 instrucción
switch/case	 de	 la	 misma	 forma,	 pero	 las	 clases	 base	 hacen	 que	 las	 clases
concretas	implementen	métodos	abstractos.

G28:	Encapsular	condicionales

La	lógica	booleana	es	difícil	de	entender	sin	necesidad	de	verla	en	el	contexto	de
una	instrucción	if	o	while.	Extraiga	funciones	que	expliquen	el	cometido	de	la
condicional.	Por	ejemplo:

if	(shouldBeDeleted(timer))

es	preferible	a
if	(timer.hasExpired()	&&	!timer.isRecurrent())

G29:	Evitar	condicionales	negativas

Las	condicionales	negativas	son	más	difíciles	de	entender	que	las	positivas.	Por
ello,	siempre	que	sea	posible,	debe	expresar	las	condiciones	como	positivas.	Por
ejemplo:

if	(buffer.shouldCompact())

es	preferible	a
if	(!buffer.shouldNotCompact())

G30:	Las	funciones	sólo	deben	hacer	una	cosa
Es	 tentador	 crear	 funciones	 con	 varias	 secciones	 que	 realicen	 una	 serie	 de
operaciones.	Este	tipo	de	funciones	hacen	más	de	una	cosa	y	deben	convertirse
en	funciones	de	menor	tamaño,	cada	una	para	una	cosa.	Por	ejemplo:	public	void	pay()
{

for	(Employee	e	:	employees)	{

if	(e.isPayday())	{

Money	pay	=	e	.calculatePay();

e.deliverPay(pay);

}

}

}

Este	 fragmento	 de	 código	 realiza	 tres	 operaciones.	 Itera	 por	 todos	 los
empleados,	 comprueba	 si	 cada	 uno	 debe	 recibir	 su	 paga	 y	 después	 paga	 al
empleado.	Se	podría	reescribir	de	esta	forma:

public	void	pay()	{

for	(Employee	e	:	employees)

payifNecessary(e);

}

private	void	payifNecessary(Employee	e)	{

if	(e.isPayday())

calculateAndDeliverPay(e);

}

private	void	calculateAndDeliverPay(Employee	e)	{

Money	pay	=	e.calculatePay();

e.deliverPay(pay);

}

Cada	una	de	estas	funciones	hace	una	sola	cosa	(véase	el	capítulo	3).

G31:	Conexiones	temporales	ocultas

Las	 conexiones	 temporales	 suelen	 ser	 necesarias	 pero	 no	 debe	 ocultar	 la
conexión.	Estructure	los	argumentos	de	sus	funciones	de	modo	que	el	orden	de
invocación	sea	evidente.	Fíjese	en	lo	siguiente:

public	class	MoogDiver	{

Gradient	gradient;

List<Spline>	splines;

public	void	dive(String	reason)	{

saturateGradient();

reticulateSplines();

diveForMoog(reason);

}

…

}

El	 orden	 de	 las	 tres	 funciones	 es	 importante.	 Debe	 saturar	 el	 degradado
antes	de	poder	entrelazar	las	tiras,	para	después	continuar.	Desafortunadamente,
el	 código	 no	 aplica	 esta	 conexión	 temporal.	 Otro	 programador	 podría	 invocar
reticulateSplines	 antes	 de	 saturateGradient,	 lo	 que	 generaría
UnsaturatedGradientException.	 Una	 solución	 más	 acertada	 sería:	 public	 class

MoogDiver	{

Gradient	gradient;

List<Spline>	splines;

public	void	dive(String	reason)	{

Gradient	gradient	=	saturateGradient();

List<Spline>	splines	=	reticulateSplines(gradient);

diveForMoog(splines,	reason);

}

…

}

De	este	modo	 se	muestra	 la	 conexión	 temporal	generando	una	 especie	de
embudo.	 Cada	 función	 genera	 un	 resultado	 que	 la	 siguiente	 necesita	 de	modo
que	no	se	pueden	invocar	en	otro	orden.

Puede	argumentar	que	esto	aumenta	la	complejidad	de	las	funciones	y	tiene
razón,	 pero	 ese	 incremento	 de	 complejidad	 sintáctica	 muestra	 la	 verdadera
complejidad	temporal	de	la	situación.

Observará	 que	 he	mantenido	 las	 variables	 de	 instancia.	 Imagino	 que	 son
necesarias	 para	 los	 métodos	 privados	 de	 las	 clases.	 Incluso	 así,	 conservo	 los
argumentos	para	que	la	conexión	temporal	sea	explícita.

G32:	Evitar	la	arbitrariedad

Argumente	la	estructura	de	su	código	y	asegúrese	de	que	la	estructura	del	código
comunica	dicho	argumento.	Si	la	estructura	parece	arbitraria,	otros	se	verán	con
derecho	a	modificarla.

Si	la	estructura	parece	coherente	en	la	totalidad	del	sistema,	otros	la	usarán
y	 conservarán	 la	 convención.	 Por	 ejemplo,	 recientemente	 repasaba	 cambios
realizados	en	FitNesse	y	descubrí	lo	siguiente:

public	class	AliasLinkWidget	extends	ParentWidget

{

public	static	class	VariableExpandingWidgetRoot	{

…

…

}

El	 problema	 es	 que	 VariableExpandingWidgetRoot	 no	 debía	 estar	 en	 el
ámbito	 de	 AliasLinkWidget.	 Es	 más,	 otras	 clases	 sin	 relación	 usaban
AliasLinkWidget.VariableExpandingWidgetRoot	 y	 no	 tenían	 por	 qué	 saber
nada	 de	 AliasLinkWidget.	 Puede	 que	 el	 programador	 añadiera
VariableExpandingWidgetRoot	a	AliasWidget	por	comodidad	o	que	realmente
pensara	que	debía	formar	parte	del	ámbito	de	AliasWidget.	Independientemente
del	motivo,	el	resultado	será	arbitrario.	Las	clases	públicas	que	no	son	utilidades
de	 otra	 clase	 no	 deben	 incluirse	 en	 el	 ámbito	 de	 otra	 clase.	 La	 convención	 es
convertirlas	en	públicas	en	el	nivel	superior	de	su	paquete.

G33:	Encapsular	condiciones	de	límite
Las	condiciones	de	límite	son	difíciles	de	controlar.	Aísle	su	procesamiento	y	no
permita	que	se	transfieran	al	resto	del	código.	No	necesitamos	legiones	de	+1	y
-1	por	todas	partes.	Fíjese	en	este	ejemplo	de	FIT:

if	(level	+	1	<	tags.length)

{

parts	=	new	Parse(body,	tags,	level	+	1,	offset	+	endTag);

body	=	null;

}

level+1	 aparece	 dos	 veces.	 Es	 una	 condición	 de	 límite	 que	 debe
encapsularse	en	una	variable	con	un	nombre	como	nextLevel.

int	nextLevel	=	level	+	1;

if(nextLevel	<	tags.length)	{

parts	=	new	Parse(body,	tags,	nextLevel,	offset	+	endTag);

body	=	null;

}

G34:	Las	funciones	sólo	deben	descender	un	nivel	de	abstracción
Las	 instrucciones	 de	 una	 función	 deben	 crearse	 en	 el	 mismo	 nivel	 de
abstracción,	 un	 nivel	 por	 debajo	 de	 la	 operación	 descrita	 por	 el	 nombre	 de	 la
función.	Puede	que	sea	la	heurística	más	difícil	de	interpretar	y	aplicar.	Aunque
la	 idea	 es	 simple,	 como	 humanos	 nos	 cuesta	 mezclar	 niveles	 de	 abstracción.
Fíjese	en	el	siguiente	código	de	FitNesse:	public	String	render()	throws	Exception

{

StringBuffer	html	=	new	StringBuffer(“<hr”);

if(size	>	0)

html.append(“	size=\“”).append(size	+	1).append(“\””);

html.append(“>”);

return	html.toString();

}

Si	lo	analiza,	verá	lo	que	sucede.	Esta	función	crea	la	etiqueta	HTML	que
traza	una	regla	horizontal	por	la	página.	La	altura	de	la	regla	se	especifica	en	la
variable	size.

Fíjese	otra	vez	en	el	código.	Este	método	mezcla	al	menos	dos	niveles	de
abstracción.	El	primero	es	la	noción	de	que	una	regla	horizontal	tiene	un	tamaño.
El	segundo	es	la	sintaxis	de	la	propia	etiqueta	HR.	El	código	proviene	del	módulo
HruleWidget	de	FitNesse.	Este	módulo	detecta	una	fila	de	cuatro	o	más	guiones
y	 la	 convierte	 en	 la	 correspondiente	 etiqueta	 HR.	 Cuantos	 más	 guiones	 haya,
mayor	será	el	tamaño.

A	 continuación	 le	muestro	 la	 refactorización	 del	 código.	He	 cambiado	 el
nombre	del	campo	size	para	reflejar	su	verdadero	cometido.	Contenía	el	número
de	guiones	adicionales.

public	String	render()	throws	Exception

{

HtmlTag	hr	=	new	HtmlTag(“hr”);

if	(extraDashes	>	0)

hr.addAttribute(“size”,	hrSize(extraDashes));

return	hr.html();

}

private	String	hrSize(int	height)

{

int	hrSize	=	height	+	1;

return	String.format(“%d”,	hrSize);

}

Este	 cambio	 separa	 correctamente	 los	 dos	 niveles	 de	 abstracción.	 La
función	render	simplemente	crea	una	etiqueta	HR	sin	tener	que	saber	nada	sobre
su	sintaxis	HTML.	El	módulo	HtmlTag	se	encarga	de	los	problemas	sintácticos.

De	hecho,	al	realizar	este	cambio	detecté	un	sutil	error.	El	código	original
no	 incluía	 la	barra	 final	 en	 la	 etiqueta	HR,	 como	haría	 el	 estándar	XHTML	(es
decir,	 generaba	 <hr>	 en	 lugar	 de	 <hr/>).	 El	 módulo	 HtmlTag	 se	 había
modificado	hace	tiempo	para	ajustarlo	a	XHTML.

La	 separación	 de	 niveles	 de	 abstracción	 es	 una	 de	 las	 tareas	 más
importantes	 de	 la	 refactorización,	 y	 también	 una	 de	 las	 más	 complejas.	 Por

ejemplo,	 fíjese	 en	 el	 siguiente	 código.	 Fue	 mi	 primer	 intento	 de	 separar	 los
niveles	de	abstracción	del	método	HruleWidget.render.

public	String	render()	throws	Exception

{

HtmlTag	hr	=	new	HtmlTag(“hr”);

if	(size	>	0)	{

hr.addAttribute	(“size”,	“”+(size+1));

}

return	hr.html();

}

Mi	 objetivo,	 en	 esta	 fase,	 es	 crear	 la	 separación	 necesaria	 y	 conseguir
superar	las	pruebas.	El	objetivo	lo	alcancé	fácilmente	pero	el	resultado	fue	una
función	 con	niveles	de	 abstracción	mezclados.	En	 este	 caso,	 fueron	obra	de	 la
etiqueta	HR	y	de	 la	 interpretación	y	el	 formato	de	 la	variable	size.	Esto	 indica
que	al	dividir	una	función	en	líneas	de	abstracción,	suelen	aparecer	nuevas	líneas
de	abstracción	ocultas	por	la	estructura	anterior.

G35:	Mantener	los	datos	configurables	en	los	niveles	superiores
Si	tiene	una	constante	como	un	valor	predeterminado	o	de	configuración	que	se
conoce	y	se	espera	en	un	nivel	superior	de	abstracción,	no	debe	sepultarla	en	una
función	de	nivel	 inferior.	Muéstrela	como	argumento	para	esa	función	de	nivel
inferior	 invocado	desde	 la	 función	de	nivel	 superior.	Fíjese	en	este	ejemplo	de
FitNesse:	public	static	void	main(String[]	args)	throws	Exception

{

Arguments	arguments	=	parseCommandLine(args);

…

}

public	class	Arguments

{

public	static	final	String	DEFAULT_PATH	=	“.”;

public	static	final	String	DEFAULT_ROOT	=	“FitNesseRoot”;

public	static	final	int	DEFAULT_PORT	=	80;

public	static	final	int	DEFAULT_VERSION_DAYS	=	14;

…

}

Los	 argumentos	 de	 línea	 de	 comandos	 se	 analizan	 en	 la	 primera	 línea
ejecutable	 de	 FitNesse.	 Los	 valores	 predeterminados	 de	 dichos	 argumentos	 se
especifican	 al	 inicio	 de	 la	 clase	 Argument.	 No	 tiene	 que	 buscar	 instrucciones
como	la	siguiente	en	los	niveles	inferiores	del	sistema:	 if	 (arguments.port	 ==	 0)	 //	 usar	 80	 de
forma	predeterminada

Las	constantes	de	 configuración	 se	 encuentran	 en	un	nivel	 superior	y	 son
fáciles	de	cambiar.	Se	pasan	al	resto	de	la	aplicación.	Los	niveles	inferiores	de	la
aplicación	no	poseen	los	valores	de	estas	constantes.

G36:	Evitar	desplazamientos	transitivos

Por	 lo	 general,	 no	 es	 recomendable	 que	 un	módulo	 sepa	 demasiado	 sobre	 sus
colaboradores.	En	concreto,	si	A	colabora	con	B	y	B	con	C,	no	queremos	que	los
módulos	 que	 usan	 A	 sepan	 nada	 sobre	 C	 (por	 ejemplo,	 o	 queremos
a.getB().getC().doSomething();).

Es	 lo	que	en	ocasiones	 se	denomina	Ley	de	Demeter.	Los	programadores
pragmáticos	lo	denominan	Crear	código	silencioso[115].	En	cualquier	caso,	se	trata
de	 garantizar	 que	 los	módulos	 sólo	 tienen	 conocimiento	 de	 sus	 colaboradores
inmediatos	 y	 no	 del	 mapa	 de	 navegación	 completo	 del	 sistema.	 Si	 varios
módulos	 usan	 alguna	 variante	 de	 la	 instrucción	 a.getB().getC(),	 sería
complicado	 cambiar	 el	 diseño	 y	 la	 arquitectura	 para	 intercalar	 Q	 entre	 B	 y
C.	Tendría	que	localizar	todas	las	instancias	de	a.getB().getC()	y	convertirlas
a	 a.getB().getQ().getC().	 Es	 la	 forma	 en	 que	 las	 arquitecturas	 se	 vuelven
rígidas.	 Demasiados	 módulos	 saben	 demasiado	 sobre	 la	 arquitectura.	 Por	 el
contrario,	queremos	que	nuestros	colaboradores	 intermedios	ofrezcan	 todos	 los
servicios	que	necesitamos.	No	debemos	deambular	por	el	gráfico	de	objetos	del
sistema	en	busca	del	método	que	necesitamos	invocar.	Bastaría	con	poder	usar:
myCollaborator.doSomething().

Java

J1:	Evitar	extensas	listas	de	importación	mediante	el	uso	de
comodines
Si	usa	dos	o	más	clases	de	un	paquete,	importe	el	paquete	completo	con

import	package.*;

Las	 listas	 extensas	 de	 importaciones	 intimidan	 al	 lector.	 No	 queremos
colapsar	 la	parte	 superior	de	 los	módulos	con	80	 líneas	de	 importaciones,	 sino
que	sean	una	instrucción	concisa	de	los	paquetes	con	los	que	colaboramos.

Las	 importaciones	 específicas	 son	 dependencias	 rígidas,	mientras	 que	 las
importaciones	 de	 comodín	 no.	 Si	 importa	 una	 clase	 concreta,	 esa	 clase	 debe
existir,	pero	si	importa	un	paquete	con	un	comodín,	no	es	necesario	que	existan
clases	concretas.	La	instrucción	de	importación	simplemente	añade	el	paquete	a
la	 ruta	 de	 búsqueda	 al	 localizar	 los	 nombres.	 Por	 tanto,	 no	 se	 genera	 una

verdadera	dependencia	en	estas	importaciones	y	permiten	aligerar	las	conexiones
de	 nuestros	 módulos.	 En	 ocasiones,	 la	 lista	 extensa	 de	 importaciones	 puede
resultar	 útil.	 Por	 ejemplo,	 si	 tiene	 que	 trabajar	 con	 código	 de	 legado	 y	 desea
saber	 para	 qué	 clases	 crear	 elementos	 ficticios,	 puede	 examinar	 la	 lista	 de
importaciones	concretas	para	determinar	los	verdaderos	nombres	cualificados	de
todas	esas	clases	y	después	añadirlos.	No	obstante,	este	uso	de	las	importaciones
concretas	no	es	habitual.	Es	más,	muchos	 IDE	modernos	 le	permiten	convertir
las	importaciones	con	comodines	en	una	lista	de	importaciones	concretas	con	un
solo	 comando.	 Por	 tanto,	 incluso	 en	 el	 caso	 anterior,	 es	 recomendable	 usar
comodines.	Las	importaciones	de	comodín	pueden	probar	conflictos	de	nombres
y	ambigüedades.	Dos	clases	con	el	mismo	nombre	pero	en	paquetes	diferentes
tienen	 que	 importarse	 de	 forma	 concreta	 o	 al	 menos	 cualificarse	 de	 forma
específica	cuando	se	usen.	Puede	resultar	molesto	pero	no	es	habitual	que	el	uso
de	 importaciones	 de	 comodín	 sea	 más	 indicado	 que	 el	 de	 importaciones
concretas.

J2:	No	heredar	constantes

Lo	 he	 visto	 muchas	 veces	 y	 siempre	 me	 molesta.	 Un	 programador	 añade
constantes	 a	 una	 interfaz	 y	 después	 accede	 a	 las	 mismas	 heredando	 dicha
interfaz.	Fíjese	en	el	siguiente	código:

public	class	HourlyEmployee	extends	Employee	{

private	int	tenthsWorked;

private	double	hourlyRate;

public	Money	calculatePay()	{

int	straightTime	=	Math.min(tenthsWorked,	TENTHS_PER_WEEK);

int	overTime	=	tenthsWorked	-	straightTime;

return	new	Money(

hourlyRate	(tenthsWorked	+	OVERTIME_RATE	overTime)

);

}

…

}

¿De	dónde	salen	las	constantes	TENTHS_PER_WEEK	y	OVERTIME_RATE?	Puede
que	provengan	de	la	clase	Employee;	comprobémoslo:

public	abstract	class	Employee	implements	PayrollConstants	{

public	abstract	boolean	isPayday();

public	abstract	Money	calculatePay();

public	abstract	void	deliverPay(Money	pay);

}

No,	 de	 ahí	 no.	 ¿Entonces	 de	 dónde?	 Fíjese	 atentamente	 en	 la	 clase
Employee.	Implementa	PayrollConstants.

public	interface	PayrollConstants	{

public	static	final	int	TENTHS_PER_WEEK	=	400;

public	static	final	double	OVERTIME_RATE	=	1.5;

}

Es	horrible.	Las	constantes	se	ocultan	en	la	parte	superior	de	la	jerarquía	de
herencia.	No	use	 la	herencia	para	burlar	 las	reglas	de	ámbito	del	 lenguaje.	Use
una	importación	estática:

import	static	PayrollConstants.*;

public	class	HourlyEmployee	extends	Employee	{

private	int	tenthsWorked;

private	double	hourlyRate;

public	Money	calculatePay()	{

int	straightTime	=	Math.min(tenthsWorked,	TENTHS_PER_WEEK);

int	overTime	=	tenthsWorked	-	straightTime;

return	new	Money(

hourlyRate	(tenthsWorked	+	OVERTIME_RATE	overTime)

);

}

…

}

J3:	Constantes	frente	a	enumeraciones

Ahora	 que	 se	 han	 añadido	 enumeraciones	 al	 lenguaje	 (Java	 5),	 ¡úselas!	 No
recurra	 al	 viejo	 truco	de	public	static	final	int.	El	 significado	de	int	 se
puede	perder.	El	de	enum	no,	ya	que	pertenece	a	una	enumeración	con	nombre.

Es	más,	analice	atentamente	la	sintaxis	de	las	enumeraciones.	Pueden	tener
métodos	 y	 campos,	 lo	 que	 las	 convierte	 en	 potentes	 herramientas	 que	 ofrecen
mayor	expresividad	y	flexibilidad	que	los	int.	Fíjese	en	esta	variante	del	código:
public	class	HourlyEmployee	extends	Employee	{

private	int	tenthsWorked;

HourlyPayGrade	grade;

public	Money	calculatePay()	{

int	straightTime	=	Math.min(tenthsWorked,	TENTHS_PER_WEEK);

int	overTime	=	tenthsWorked	-	straightTime;

return	new	Money(

grade.rate()	(tenthsWorked	+	OVERTIME_RATE	overTime)
);

}

…

}

public	enum	HourlyPayGrade	{

APPRENTICE	{

public	double	rate()	{

return	1.0;

}

},

LEUTENANT_JOURNEYMAN	(

public	double	rate()	{

return	1.2;

}

},

JOURNEYMAN	{

public	double	rate()	{

return	1.5;

}

},

MASTER	{

public	double	rate()	{

return	2.0;

}

};

public	abstract	double	rate();

}

Nombres

N1:	Elegir	nombres	descriptivos

No	sea	demasiado	rápido	a	 la	hora	de	elegir	un	nombre.	Asegúrese	de	que	sea
descriptivo.	 Recuerde	 que	 los	 significados	 suelen	 variar	 cuando	 el	 código
evoluciona,	 de	 modo	 que	 debe	 revisar	 frecuentemente	 la	 corrección	 de	 los
nombres	elegidos.

No	 es	 una	 recomendación	 de	 sensaciones.	 En	 software,	 los	 nombres
constituyen	el	90	por	100	de	su	legibilidad.	Dedique	tiempo	a	seleccionarlos	con
atención	 y	 mantenga	 su	 relevancia.	 Los	 nombres	 son	 demasiado	 importantes
como	para	tratarlos	mal.

Fíjese	 en	 el	 siguiente	 código.	 ¿Para	 qué	 sirve?	 Si	 le	 muestro	 el	 mismo
código	con	nombres	bien	elegidos,	 tendrá	sentido,	pero	con	este	 formato	no	es
más	que	una	masa	de	símbolos	y	números	mágicos.

public	int	x()	{

int	q	=	0;

int	z	=	0;

for	(int	kk	=	0;	kk	<	10;	kk++)	{

if	(l[z]	==	10)

{

q	+=	10	+	(l[z	+	1]	+	l[z	+	2]);

z	+=	1;

}

else	if	(l[z]	+	l[z	+	1]	==	10)

{

q	+=	10	+	l[z	+	2];

z	+=	2;

}	else	{

q	+=	l[z]	+	l[z	+	1];

z	+=	2;

}

}

return	q;

}

A	continuación,	el	código	como	debería	haberse	escrito.	Este	fragmento	es
en	 realidad	menos	 completo	 que	 el	 anterior,	 pero	 detectará	 inmediatamente	 lo
que	 intenta	 hacer	 y	 es	 probable	 que	 pudiera	 crear	 las	 funciones	 que	 faltan	 en
función	de	ese	significado	que	 intuye.	Los	números	mágicos	ya	no	 lo	son	y	 la
estructura	del	algoritmo	es	descriptiva	y	atractiva:	public	int	score()	{

int	score	=	0;

int	frame	=	0;

for	(int	frameNumber	=	0;	frameNumber	<	10;	frameNumber++)	{

if	(isStrike(frame))	{

score	+=	10	+	nextTwoBallsForStrike(frame);

frame	+=	1;

}	else	if	(isSpare(frame))	{

score	+=	10	+	nextBallForSpare(frame);

frame	+=	2;

}	else	{

score	+=	twoBallsInFrame(frame);

frame	+=	2;

}

}

return	score;

}

Los	 nombres	 bien	 elegidos	 inundan	 la	 estructura	 del	 código	 con
descripciones.	 Dicha	 inundación	 define	 las	 expectativas	 del	 lector	 sobre	 el

cometido	de	otras	funciones	del	módulo.
Puede	 inferir	 la	 implementación	 de	 isStrike()	 si	 se	 fija	 en	 el	 código

anterior.	Cuando	lea	el	método	isStrike,	será	prácticamente	lo	que	esperaba[116].
private	boolean	isStrike(int	frame)	{

return	rolls[frame]	=	10;

}

N2:	Elegir	nombres	en	el	nivel	correcto	de	abstracción
No	 elija	 nombres	 que	 comuniquen	 implementación;	 seleccione	 nombres	 que
reflejen	 el	 nivel	 de	 abstracción	 de	 la	 clase	 o	 la	 función	 con	 la	 que	 trabaje.	Es
complicado.	De	nuevo,	nos	cuesta	mezclar	niveles	de	abstracción.	Siempre	que
realice	 una	 pasada	 por	 su	 código,	 es	 probable	 que	 encuentre	 una	 variable	 con
nombre	en	un	nivel	demasiado	bajo.	Cambie	esos	nombres	cuando	los	vea.	Para
que	el	código	sea	legible	se	necesita	una	mejora	continua.	Fíjese	en	la	siguiente
interfaz	Modem:	public	interface	Modem	{

boolean	dial(String	phoneNumber);

boolean	disconnect();

boolean	send(char	c);

char	recv();

String	getConnectedPhoneNumber();

}

Inicialmente	 parece	 correcta.	 Las	 funciones	 parecen	 las	 adecuadas.	 De
hecho	lo	son	para	muchas	aplicaciones,	pero	piense	ahora	en	una	aplicación	en	la
que	 algunos	 módems	 no	 se	 conecten	 mediante	 marcación	 telefónica,	 sino
mediante	cables	(como	los	usados	para	conexiones	domésticas	a	Internet).	Puede
que	 algunos	 se	 conecten	 enviando	 un	 número	 de	 puerto	 a	 un	 concentrador	 a
través	de	una	conexión	USB.	Es	evidente	que	la	noción	de	números	de	teléfono
se	 encuentra	 en	 un	 nivel	 de	 abstracción	 equivocado.	 Una	 estrategia	 de
nomenclatura	más	adecuada	para	este	caso	sería	la	siguiente:	public	interface	Modem	{

boolean	connect(String	connectionLocator);

boolean	disconnect();

boolean	send(char	c);

char	recv();

String	getConnectedLocator();

}

Ahora	 los	 nombres	 no	 se	 limitan	 a	 números	 de	 teléfono.	 Se	 pueden	 usar
para	números	de	teléfono	o	para	otros	tipos	de	estrategia	de	conexión.

N3:	Usar	nomenclatura	estándar	siempre	que	sea	posible
Los	nombres	son	más	fáciles	de	entender	si	se	basan	en	una	convención	o	un	uso
existente.	 Por	 ejemplo,	 si	 emplea	 el	 patrón	DECORATOR,	 debería	 usar	 la	 palabra
Decorator	 en	 los	 nombres	 de	 las	 clases.	 Por	 ejemplo,
AutoHangupModemDecorator	podría	ser	el	nombre	de	una	clase	que	permite	a	un

módem	colgar	automáticamente	al	final	de	una	sesión.	Los	patrones	son	un	tipo
de	 estándar.	 En	 Java,	 por	 ejemplo,	 las	 funciones	 que	 convierten	 objetos	 en
representaciones	 de	 cadena	 suelen	 tener	 el	 nombre	toString.	 Es	mejor	 seguir
estas	convenciones	que	inventar	otras	propias.

Los	equipos	suelen	inventar	su	propio	sistema	estándar	de	nombres	para	un
proyecto	 concreto.	 Eric	 Evans	 lo	 denomina	 lenguaje	 omnipresente	 del
proyecto[117].	 Su	 código	 debe	 usar	 los	 términos	 de	 este	 lenguaje.	 En	 definitiva,
cuantos	 más	 nombres	 con	 significado	 especial	 y	 relevante	 para	 su	 proyecto
utilice,	más	fácil	será	para	los	lectores	saber	de	qué	trata	el	código.

N4:	Nombres	inequívocos
Seleccione	 nombres	 que	 ilustren	 de	 forma	 inequívoca	 el	 funcionamiento	 de
funciones	y	variables.	Fíjese	en	este	ejemplo	de	FitNesse:

private	String	doRename()	throws	Exception

{

if	(refactorReferences)

renameReferences();

renamePage();

pathToRename.removeNameFromEnd();

pathToRename.addNameToEnd(newName);

return	PathParser.render(pathToRename);

}

El	 nombre	 de	 esta	 función	 no	 indica	 qué	 hace,	 al	 menos	 en	 términos
amplios	 y	 sin	 concretar.	 Además,	 se	 refuerza	 por	 la	 presencia	 de	 la	 función
renamePage	dentro	de	 la	función	doRename.	¿Qué	indican	 los	nombres	sobre	 la
diferencia	 entre	 ambas	 funciones?	 Nada.	 Un	 nombre	 más	 acertado	 para	 la
función	 sería	 renamePageAndOptionallyAllReferences.	 Puede	 parecerle
extenso,	y	lo	es,	pero	sólo	se	invoca	desde	un	punto	del	módulo,	de	modo	que	su
valor	descriptivo	supera	su	longitud.

N5:	Usar	nombres	extensos	para	ámbitos	extensos
La	longitud	de	un	nombre	debe	estar	relacionada	con	la	de	su	ámbito.	Puede	usar
nombres	de	variables	 breves	para	 ámbitos	diminutos	pero	 en	 ámbitos	mayores
debe	emplear	nombres	extensos.

Los	nombres	de	variables	como	i	y	j	son	correctos	si	su	ámbito	tiene	cinco
líneas	 de	 longitud.	 Fíjese	 en	 el	 siguiente	 fragmento	 del	 conocido	 juego	 de	 los
bolos:

private	void	rollMany(int	n,	int	pins)

{

for	(int	i=0;	i<n;	i++)

g.roll(pins);

}

Es	 totalmente	claro	y	se	complicaría	si	 la	variable	i	 se	cambiara	por	algo
como	rollCount.	Por	otra	parte,	 las	variables	y	 funciones	con	nombres	breves
pierden	su	significado	en	las	grandes	distancias.	Por	tanto,	cuanto	mayor	sea	el
ámbito	del	nombre,	más	extenso	y	preciso	tendrá	que	ser	el	nombre.

N6:	Evitar	codificaciones

Los	nombres	no	deben	codificarse	con	información	de	tipos	o	ámbitos.	Prefijos
como	m_	o	f	no	sirven	de	nada	en	los	entornos	actuales.	Además,	codificaciones
de	proyecto	y/o	subsistema	como	vis_	 (para	un	sistema	de	 imágenes	visuales)
distraen	la	atención	y	son	redundantes.	Los	entornos	actuales	proporcionan	toda
esa	 información	 sin	 tener	que	modificar	 los	nombres.	Aleje	 sus	nombres	de	 la
contaminación	húngara.

N7:	Los	nombres	deben	describir	efectos	secundarios

Los	nombres	deben	describir	todo	lo	que	haga	una	función,	variable	o	clase.	No
oculte	 efectos	 secundarios	 con	 un	 nombre.	 No	 utilice	 un	 simple	 verbo	 para
describir	una	función	que	realiza	algo	más	que	una	simple	acción.	Fíjese	en	este
código	de	TestNG:	public	ObjectOutputStream	getOos()	throws	IOException	{

if	(m_oos	==	null)	{

m_oos	=	new	ObjectOutputStream(m_socket.getOutputStream());

}

return	m_oos;

}

Esta	 función	 hace	 algo	más	 que	 obtener	 oos;	 lo	 crea	 si	 todavía	 no	 se	 ha
creado.	Por	lo	tanto,	un	nombre	más	acertado	sería	createOrReturnOos.

Pruebas	(Test)

T1:	Pruebas	insuficientes

¿Cuántas	 pruebas	 debe	 incluir	 una	 suite	 de	 pruebas?	 Desafortunadamente,
muchos	 programadores	 dirían	 que	 las	 que	 parezcan	 suficientes.	 Una	 suite	 de
pruebas	 debe	 probar	 todo	 lo	 que	 pueda	 fallar.	 Las	 pruebas	 son	 insuficientes
mientras	 haya	 condiciones	 que	 no	 se	 hayan	 examinado	 o	 cálculos	 que	 no	 se
hayan	validado.

T2:	Usar	una	herramienta	de	cobertura

Las	 herramientas	 de	 cobertura	 indican	 vacíos	 en	 su	 estrategia	 de	 pruebas.
Facilitan	 la	 detección	 de	 módulos,	 clases	 y	 funciones	 insuficientemente
probadas.	 Muchos	 IDE	 le	 ofrecen	 un	 indicador	 visual	 y	 marcan	 en	 verde	 las
líneas	cubiertas	y	en	rojo	las	no	cubiertas.	De	este	modo	es	más	rápido	y	sencillo
detectar	instrucciones	if	o	catch	cuyos	cuerpos	no	se	han	comprobado.

T3:	No	ignorar	pruebas	triviales

Son	fáciles	de	redactar	y	su	valor	documental	es	mayor	que	el	coste	de	crearlas.

T4:	Una	prueba	ignorada	es	una	pregunta	sobre	una	ambigüedad
En	ocasiones	dudamos	de	un	detalle	de	comportamiento	porque	los	requisitos	no
son	 claros.	 Podemos	 expresar	 nuestra	 duda	 sobre	 los	 requisitos	 en	 forma	 de
prueba	comentada	o	como	prueba	anotada	con	@Ignore.	La	decisión	depende	de
si	la	ambigüedad	es	sobre	algo	que	se	compila	o	no.

T5:	Probar	condiciones	de	límite
Preste	especial	atención	a	las	pruebas	de	condiciones	de	límite.	Solemos	acertar
con	la	parte	central	de	un	algoritmo	pero	malinterpretar	los	límites.

T6:	Probar	de	forma	exhaustiva	junto	a	los	errores
Los	 errores	 suelen	 congregarse.	 Si	 detecta	 un	 error	 en	 una	 función,	 es
recomendable	probarla	de	forma	exhaustiva.	Seguramente	no	sea	el	único	error.

T7:	Los	patrones	de	fallo	son	reveladores

En	 ocasiones	 diagnosticamos	 un	 problema	 detectando	 patrones	 de	 fallo	 en	 los
casos	de	prueba.	Es	otro	argumento	para	crear	casos	de	prueba	lo	más	completos
posibles.	 Los	 casos	 de	 prueba	 completos,	 si	 se	 ordenan	 de	 forma	 razonable,
revelan	patrones.

Como	 ejemplo,	 imagine	 que	 ha	 detectado	 que	 todas	 las	 pruebas	 con	 un
entero	mayor	de	cinco	caracteres	fallan.	O	que	fallan	todas	las	pruebas	que	pasan
un	número	negativo	al	segundo	argumento	de	una	función.	En	ocasiones,	con	ver
el	patrón	de	rojos	y	verdes	de	un	 informe	de	pruebas	basta	para	hacer	saltar	 la
chispa	 y	 llegar	 a	 una	 solución.	 En	 el	 capítulo	 16	 encontrará	 un	 interesante
ejemplo	en	el	caso	de	SerialDate.

T8:	Los	patrones	de	cobertura	de	pruebas	pueden	ser	reveladores
El	análisis	del	código	que	se	ejecuta	o	no	en	las	pruebas	superadas	suele	indicar
porqué	fallan	las	pruebas	no	superadas.

T9:	Las	pruebas	deben	ser	rápidas
Una	 prueba	 lenta	 no	 se	 ejecuta.	 Cuando	 las	 cosas	 se	 ponen	 feas,	 las	 pruebas
lentas	se	eliminan	de	la	suite.	Por	lo	tanto,	intente	que	sus	pruebas	sean	rápidas.

Conclusión

Esta	lista	de	heurística	y	síntomas	no	se	podría	considerar	completa.	De	hecho,
dudo	de	que	alguna	vez	exista	alguna.	Pero	puede	que	ese	no	sea	el	objetivo,	ya
que	lo	que	implica	esta	lista	es	un	sistema	de	valores.

El	sistema	de	valores	ha	sido	el	objetivo	y	la	base	de	este	libro.	El	código
limpio	no	se	crea	siguiendo	una	serie	de	reglas.	No	se	convertirá	en	un	maestro
del	 software	 aprendiendo	 una	 lista	 de	 heurísticas.	 La	 profesionalidad	 y	 la
maestría	provienen	de	los	valores	que	impulsan	las	disciplinas.

Bibliografía

	

[Refactoring]:	Refactoring:	Improving	the	Design	of	Existing	Code,	Martin
Fowler	et	al.,	Addison-Wesley,	1999.
[PRAG]:	 The	 Pragmatic	 Programmer,	 Andrew	 Hunt,	 Dave	 Thomas,
Addison-Wesley,	2000.
[GOF]:	Design	Patterns:	Elements	of	Reusable	Object	Oriented	Software,
Gamma	et	al.,	Addison-Wesley,	1996.
[Beck97]:	 Smalltalk	 Best	 Practice	 Patterns,	 Kent	 Beck,	 Prentice	 Hall,
1997.
[Beck07]:	Implementation	Patterns,	Kent	Beck,	Addison-Wesley,	2008.
[PPP]:	Agile	 Software	 Development:	 Principles,	 Patterns,	 and	 Practices,
Robert	C.	Martin,	Prentice	Hall,	2002.
[DDD]:	Domain	Driven	Design,	Eric	Evans,	Addison-Wesley,	2003.

Apéndice	A
Concurrencia	II

por	Brett	L.	Schuchert

Este	 apéndice	 complementa	 y	 amplía	 el	 capítulo	 13	 sobre	 concurrencia.	 Se	 ha
escrito	como	una	serie	de	temas	independientes	que	puede	leer	en	el	orden	que
desee.	Algunas	secciones	están	duplicadas	para	facilitar	dicha	lectura.

Ejemplo	cliente/servidor

Imagine	 una	 sencilla	 aplicación	 cliente/servidor.	 Un	 servidor	 espera	 a	 que	 un
cliente	se	conecte.	Un	cliente	se	conecta	y	envía	una	solicitud.

El	servidor
A	 continuación	 le	 mostramos	 una	 versión	 simplificada	 de	 una	 aplicación	 de
servidor.	El	código	completo	de	este	ejemplo	se	recoge	en	el	Listado	A-3.

ServerSocket	serverSocket	=	new	ServerSocket(8009);

while	(keepProcessing)	{

try	{

Socket	socket	=	serverSocket.accept();

process(socket);

}	catch	(Exception	e)	{

handle(e);

}

}

Esta	sencilla	aplicación	espera	una	conexión,	procesa	un	mensaje	entrante	y
vuelve	a	esperar	a	la	siguiente	solicitud	cliente.	El	código	cliente	para	conectarse
al	servidor	es	el	siguiente:

private	void	connectSendReceive(int	i)	{

try	{

Socket	socket	=	new	Socket	(“localhost”,	PORT);

MessageUtils.sendMessage(socket,	Integer.toString(i));

MessageUtils.getMessage(socket);

socket.close();

}	catch	(Exception	e)	{

e.printStackTrace();

}

}

¿Cómo	 se	 comporta	 esta	 combinación	 de	 cliente	 y	 servidor?	 ¿Cómo
podemos	describir	formalmente	ese	rendimiento?	La	siguiente	prueba	afirma	que
el	rendimiento	es	aceptable:

@Test(timeout	=	10000)

public	void	shouldRunInUnder10Seconds()	throws	Exception	{

Thread[]	threads	=	createThreads();

startAllThreadsw(threads);

waitForAllThreadsToFinish(threads);

}

Se	 omite	 la	 configuración	 para	 que	 el	 ejemplo	 sea	 sencillo	 (véase
“ClientTest.java”	más	adelante).	Esta	prueba	afirma	que	debe	completarse	en
10	000	milisegundos.

Es	 un	 ejemplo	 clásico	 de	 validación	 del	 rendimiento	 de	 un	 sistema.	 Este
sistema	debe	completar	una	serie	de	solicitudes	cliente	en	10	segundos.	Mientras
el	 servidor	 pueda	 procesar	 cada	 solicitud	 cliente	 a	 tiempo,	 la	 prueba	 será
satisfactoria.

¿Qué	sucede	si	la	prueba	falla?	Aparte	de	desarrollar	algún	tipo	de	bucle	de
consulta	de	eventos,	no	hay	mucho	que	hacer	en	un	único	proceso	para	aumentar
la	velocidad	de	este	código.	¿Se	solucionaría	el	problema	con	varios	procesos?
Puede,	 pero	 necesitamos	 saber	 cómo	 se	 consume	 el	 tiempo.	 Hay	 dos
posibilidades:

E/S:	 Con	 un	 socket,	 conectándose	 a	 la	 base	 de	 datos,	 esperando	 al
intercambio	de	memoria	virtual,	etc.
Procesador:	Cálculos	numéricos,	procesamiento	de	expresiones	regulares,
recolección	de	elementos	sin	usar,	etc.

Los	 sistemas	 suelen	 tener	 uno	 de	 cada,	 pero	 para	 una	 operación	 concreta
suele	 haber	 uno	 dominante.	 Si	 el	 código	 se	 vincula	 al	 procesador,	 mayor
cantidad	 de	hardware	 de	 procesamiento	 puede	mejorar	 el	 rendimiento	 y	 hacer
que	se	supere	la	prueba,	pero	no	hay	tantos	ciclos	de	CPU	disponibles,	de	modo
que	añadir	procesos	a	un	problema	vinculado	al	procesador	no	hará	que	aumente
la	velocidad.

Por	 otra	 parte,	 si	 el	 proceso	 está	 vinculado	 a	 E/S,	 la	 concurrencia	 puede
aumentar	la	eficacia.	Cuando	una	parte	del	sistema	espera	a	E/S,	otra	puede	usar
ese	tiempo	de	espera	para	procesar	algo	distinto,	maximizando	el	uso	eficaz	de	la
CPU	disponible.

Añadir	subprocesos
Imagine	 que	 la	 prueba	 de	 rendimiento	 falla.	 ¿Cómo	 podemos	 mejorar	 la

producción	 para	 que	 la	 prueba	 de	 rendimiento	 sea	 satisfactoria?	 Si	 el	 método
process	del	servidor	está	vinculado	a	la	E/S,	existe	una	forma	de	conseguir	que
el	 servidor	 use	 subprocesos	 (basta	 con	 cambiar	 processMessage):	 void	 process	 (final

Socket	socket)	{

if	(socket	==	null)

return;

Runnable	clientHandler	=	new	Runnable()	{

public	void	run()	{

try	{

String	message	=	MessageUtils.getMessage(socket);

MessageUtils.sendMessage(socket,	“Processed:	”	+	message);

closeIgnoringException(socket);

}	catch	(Exception	e)	{

e.printStackTrace();

}

}

};

Thread	clientConnection	=	new	Thread(clientHandler);

clientConnection.start();

}

Asuma	 que	 este	 cambio	 hace	 que	 la	 prueba	 se	 supere[118];	 el	 código	 es
completo,	¿correcto?

Observaciones	del	servidor
El	servidor	actualizado	completa	satisfactoriamente	la	prueba	en	algo	más	de	un
segundo.	Desafortunadamente,	la	solución	genera	ciertos	problemas.

¿Cuántos	 subprocesos	 podría	 crear	 nuestro	 servidor?	 El	 código	 no	 define
límites	de	modo	que	podríamos	alcanzar	el	impuesto	por	la	Máquina	virtual	de
Java	(MVJ),	suficiente	en	muchos	sistemas	sencillos.	¿Pero	y	si	el	sistema	tiene
que	asumir	multitud	de	usuarios	de	una	red	pública?	Si	se	conectan	demasiados
usuarios	al	mismo	tiempo,	el	sistema	podría	colapsarse.

Pero	 dejemos	 temporalmente	 este	 problema	 de	 comportamiento.	 La
solución	 mostrada	 tiene	 problemas	 de	 limpieza	 y	 estructura.	 ¿Cuántas
responsabilidades	tiene	el	código	del	servidor?
	

Administración	de	conexiones.
Procesamiento	de	clientes.
Política	de	subprocesos.
Política	de	cierre	del	servidor.

Desafortunadamente,	 todas	 estas	 responsabilidades	 se	 encuentran	 en	 la
función	 process.	 Además,	 el	 código	 cruza	 varios	 niveles	 diferentes	 de
abstracción.	 Por	 tanto,	 a	 pesar	 de	 la	 reducida	 función	 process,	 es	 necesario
dividirlo.

Existen	 varios	 motivos	 para	 cambiar	 el	 servidor;	 por	 tanto,	 incumple	 el
principio	 de	 responsabilidad	 única.	 Para	 mantener	 la	 limpieza	 de	 un	 sistema
concurrente,	 la	 administración	 de	 subprocesos	 debe	 limitarse	 a	 una	 serie	 de
puntos	controlados.	Es	más,	el	código	que	gestione	los	subprocesos	únicamente
debe	 encargarse	 de	 la	 gestión	 de	 subprocesos.	 ¿Por	 qué?	 Si	 no	 existe	 otro
motivo,	 el	 control	 de	 problemas	 de	 concurrencia	 ya	 es	 lo	 suficientemente
complicado	 como	 para	 generar	 simultáneamente	 otros	 problemas	 no
relacionados	con	la	concurrencia.

Si	creamos	una	 lista	 independiente	para	cada	una	de	 las	responsabilidades
anteriores,	incluyendo	la	administración	de	subprocesos,	al	cambiar	la	estrategia
de	 administración	 de	 subprocesos,	 el	 cambio	 tiene	 un	menor	 impacto	 sobre	 el
código	y	no	contamina	a	otras	responsabilidades.	De	este	modo	también	es	más
sencillo	probar	las	demás	responsabilidades	sin	necesidad	de	preocuparse	de	los
subprocesos.	Veamos	la	versión	actualizada	que	se	encarga	de	ello:	public	void	run()	{

while	(keepProcessing)	{

try	{

ClientConnection	clientConnection	=	connectionManager.awaitClient();

ClientRequestProcessor	requestProcessor

=	new	ClientRequestProcessor(clientConnection);

clientScheduler.schedule(requestProcessor);

}	catch	(Exception	e)	{

e.printStackTrace();

}

}

connectionManager.shutdown();

}

Ahora	 centra	 en	 el	mismo	 punto	 todos	 los	 aspectos	 relacionados	 con	 los
subprocesos:	clientScheduler.	Si	hay	problemas	de	concurrencia,	bastará	con
examinar	un	punto	concreto:

public	interface	ClientScheduler	{

void	schedule(ClientRequestProcessor	requestProcessor);

}

La	política	actual	es	fácil	de	implementar:
public	class	ThreadPerRequestScheduler	implements	ClientScheduler	{

public	void	schedule(final	ClientRequestProcessor	requestProcessor)	{

Runnable	runnable	=	new	Runnable()	{

public	void	run()	{

requestProcessor.process();

}

};

Thread	thread	=	new	Thread(runnable);

thread.start();

}

}

Tras	aislar	 la	administración	de	subprocesos,	 resulta	más	sencillo	cambiar
el	control	de	los	mismos.	Por	ejemplo,	para	cambiar	a	la	estructura	Executor	de
Java	5	es	necesario	crear	una	nueva	clase	y	conectarla	(véase	el	Listado	A-1).

Listado	A-1

ExecutorClientScheduler.java.

import	java.util.concurrent.Executor;

import	java.util.concurrent.Executors;

public	class	ExecutorClientScheduler	implements	ClientScheduler	{

Executor	executor;

public	ExecutorClientScheduler(int	availableThreads)	{

executor	=	Executors.newFixedThreadPool(availableThreads);

}

public	void	schedule(final	ClientRequestProcessor	requestProcessor)	{

Runnable	runnable	=	new	Runnable()	{

public	void	run()	{

requestProcessor.process();

}

};

executor.execute(runnable);

}

}

Conclusión
En	este	ejemplo	concreto,	 la	presencia	de	 la	concurrencia	 ilustra	una	 forma	de
mejorar	la	producción	de	un	sistema	y	otra	de	validar	dicha	producción	a	través
de	una	estructura	de	pruebas.	Al	centrar	el	código	de	concurrencia	en	un	número
reducido	de	clases,	aplicamos	el	Principio	de	responsabilidad	única.	En	el	caso
de	 la	 programación	 concurrente,	 resulta	 especialmente	 importante	 debido	 a	 su
complejidad.

Posibles	rutas	de	ejecución

Repase	el	método	incrementValue,	un	método	de	Java	de	una	línea	sin	bucles	ni
ramificaciones:

public	class	IdGenerator	{

int	lastIdUsed;

public	int	incrementValue()	{

return	++lastIdUsed;

}

}

Ignore	 el	 desbordamiento	 de	 enteros	 e	 imagine	 que	 solamente	 un
subproceso	accede	a	una	instancia	de	IdGenerator.	En	este	caso	existe	una	sola
ruta	de	ejecución	y	un	único	resultado	garantizado:
	

El	valor	devuelto	es	igual	al	valor	de	lastIdUsed,	y	ambos	son	una	unidad
mayores	que	antes	de	invocar	el	método.

¿Qué	 sucede	 si	 usamos	 dos	 subprocesos	 y	 no	 cambiamos	 el	 método?

¿Cuáles	son	los	posibles	resultados	si	cada	subproceso	invoca	incrementValue
una	 vez?	 ¿Cuántas	 rutas	 de	 ejecución	 posibles	 hay?	 Primero,	 los	 resultados
(imagine	que	el	valor	inicial	de	lastIdUsed	es	93):

El	 primer	 subproceso	 obtiene	 el	 valor	 94,	 el	 segundo	 el	 valor	 95	 y
lastIdUsed	es	95.
El	 primer	 subproceso	 obtiene	 el	 valor	 95,	 el	 segundo	 el	 valor	 94	 y
lastIdUsed	es	95.
El	 primer	 subproceso	 obtiene	 el	 valor	 94,	 el	 segundo	 el	 valor	 94	 y
lastIdUsed	es	94.

El	 resultado	 final,	 aunque	 sorprendente,	 es	 posible.	 Para	 ver	 los	 distintos
resultados,	 debemos	 comprender	 las	 diferentes	 rutas	 de	 ejecución	 posibles	 y
cómo	las	ejecuta	la	MVJ.

Número	de	rutas
Para	 calcular	 el	 número	 de	 rutas	 de	 ejecución	 posibles,	 comenzaremos	 con	 el
código	de	bytes	 generado.	La	única	 línea	 de	 Java	 (return	++lastIdUsed;)	 se
convierte	en	ocho	instrucciones	de	código	de	bytes.	Los	dos	subprocesos	pueden
intercambiar	 la	 ejecución	 de	 estas	 ocho	 instrucciones	 del	 mismo	 modo	 que
mezclamos	 las	 cartas	 de	 una	 baraja[119].	 Incluso	 con	 sólo	 ocho	 cartas	 en	 cada
mano,	el	número	de	posibles	resultados	es	sorprendente.

Para	este	 sencillo	caso	de	N	 instrucciones	en	una	secuencia,	 sin	bucles	ni
condicionales	y	T	subprocesos,	el	número	total	de	posibles	rutas	de	ejecución	es
igual	a:

(NT)!
N!T

Calcular	las	órdenes	posibles

Extraído	de	un	correo	electrónico	de	Uncle	Bob	a	Brett:

Con	N	pasos	y	T	subprocesos	hay	T	*	N	pasos	totales.	Antes	de	cada	paso	hay	un	conmutador	de	contexto	que	elige	entre	los

subprocesos.	 Por	 tanto,	 cada	 ruta	 se	 representa	 como	 una	 cadena	 de	 dígitos	 que	 denota	 los	 cambios	 de	 contexto.	 Dados	 los

pasos	A	y	B	y	los	subprocesos	1	y	2,	las	seis	rutas	posibles	son	1122,	1212,	1221,	2112,	2121	y	2211.	O,	en	términos	de	pasos,

A1B1A2B2,	A1A2B1B2,	A1A2B2B1,	A2A1B1B2,	A2A1B2B1	y	A2B2A1B1.	Para	tres	subprocesos,	la	secuencia	sería	112233,	112323,	113223,

113232,	112233,	121233,	121323,	121332,	123132,	123123…

Una	característica	de	estas	cadenas	es	que	siempre	debe	haber	N	instancias	de	cada	T.	Por	tanto,	la	cadena	111111	no	es	válida

ya	que	tiene	seis	instancias	de	1	y	ninguna	de	2	y	3.

Por	tanto,	necesitamos	las	permutaciones	de	N	1,	N	2…	y	N	T.	En	realidad	son	las	permutaciones	de	N	*	T	tomando	cada	vez	N	*	T,

que	es	(N	*	T)!,	pero	sin	los	duplicados.	Por	tanto,	el	truco	consiste	en	contar	los	duplicados	y	restarlos	de	(N	*	T)!.

Dados	dos	pasos	y	dos	subprocesos,	¿cuántos	duplicados	hay?	Cada	cadena	de	cuatro	dígitos	tiene	dos	1	y	dos	2.	Estos	pares	se

pueden	 intercambiar	 sin	 modificar	 el	 sentido	 de	 la	 cadena.	 Podríamos	 intercambiar	 los	 1	 o	 los	 2,	 o	 ninguno.	 Por	 tanto	 hay

cuatro	 isomorfas	 por	 cada	 cadena,	 lo	 que	 significa	 que	 hay	 tres	 duplicados,	 de	 modo	 que	 tres	 de	 las	 cuatro	 opciones	 son

duplicados;	 por	 otra	 parte,	 una	 de	 las	 cuatro	 permutaciones	 no	 son	 duplicados.	 4!	 *	 .25	 =	 6.	 Este	 razonamiento	 parece

funcionar.

¿Cuántos	duplicados	hay?	Si	N	=	2	y	T	=	2,	podría	intercambiar	los	1,	los	2,	o	ambos.	En	el	caso	de	N	=	2	y	T	=	3,	podría

intercambiar	 los	 1,	 los	 2,	 los	 3,	 1	 y	 2,	 1	 y	 3,	 o	 2	 y	 3.	 El	 intercambio	 son	 las	 permutaciones	 de	 N.	 Imagine	 que	 hay	 P

permutaciones	de	N.	El	número	de	formas	diferentes	de	organizar	dichas	permutaciones	es	P**T.

Por	tanto	el	número	de	isomorfas	posibles	es	N!**T.	Y	el	número	de	rutas	es	(T*N)!/(N!**T).	De	nuevo,	en	nuestro	caso	T	=	2,	N

=	2	obtenemos	6	(24/4).

Para	N	=	2	y	T	=	3	obtenemos	720/8	=	90.

Para	N	=	3	y	T	=	3	obtenemos	9!/6^3	=	1680.

En	nuestro	sencillo	caso	de	una	sola	 línea	de	código	Java,	que	equivale	a
ocho	líneas	de	código	de	bytes	y	a	dos	subprocesos,	el	número	total	de	posibles
rutas	de	ejecución	es	12	870.	Si	el	 tipo	de	lastIdUsed	es	long,	cada	 lectura	y
escritura	se	convierte	en	dos	operaciones	y	no	una,	y	el	número	de	posibilidades
asciende	a	2	704	156.

¿Qué	sucede	si	realizamos	un	cambio	en	este	método?
public	synchronized	void	incrementValue()	{

++lastIdUsed;

}

El	número	de	posibles	rutas	de	ejecución	es	dos	para	dos	subprocesos	y	N!
para	el	caso	general.

Un	examen	más	profundo
¿Qué	 piensa	 del	 sorprendente	 resultado	 de	 dos	 subprocesos	 que	 invoquen	 el
método	una	vez	(antes	de	añadir	synchronized)	y	obtengan	el	mismo	resultado
numérico?	¿Cómo	es	posible?	Vayamos	por	partes.

¿Qué	 es	 una	 operación	 atómica?	 Podemos	 definir	 una	 operación	 atómica
como	 toda	 operación	 ininterrumpible.	 Por	 ejemplo,	 en	 el	 siguiente	 código,	 la
línea	5,	donde	se	asigna	0	a	lastId,	es	atómica	ya	que	de	acuerdo	al	modelo	de
memoria	de	Java,	la	asignación	a	un	valor	de	32	bits	es	ininterrumpible.
	01:	 	public	class	Example	{	

	02:	 	int	lastId;	

	03:	

	04:	 	public	void	resetId()	{	

	05:	 	value	=	0;	

	06:	 	}	

	07:	

	08:	 	public	int	getNextId()	{	

	09:	 	++value;	

	10:	 	}	

	11:	 	}	

¿Qué	sucede	si	cambiamos	el	tipo	de	lastId	de	int	a	long?	¿Sigue	siendo
atómica	 la	 línea	 5?	 No	 de	 acuerdo	 a	 la	 especificación	 de	 la	MVJ.	 Podría	 ser
atómica	en	un	procesador	concreto,	pero	según	la	especificación	de	 la	MVJ,	 la
asignación	 a	 un	 valor	 de	 64	 bits	 requiere	 dos	 asignaciones	 de	 32	 bits.	 Esto
significa	 que	 entre	 la	 primera	 y	 la	 segunda	 podría	 irrumpir	 otro	 subproceso	 y
cambiar	uno	de	los	valores.

¿Y	qué	 sucede	 con	 el	 operador	 de	 preincremento,	++,	 de	 la	 línea	 9?	Este
operador	 se	 puede	 interrumpir,	 de	 modo	 que	 no	 es	 atómico.	 Para	 entenderlo,
repasemos	el	código	de	bytes	de	ambos	métodos.

Antes	de	continuar,	hay	tres	definiciones	importantes:
	

Marco:	La	invocación	de	un	método	requiere	un	marco,	el	cual	incluye	la
dirección	de	devolución,	 los	parámetros	pasados	al	método	y	 las	variables
locales	 definidas	 en	 el	 mismo.	 Es	 una	 técnica	 estándar	 empleada	 para
definir	una	pila	de	invocaciones,	que	se	usa	en	muchos	lenguajes	modernos
para	 permitir	 la	 invocación	 de	 funciones	 y	 métodos	 básicos,	 además	 de
invocaciones	recursivas.
Variable	local:	Las	variables	definidas	en	el	ámbito	del	método.	Todos	los
métodos	no	estáticos	tienen	al	menos	una	variable,	this,	que	representa	el
objeto	actual,	el	objeto	que	ha	recibido	el	último	mensaje	(en	el	subproceso
actual)	que	ha	propiciado	la	invocación	del	método.
Pila	de	operandos:	Muchas	 instrucciones	de	 la	MVJ	aceptan	parámetros.
La	 pila	 de	 operandos	 es	 donde	 se	 incluyen	 dichos	 parámetros.	 La	 pila	 es
una	 estructura	 de	 datos	 LIFO	 (Last-In,	 First-Out	 o	 Último	 en	 entrar,
primero	en	salir)	estándar.

Veamos	el	código	de	bytes	generado	para	resetId().

	Nemónico	 	Descripción	 	Pila	de
operandos
posterior	

	ALOAD	0	 	Cargar	la	variable	0a	en	la	pila	de	operandos.	¿Qué	es	la
variable	0a?	Es	this.,	el	objeto	actual.	Al	invocar	el
método,	el	receptor	del	mensaje,	una	instancia	de
Example	,	se	envía	a	la	matriz	de	variables	locales	del
marco	creado	para	la	invocación	de	métodos.	Siempre
es	la	primera	variable	que	se	añade	a	todos	los	métodos
de	instancia.

	this	

	ICONST_0	 	Incluir	el	valor	constante	0	en	la	pila	de	operandos.	 	this,	0	
	PUTFIELD
lastId	

	Almacenar	el	valor	superior	de	la	pila	(0)	en	el	valor	de
campo	del	objeto	denominado	por	la	referencia	de
objeto	una	posición	alejada	de	la	parte	superior	de	la
pila,	this	.

	<Vacío>	

Estas	 tres	 instrucciones	son	atómicas	ya	que	a	pesar	de	que	el	subproceso
que	las	ejecuta	podría	verse	interrumpido	por	cualquiera	de	ellas,	la	información
para	la	instrucción	PUTFIELD	(el	valor	constante	0	de	la	parte	superior	de	la	pila	y
la	referencia	a	éste	una	posición	inferior,	junto	con	el	valor	del	campo)	no	se	ve
alterada	 por	 ningún	 otro	 subproceso.	 Por	 tanto,	 al	 producirse	 la	 asignación,
sabemos	 que	 el	 valor	 0	 se	 almacena	 en	 el	 valor	 del	 campo.	 La	 operación	 es
atómica.	Todos	los	operandos	procesan	información	local	del	método,	de	modo
que	no	hay	interferencias	entre	subprocesos.

Si	 estas	 instrucciones	 se	 ejecutan	 en	 diez	 subprocesos,	 hay
4.38679733629e+24	ordenaciones	posibles.	Sin	embargo,	sólo	hay	un	resultado
posible,	de	modo	que	 las	distintas	ordenaciones	son	 irrelevantes.	Y	además,	se
garantiza	el	mismo	resultado	para	valores	long	en	este	caso.	¿Por	qué?	Los	diez
subprocesos	 asignan	 un	 valor	 constante.	Aunque	 se	 entremezclen,	 el	 resultado
final	 será	 el	 mismo.	 Habrá	 problemas	 con	 la	 operación	 ++	 en	 el	 método
getNextId.	Imagine	que	lastId	contiene	42	al	inicio	de	este	método.	Veamos	el
código	de	bytes	de	este	nuevo	método:

	Nemónico	 	Descripción	 	Pila	de
operandos
posterior	

	ALOAD	0	 	Cargar	this		en	la	pila	de	operandos. 	this	
	DUP	 	Copiar	la	parte	superior	de	la	pila.	Ahora	tenemos	dos

copias	de	this		en	la	pila	de	operandos.
	this,
this	

	GETFIELD
lastId	

	Recuperar	el	valor	del	campo	lastId	del	objeto	al	que
se	apunta	en	la	parte	superior	de	la	pila	(this)	y	volver
a	almacenar	el	valor	en	la	pila.

	this,
42	

	ICONST_1	 	Desplazar	la	constante	entera	1	en	la	pila.	 	this,
42,	1	

	IADD	 	Suma	entera	de	los	dos	valores	superiores	de	la	pila	de
operandos	y	volver	a	almacenar	el	resultado	en	la	pila.	

	this,
43	

	DUP_X1	 	Duplicar	el	valor	43	y	añadirlo	delante	de	this	. 	43,
this,	43	

	PUTFIELD
value	

	Almacenar	el	valor	superior	de	la	pila	de	operandos,
43,	en	el	valor	de	campo	del	objeto	actual,	representado
por	el	siguiente	valor	superior	de	la	pila	de	operandos,
this	.

	43	

	IRETURN	 	Devolver	el	valor	superior	(y	único)	de	la	pila	de 	<Vacío>	

operandos.	

Imagine	que	el	primer	subproceso	completa	las	tres	primeras	instrucciones,
hasta	 GETFIELD	 incluida	 y	 después	 se	 interrumpe.	 Aparece	 un	 segundo
subproceso	 y	 ejecuta	 el	 método	 completo,	 incrementando	 lastId	 en	 uno;
devuelve	43.	Tras	ello,	el	primer	subproceso	retoma	desde	donde	se	detuvo;	42
sigue	 en	 la	 pila	 de	 operandos	 por	 ser	 el	 valor	 de	 lastId	 cuando	 ejecutó
GETFIELD.	Suma	uno	para	obtener	43	y	almacena	el	resultado.

El	valor	43	también	se	devuelve	al	primer	subproceso.	Como	resultado,	uno
de	 los	 incrementos	 se	 pierde	 ya	 que	 el	 primer	 subproceso	 interfiere	 con	 el
segundo	después	de	que	éste	haya	interrumpido	al	primero.

Al	 convertir	 el	 método	 getNextId()	 en	 synchronized	 se	 corrige	 este
problema.

Conclusión
No	se	necesita	un	conocimiento	extenso	del	código	de	bytes	para	entender	cómo
unos	 subprocesos	 interrumpen	 a	 otros.	 Si	 consigue	 entender	 este	 ejemplo,
demostrará	 la	posibilidad	de	varios	 subprocesos	 entrelazados,	un	conocimiento
suficiente.

Dicho	esto,	lo	que	este	sencillo	ejemplo	revela	es	la	necesidad	de	entender
el	modelo	de	memoria	para	saber	qué	se	permite	y	qué	no.	Equivocadamente	se
piensa	que	el	operador	++	(pre	o	postincremento)	es	atómico,	y	evidentemente	no
lo	es.	Esto	significa	que	tiene	que	saber:

Dónde	están	los	objetos	y	valores	compartidos.
El	código	que	provoca	problemas	de	lectura/actualización	concurrente.
Cómo	evitar	que	se	produzcan	dichos	problemas.

Conocer	su	biblioteca

La	estructura	Executor
Como	mostramos	 en	 ExecutorClientScheduler.java,	 la	 estructura	 Executor
de	 Java	 5	 permite	 la	 ejecución	 sofisticada	 por	 medio	 de	 agrupaciones	 de
subprocesos.	 Es	 una	 clase	 del	 paquete	 java.util.concurrent.	 Si	 va	 a	 crear

subprocesos	 y	 no	 usa	 una	 agrupación	 de	 subprocesos	 o	 utiliza	 una	 creada	 a
mano,	 considere	 el	 uso	 de	Executor.	Hace	 que	 el	 código	 sea	más	 limpio,	más
fácil	de	entender	y	de	menor	tamaño.

La	 estructura	 Executor	 agrupa	 subprocesos,	 los	 cambia	 automáticamente
de	 tamaño	 y	 los	 vuelve	 a	 crear	 si	 es	 necesario.	 También	 admite	 futuros,	 una
construcción	 de	 programación	 concurrente	 habitual.	 La	 estructura	 Executor
funciona	 con	 clases	 que	 implementan	 Runnable	 y	 también	 con	 clases	 que
implementan	la	 interfaz	Callable.	Callable	se	parece	a	Runnable,	pero	puede
devolver	 un	 resultado,	 una	 necesidad	 habitual	 en	 soluciones	 de	 múltiples
subprocesos.

Un	 futuro	 resulta	 muy	 útil	 cuando	 el	 código	 tiene	 que	 ejecutar	 varias
operaciones	independientes	y	esperar	a	que	terminen:

public	String	processRequest(String	message)	throws	Exception	{

Callable<String>	makeExternalCall	=	new	Callable<String>()	{

public	String	call()	throws	Exception	{

String	result	=	“”;

//	realizar	solicitud	externa

return	result;

}

};

Future<String>	result	=	executorService.submit(makeExternalCall);

String	partialResult	=	doSomeLocalProcessing();

return	result.get()	+	partialResult;

}

En	 este	 ejemplo,	 el	 método	 comienza	 a	 ejecutar	 el	 objeto
makeExternalCall,	 prosigue	 con	 otro	 procesamiento	 y	 la	 última	 línea	 invoca
result.get(),	que	se	bloquea	hasta	que	el	futuro	termina.

Soluciones	no	bloqueantes
La	MV	Java	5	aprovecha	el	diseño	de	 los	procesadores	modernos	que	admiten
actualizaciones	 fiables	 y	 no	 bloqueantes.	 Imagine	 una	 clase	 que	 usa
sincronización	 (y	 por	 tanto	 bloqueo)	 para	 proporcionar	 la	 actualización
compatible	con	subprocesos	de	un	valor:	public	class	ObjectWithValue	{

private	int	value;

public	void	synchronized	incrementValue()	{	++value;	}

public	int	getValue()	{	return	value;	}

}

Java	5	dispone	de	varias	clases	nuevas	para	este	tipo	de	situaciones,	como
por	 ejemplo	 AtomicBoolean,	 AtomicInteger	 y	 AtomicReference.	 Podemos
modificar	el	código	anterior	para	usar	un	enfoque	no	bloqueante:

public	class	ObjectWithValue	{

private	AtomicInteger	value	=	new	AtomicInteger(0);

public	void	incrementValue()	{

value.incrementAndGet();

}

public	int	getValue()	{

return	value.get();

}

}

Aunque	 use	 un	 objeto	 en	 lugar	 de	 una	 primitiva	 y	 envíe	mensajes	 como
incrementAndGet()	 en	 lugar	 de	 ++,	 el	 rendimiento	 de	 esta	 clase	 supera	 en	 la
mayoría	de	los	casos	al	de	la	versión	anterior.	En	algunos	casos	será	ligeramente
más	rápido	pero	los	casos	en	los	que	es	más	lento	son	prácticamente	inexistentes.

¿Cómo	es	posible?	Los	procesadores	modernos	disponen	de	una	operación
denominada	 CAS	 (Compare	 and	 Swap,	 Comparar	 e	 intercambiar).	 Es	 una
operación	 similar	 al	 bloqueo	 optimista	 de	 una	 base	 de	 datos,	 mientras	 que	 la
versión	sincronizada	es	similar	al	bloqueo	pesimista.

La	 palabra	 clave	 synchronized	 siempre	 adquiere	 un	 bloqueo,	 incluso
cuando	un	segundo	subproceso	no	intenta	actualizar	el	mismo	valor.	Aunque	el
rendimiento	 de	 los	 bloqueos	 intrínsecos	 ha	mejorado	 con	 respecto	 a	 versiones
anteriores,	sigue	siendo	muy	costoso.

La	 versión	 no	 bloqueante	 asume	 inicialmente	 que	 varios	 subprocesos	 no
modifican	el	mismo	valor	con	 la	 suficiente	periodicidad	como	para	generar	un
problema.	Por	el	contrario,	detecta	de	forma	eficaz	si	se	produce	dicha	situación
y	la	reintenta	hasta	que	la	actualización	es	satisfactoria.	Esta	detección	suele	ser
menos	 costosa	 que	 la	 adquisición	 de	 un	 bloqueo,	 incluso	 en	 situaciones	 de
contención	moderada	o	alta.

¿Cómo	 lo	 hace	 la	 MV?	 La	 operación	 CAS	 es	 atómica.	 Por	 tanto,	 la
operación	CAS	tiene	este	aspecto:

int	variableBeingSet;

void	simulateNonBlockingSet	(int	newValue)	{

int	currentValue;

do	{

currentValue	=	variableBeingSet

}	while(currentValue	!=	compareAndSwap(currentValue,	newValue));

}

int	synchronized	compareAndSwap(int	currentValue,	int	newValue)	{

if(variableBeingSet	==	currentValue)	{

variableBeingSet	=	newValue;

return	currentValue;

}

return	variableBeingSet;

}

Cuando	un	método	intenta	actualizar	una	variable	compartida,	la	operación
CAS	 comprueba	 que	 la	 variable	 establecida	 sigue	 teniendo	 el	 último	 valor
conocido.	 En	 caso	 afirmativo,	 se	 cambia	 la	 variable.	 En	 caso	 contrario,	 la
variable	no	se	establece	ya	que	otro	subproceso	ha	conseguido	acceder.

El	método	 que	 realiza	 el	 intento	 (mediante	 la	 operación	 CAS)	 ve	 que	 el
cambio	no	se	ha	realizado	y	lo	intenta	de	nuevo.

Clases	incompatibles	con	subprocesos

Existen	clases	que	no	son	compatibles	con	subprocesos,	como	las	siguientes:
	

SimpleDateFormat.
Conexiones	de	base	de	datos.
Contenedores	de	java.util.
Servlet.

Algunas	 clases	 de	 colección	 tienen	 métodos	 concretos	 compatibles	 con
subprocesos.	Sin	embargo,	cualquier	operación	que	invoque	más	de	un	método
no	 lo	 es.	 Por	 ejemplo,	 si	 no	 quiere	 reemplazar	 algo	 en	 HashTable	 porque	 ya
existe,	podría	crear	el	siguiente	código:	if(!hashTable.containsKey(someKey))	{

hashTable.put(someKey,	new	SomeValue());

}

Cada	uno	de	los	métodos	es	compatible	con	subprocesos.	Sin	embargo,	otro
subproceso	podría	añadir	un	valor	entre	las	invocaciones	de	containsKey	y	put.
Existen	varias	formas	de	solucionar	este	problema:
	

Bloquear	 primero	 HashTable	 y	 comprobar	 que	 los	 demás	 usuarios	 de
HashTable	hagan	lo	mismo;	bloqueo	basado	en	clientes:

synchronized(map)	{

if(!map.containsKey(key))

map.put(key,value);

}

	

Envolver	HashTable	en	su	propio	objeto	y	usar	dos	API	distintas;	bloqueo
basado	en	servidores	con	un	adaptador:

public	class	WrappedHashtable<K,	V>	{

private	Map<K,	V>	map	=	new	Hashtable<K,	V>();

public	synchronized	void	putIfAbsent(K	key,	V	value)	{

if	(map.containsKey(key))

map.put(key,	value);

}

}

	

Usar	colecciones	compatibles	con	subprocesos:
ConcurrentHashMap<Integer,	String>	map	=	new	ConcurrentHashMap<Integer,	String>();

map.putIfAbsent(key,	value);

Las	 colecciones	 de	 java.util.concurrent	 incluyen	 operaciones	 como
putIfAbsent()	para	acomodar	este	tipo	de	operaciones.

Las	dependencias	entre	métodos	pueden	afectar	al
código	concurrente

El	siguiente	ejemplo	es	una	forma	de	añadir	dependencias	entre	métodos:
public	class	IntegerIterator	implements	Iterator<Integer>

private	Integer	nextValue	=	0;

public	synchronized	boolean	hasNext()	{

return	nextValue	<	100000;

}

public	synchronized	Integer	next()	{

if	(nextValue	==	100000)

throw	new	IteratorPastEndException();

return	nextValue++;

}

public	synchronized	Integer	getNextValue()	{

return	nextValue;

}

}

Veamos	otro	código	que	usa	IntegerIterator:
IntegerIterator	iterator	=	new	IntegerIterator();

while(iterator.hasNext())	{

int	nextValue	=	iterator.next();

//	hacer	algo	con	nextValue

}

Si	un	subproceso	ejecuta	este	código	no	habrá	problemas.	¿Qué	sucede	si
dos	 subprocesos	 intentan	 compartir	 una	misma	 instancia	 de	 IntegerIterator
para	procesar	el	valor	que	reciba	cada	uno	pero	cada	elemento	de	la	lista	sólo	se
procesa	una	vez?	En	 la	mayoría	de	 los	casos,	no	hay	consecuencias	negativas;
los	 subprocesos	 comparten	 la	 lista,	 procesan	 los	 elementos	 devueltos	 por	 el
iterador	y	se	detienen	cuando	éste	termina.	Sin	embargo,	existe	la	posibilidad	de
que	 al	 final	 de	 la	 iteración	 los	 dos	 subprocesos	 interfieran	 entre	 ellos	 y
provoquen	que	uno	supere	el	final	del	iterador	y	se	genere	una	excepción.

El	 problema	 es	 el	 siguiente:	 El	 subproceso	 1	 pregunta	 hasNext(),	 que
devuelve	 true.	 El	 subproceso	 1	 se	 evita	 y	 el	 subproceso	 2	 realiza	 la	 misma
pregunta,	que	sigue	siendo	true.	Tras	ello,	el	subproceso	2	invoca	next(),	que
devuelve	un	valor,	como	era	de	esperar,	pero	como	efecto	secundario	hace	que
hasNext()	devuelva	false.

Se	vuelve	a	iniciar	el	subproceso	1,	pensando	que	hasNext()	sigue	siendo
true,	 y	 después	 invoca	 next().	 Aunque	 los	 métodos	 concretos	 están
sincronizados,	el	cliente	usa	dos	métodos.

Es	un	problema	real	y	un	ejemplo	que	puede	surgir	en	código	concurrente.
En	este	caso	concreto,	el	problema	es	especialmente	sutil	ya	que	la	única	ocasión
en	 la	 que	 produce	 un	 fallo	 es	 durante	 la	 iteración	 final	 del	 iterador.	 Si	 los
subprocesos	 se	 dividen	 de	 forma	 correcta,	 puede	 que	 uno	 supere	 el	 final	 del
iterador.	 Es	 el	 tipo	 de	 error	 que	 surge	 en	 un	 sistema	 que	 lleva	 tiempo	 en
producción,	y	es	difícil	de	detectar.	Tiene	tres	opciones:

Tolerar	el	fallo.
Solucionar	el	problema	cambiando	el	cliente:	bloqueo	basado	en	el	cliente.
Solucionar	el	problema	cambiando	el	servidor,	lo	que	también	provoca	que
cambie	el	cliente:	bloqueo	basado	en	el	servidor.

Tolerar	el	fallo
En	ocasiones,	 los	 sistemas	se	configuran	para	que	un	 fallo	no	produzca	daños.
Por	ejemplo,	el	cliente	anterior	podía	capturar	la	excepción	y	limpiarla,	aunque
sería	 un	 tanto	 torpe.	 Es	 como	 limpiar	 fugas	 de	 memoria	 reiniciando	 a
medianoche.

Bloqueo	basado	en	el	cliente
Para	 que	 IntegerIterator	 funcione	 correctamente	 con	 varios	 subprocesos,
cambie	el	cliente	(y	los	demás)	como	se	indica	a	continuación:

IntegerIterator	iterator	=	new	IntegerIterator();

while	(true)	{

int	nextValue;

synchronized	(iterator)	{

if	(!iterator.hasNext())

break;

nextValue	=	iterator.next();

}

doSometingWith(nextValue);

}

Cada	cliente	añade	un	bloqueo	a	través	de	la	palabra	clave	synchronized.
Esta	 duplicación	 incumple	 el	 principio	 DRY,	 pero	 puede	 ser	 necesaria	 si	 el
código	usa	agrupaciones	de	terceros	no	compatibles	con	subprocesos.

La	 estrategia	 es	 arriesgada	 ya	 que	 todos	 los	 programadores	 que	 usen	 el
servidor	 deben	 acordarse	 de	 bloquearlo	 antes	 de	 usarlo	 y	 de	 desbloquearlo
cuando	terminen.	Hace	muchos	años,	trabajé	en	un	sistema	que	usaba	el	bloqueo
basado	en	el	cliente	en	un	recurso	compartido.	El	recurso	se	usaba	en	cientos	de
puntos	 distintos	 del	 código.	 Un	 pobre	 programador	 se	 olvidó	 de	 bloquear	 el
recurso	en	uno	de	esos	puntos.

Era	 un	 sistema	 de	 varios	 terminales	 con	 software	 de	 contabilidad	 para	 el
sindicato	de	transportistas.	Local	705.	El	ordenador	se	encontraba	en	una	sala	de
temperatura	controlada	de	un	piso	elevado,	a	unas	50	millas	al	norte	de	la	sede
de	 Local	 705.	 En	 la	 sede,	 decenas	 de	 trabajadores	 introducían	 datos	 en	 las
terminales,	 conectadas	 al	 ordenador	 mediante	 líneas	 telefónicas	 dedicadas	 y
módem	semidúplex	de	600bps	(esto	fue	hace	mucho,	mucho	tiempo).

Una	vez	al	día,	una	de	 las	 terminales	se	bloqueaba,	sin	razón	aparente.	El

bloqueo	 no	 tenía	 preferencia	 alguna	 por	 una	 terminal	 o	 una	 hora	 concreta.	 Es
como	si	alguien	echara	a	suertes	la	terminal	que	bloquear	y	la	hora	del	bloqueo.
En	 ocasiones,	 se	 bloqueaba	 más	 de	 una	 terminal.	 En	 ocasiones,	 podían	 pasar
varios	días	sin	bloqueos.

Inicialmente,	 se	 optó	 por	 reiniciar	 como	 solución,	 pero	 era	 complicado
coordinar	 los	 reinicios.	 Tenemos	 que	 avisar	 a	 la	 sede	 y	 esperar	 a	 que	 todos
terminaran	 lo	 que	 estuvieran	 haciendo	 en	 todas	 las	 terminales.	 Tras	 ello,	 se
apagaba	el	 sistema	y	 se	 reiniciaba.	Si	 alguien	estaba	haciendo	algo	 importante
para	 lo	que	necesitaba	una	o	dos	horas,	 la	 terminal	bloqueada	 tenía	que	seguir
bloqueada.

Tras	 varias	 semanas	 de	 depuración,	 descubrimos	 que	 la	 causa	 era	 un
contador	de	búfer	circular	desincronizado	con	su	puntero.	Este	búfer	controlaba
la	 salida	 a	 la	 terminal.	El	valor	del	puntero	 indicaba	que	el	búfer	 estaba	vacío
pero	el	contador	mostraba	que	estaba	 lleno.	Como	estaba	vacío,	no	había	nada
que	mostrar;	pero	como	también	estaba	 lleno,	no	se	podía	añadir	nada	al	búfer
que	mostrar	en	la	pantalla.

Sabíamos	qué	era	lo	que	bloqueaba	las	terminales	pero	no	qué	provocaba	la
desincronización	del	búfer	circular,	por	lo	que	añadimos	un	truco	para	resolver
el	problema.	Se	podían	leer	los	conmutadores	del	panel	frontal	en	el	ordenador
(esto	fue	hace	mucho,	mucho,	mucho	tiempo).	Diseñamos	una	función	de	trampa
que	 detectaba	 si	 uno	 de	 los	 conmutadores	 se	 había	 generado	 y	 después
buscábamos	 un	 búfer	 circular	 que	 estuviera	 tanto	 lleno	 como	 vacío.	 Si	 lo
encontrábamos,	 lo	 variábamos.	 ¡Voilá!	 La	 terminal	 bloqueada	 volvía	 a
funcionar.	De	este	modo	no	era	necesario	reiniciar	el	sistema	si	una	terminal	se
bloqueaba.	 La	 sede	 nos	 llamaba	 y	 nos	 decía	 que	 había	 un	 bloqueo,	 nos
acercábamos	hasta	la	sala	de	ordenadores	y	pulsábamos	un	conmutador.

En	ocasiones	ellos	trabajan	los	fines	de	semana	pero	nosotros	no.	Por	ello,
añadimos	una	función	al	programador	que	comprobaba	los	búfer	circulares	una
vez	por	minuto	y	restablecía	los	que	estuvieran	tanto	llenos	como	vacíos.	De	este
modo	 se	 descongestionaban	 las	 pantallas	 antes	 de	 que	 la	 dirección	 llegara	 al
teléfono.

Necesitamos	 varias	 semanas	 de	 análisis	 de	 código	 de	 lenguaje	 de
ensamblado	antes	de	localizar	al	culpable.	Habíamos	calculado	que	la	frecuencia
de	 los	bloqueos	se	debía	a	un	uso	desprotegido	del	búfer	circular,	así	que	sólo
era	 necesario	 determinar	 el	 uso	 fallido.	 Desafortunadamente,	 esto	 fue	 hace
mucho	 tiempo	 y	 no	 disponíamos	 de	 herramientas	 de	 búsqueda,	 referencias
cruzadas	ni	de	otras	técnicas	automáticas	de	ayuda.	Teníamos	que	escudriñar	los
listados.	 En	 aquel	 frío	 invierno	 de	 1971	 en	Chicago	 aprendí	 que	 los	 bloqueos
basados	en	el	cliente	son	verdaderamente	terribles.

Bloqueo	basado	en	el	servidor
La	 duplicación	 se	 puede	 eliminar	 si	 modificamos	 IntegerIterator	 de	 esta
forma:

public	class	IntegerIteratorServerLocked	{

private	Integer	nextValue	=	0;

public	synchronized	Integer	getNextOrNull()	{

if	(nextValue	<	100000)

return	nextValue++;

else

return	null;

}

}

Y	también	cambia	el	código	cliente:
while	(true)	{

Integer	nextValue	=	iterator.getNextOrNull();

if	(next	==	null)

break;

//	hacer	algo	con	nextValue

}

En	 este	 caso,	 en	 realidad	 cambiamos	 la	 API	 de	 la	 clase	 para	 que	 sea
compatible	 con	 el	 subproceso[120].	El	 cliente	 debe	 realizar	 una	 comprobación	de
null	en	lugar	de	comprobar	hasNext().

Por	 lo	 general,	 el	 bloqueo	 basado	 en	 el	 servidor	 es	 preferible	 por	 estos
motivos:
	

Reduce	 el	 código	 repetido:	 El	 bloqueo	 basado	 en	 el	 servidor	 hace	 que	 el
cliente	bloquee	correctamente	el	 servidor.	Al	 incluir	el	código	de	bloqueo
en	 el	 servidor,	 se	 libera	 a	 los	 clientes	 para	 usar	 el	 objeto	 y	 no	 tener	 que
preocuparse	de	crear	código	de	bloqueo	adicional.
Permite	un	mejor	rendimiento:	Puede	intercambiar	un	servidor	compatible
con	 subprocesos	 por	 otro	 incompatible	 en	 caso	 de	 desarrollo	 de	 un	 solo
subproceso,	lo	que	evita	la	sobrecarga.
Reduce	las	posibilidades	de	error:	Sólo	se	necesita	un	programador	que	se
olvide	del	bloqueo.
Aplica	una	única	política:	La	política	se	aplica	solamente	al	servidor,	no	a
todos	los	clientes.
Reduce	el	ámbito	de	 las	variables	compartidas:	El	cliente	 las	desconoce	y
tampoco	sabe	cómo	se	bloquean.	Todo	se	oculta	en	el	servidor.	Cuando	se
produce	un	fallo,	su	origen	se	busca	en	menos	puntos.

¿Y	si	no	es	el	propietario	del	código	de	servidor?
	

Usar	un	adaptador	para	cambiar	la	API	y	añadir	bloqueo

public	class	ThreadSafeIntegerIterator	{

private	IntegerIterator	iterator	=	new	IntegerIterator();

public	synchronized	Integer	getNextOrNull()	{

if(iterator.hasNext())

return	iterator.next();

return	null;

}

}

	

Mejor	todavía,	usar	colecciones	compatibles	con	subprocesos	con	interfaces
ampliadas.

Aumentar	la	producción

Imagine	que	desea	leer	el	contenido	de	una	serie	de	páginas	de	una	lista	de	URL
en	la	red.	Al	leer	cada	página,	la	analizamos	para	acumular	estadísticas.	Después
de	leer	todas,	imprimimos	un	informe	de	resumen.

La	siguiente	clase	devuelve	el	contenido	de	una	página,	dada	una	URL.
public	class	PageReader	{

//…

public	String	getPageFor(String	url)	{

HttpMethod	method	=	new	GetMethod(url);

try	{

httpClient.executeMethod(method);

String	response	=	method.getResponseBodyAsString();

return	response;

}	catch	(Exception	e)	{

handle(e);

}	finally	{

method.releaseConnection();

}

}

}

La	siguiente	clase	es	el	iterador	que	proporciona	el	contenido	de	las	páginas
en	función	de	un	iterador	de	URL:

public	class	PageIterator	{

private	PageReader	reader;

private	URLIterator	urls;

public	PageIterator(PageReader	reader,	URLIterator	urls)	{

this.urls	=	urls;

this.reader	=	reader;

}

public	synchronized	String	getNextPageOrNull()	{

if	(urls.hasNext())

getPageFor(urls.next());

else

return	null;

}

public	String	getPageFor(String	url)	{

return	reader.getPageFor(ur1);

}

}

Se	 puede	 compartir	 una	 instancia	 de	 PageIterator	 entre	 varios
subprocesos	distintos,	cada	uno	con	su	propia	instancia	de	PageReader	para	leer
las	páginas	que	obtiene	del	iterador.

Hemos	 reducido	 el	 tamaño	 del	 bloque	 synchronized.	 Simplemente
contiene	 la	 sección	 crítica	 de	 PageIterator.	 Siempre	 conviene	 sincronizar	 lo
menos	posible.

Cálculo	de	producción	de	un	solo	subproceso
Vayamos	 con	 los	 cálculos.	 Imagine	 lo	 siguiente,	 de	 acuerdo	 al	 argumento
anterior:
	

Tiempo	de	E/S	para	recuperar	una	página	(de	media):	1	segundo.
Tiempo	de	procesamiento	para	analizar	la	página	(de	media):	.5	segundos.
E/S	requiere	0	por	100	de	 la	CPU	mientras	que	el	procesamiento	requiere
100	por	100.

Si	se	procesan	N	páginas	en	un	mismo	subproceso,	el	tiempo	de	ejecución
total	es	de	1.5	segundos	*	N.	En	la	figura	A.1	puede	ver	una	instantánea	de	13
páginas,	aproximadamente	19.5	segundos.

Figura	A.1.	Un	único	subproceso

Cálculo	de	producción	con	varios	subprocesos
Si	 se	 pueden	 recuperar	 páginas	 en	 cualquier	 orden	 y	 procesarlas	 de	 forma
independiente,	 entonces	 es	 posible	 usar	 varios	 subprocesos	 para	 aumentar	 la
producción.	 ¿Qué	 sucede	 si	 usamos	 tres	 subprocesos?	 ¿Cuántas	 páginas
podemos	obtener	en	el	mismo	tiempo?

Como	se	aprecia	en	la	figura	A.2,	la	solución	con	varios	procesos	permite
que	el	análisis	de	las	páginas	vinculado	al	proceso	se	solape	con	la	lectura	de	las
mismas,	vinculada	a	E/S.	En	un	mundo	 ideal,	 significaría	que	el	procesador	se
utiliza	totalmente.	Cada	lectura	de	página	por	segundo	se	solapa	con	dos	análisis.
Por	 tanto,	 podemos	 procesar	 dos	 páginas	 por	 segundo,	 lo	 que	 triplica	 la
producción	de	la	solución	con	un	solo	proceso.

Figura	A.2.	Tres	subprocesos	concurrentes.

Bloqueo	mutuo

Imagine	una	aplicación	Web	con	dos	agrupaciones	de	 recursos	compartidos	de
tamaño	finito:
	

Una	 agrupación	 de	 conexiones	 de	 base	 de	 datos	 para	 tareas	 locales	 de
almacenamiento	de	procesos.
Una	agrupación	de	conexiones	MQ	a	un	repositorio	principal.

Imagine	que	hay	dos	operaciones	en	la	aplicación:	crear	y	actualizar:
	

Crear:	 Adquirir	 una	 conexión	 al	 repositorio	 principal	 y	 la	 base	 de	 datos.
Comunicarse	 con	 el	 repositorio	 principal	 y	 después	 almacenar	 el	 trabajo
local	en	la	base	de	datos	de	procesos.
Actualizar:	 Adquirir	 una	 conexión	 a	 la	 base	 de	 datos	 y	 después	 al
repositorio	 principal.	 Leer	 el	 trabajo	 de	 la	 base	 de	 datos	 y	 enviarlo	 al
repositorio	principal.

¿Qué	 sucede	 con	 los	 usuarios	 que	 superan	 el	 tamaño	 de	 la	 agrupación?
Imagine	que	el	tamaño	de	cada	agrupación	es	10.
	

10	usuarios	intentan	usar	crear,	de	modo	que	se	adquieren	diez	conexiones

de	 base	 de	 datos	 y	 cada	 subproceso	 se	 interrumpe	 después	 de	 esta
adquisición	pero	antes	de	adquirir	una	conexión	al	repositorio	principal.
10	 usuarios	 intentan	 usar	 actualizar,	 de	 modo	 que	 se	 adquieren	 las	 diez
conexiones	 al	 repositorio	 principal	 y	 cada	 subproceso	 se	 interrumpe
después	 de	 adquirir	 el	 repositorio	 principal	 pero	 antes	 de	 adquirir	 una
conexión	a	la	base	de	datos.
Ahora	 los	 10	 subprocesos	 crear	 deben	 esperar	 a	 adquirir	 una	 conexión	 al
repositorio	 principal	 pero	 los	 10	 subprocesos	 actualizar	 deben	 esperar	 a
adquirir	una	conexión	a	la	base	de	datos.
Bloqueo	mutuo.	El	sistema	no	se	recupera	nunca.

Puede	parecerle	una	situación	improbable	pero	¿quién	desea	un	sistema	que
se	 colapsa	 cada	 semana?	 ¿Quién	 quiere	 depurar	 un	 sistema	 con	 síntomas	 tan
difíciles	de	reproducir?	Es	el	tipo	de	problema	que	tarda	semanas	en	resolverse.

Una	solución	habitual	consiste	en	añadir	 instrucciones	de	depuración	para
determinar	 qué	 sucede.	 Evidentemente,	 estas	 instrucciones	 cambian	 tanto	 el
código	 que	 el	 bloqueo	mutuo	 se	 genera	 en	 otras	 situaciones	 y	 tarda	meses	 en
volver	a	producirse[121].

Para	 solucionar	 realmente	 el	 problema	 del	 bloqueo	 absoluto,	 debemos
entender	sus	causas.	Para	que	se	produzca,	deben	darse	cuatro	condiciones:
	

Exclusión	mutua.
Bloqueo	y	espera.
No	expropiación.
Espera	circular.

Exclusión	mutua
La	 exclusión	 mutua	 se	 produce	 cuando	 varios	 subprocesos	 deben	 usar	 los
mismos	recursos	y	dichos	recursos
	

No	se	pueden	usar	en	varios	subprocesos	al	mismo	tiempo.
Son	de	número	limitado.

Un	ejemplo	típico	de	este	tipo	de	recurso	es	una	conexión	de	base	de	datos,
un	archivo	abierto	para	escritura,	un	bloqueo	de	registro	o	un	semáforo.

Bloqueo	y	espera
Cuando	un	subproceso	adquiere	un	recurso,	no	lo	libera	hasta	adquirir	los	demás
recursos	que	necesita	y	terminar	su	trabajo.

No	expropiación
Un	 subproceso	 no	 puede	 adueñarse	 de	 los	 recursos	 de	 otro.	 Cuando	 un
subproceso	obtiene	un	recurso,	 la	única	forma	de	que	otro	lo	consiga	es	que	el
primero	lo	libere.

Espera	circular
También	se	denomina	abrazo	mortal.	Imagine	dos	subprocesos,	T1	y	T2,	y	dos
recursos,	 R1	 y	 R2.	 T1	 tiene	 R1,	 T2	 tiene	 R2.	 T1	 también	 necesita	 R2	 y	 T2
también	necesita	R1.	Es	similar	al	diagrama	de	la	figura	A.3:

Figura	A.3.

Estas	cuatro	condiciones	deben	cumplirse	para	que	se	produzca	un	bloqueo
mutuo.	Si	se	incumple	alguna	de	ellas,	no	se	producirá.

Evitar	la	exclusión	mutua
Una	estrategia	para	evitar	el	bloqueo	mutuo	es	impedir	la	condición	de	exclusión
mutua,	por	medio	de	lo	siguiente:
	

Usar	recursos	que	permitan	un	uso	simultáneo,	como	por	ejemplo,

AtomicInteger.
	

Incrementar	 el	 número	 de	 recursos	 para	 que	 sea	 igual	 o	 mayor	 que	 el
número	de	subprocesos	implicados.
Comprobar	que	todos	los	recursos	están	libres	antes	de	adquirir	ninguno.

Desafortunadamente,	la	mayoría	de	recursos	son	limitados	y	no	permiten	un
uso	simultáneo,	y	es	habitual	que	la	identidad	del	segundo	recurso	se	base	en	los
resultados	de	operar	sobre	el	primero,	pero	no	se	desanime,	todavía	quedan	tres
condiciones.

Evitar	bloqueo	y	espera
También	puede	eliminar	el	bloqueo	mutuo	si	rechaza	la	espera.	Compruebe	cada
uno	de	los	recursos	antes	de	obtenerlos	y	libere	todos	los	recursos	y	comience	de
nuevo	si	detecta	uno	que	esté	ocupado.	Este	enfoque	genera	algunos	problemas:
	

Inanición:	 Un	 subproceso	 no	 consigue	 adquirir	 los	 recursos	 que	 necesita
(puede	 que	 tenga	 una	 combinación	 exclusiva	 de	 recursos	 que	 casi	 nunca
esté	disponible).
Bloqueo	activo:	Varios	subprocesos	pueden	actuar	al	unísono,	adquirir	un
recurso	 y	 liberarlo,	 de	 forma	 repetida.	 Es	 especialmente	 probable	 en
algoritmos	 de	 programación	 de	 CPU	 simples	 (como	 dispositivos
incrustados	o	algoritmos	de	equilibrio	de	subprocesos	escritos	a	mano).

En	 ambos	 casos,	 se	 puede	 reducir	 la	 producción.	 El	 primero	 reduce	 la
utilización	de	la	CPU,	mientras	que	el	segundo	genera	una	elevada	utilización	de
la	CPU	sin	sentido.

Aunque	esta	estrategia	parezca	ineficaz,	es	mejor	que	nada.	Como	ventaja,
siempre	se	puede	implementar	si	todo	lo	demás	falla.

Evitar	la	expropiación
Otra	estrategia	para	evitar	el	bloqueo	mutuo	consiste	en	permitir	que	 todos	 los
subprocesos	se	apropien	de	los	recursos	de	otros.	Suele	realizarse	a	través	de	un

sencillo	mecanismo	de	solicitudes.	Cuando	un	subproceso	descubre	que	hay	un
recurso	ocupado,	le	solicita	al	propietario	que	lo	libere.	Si	el	propietario	también
espera	a	otro	recurso,	lo	libera	y	comienza	de	nuevo.

Es	 similar	 al	 enfoque	 anterior,	 pero,	 como	 ventaja,	 un	 subproceso	 puede
esperar	 a	 un	 recurso,	 lo	 que	 reduce	 el	 número	 de	 reinicios.	 Sin	 embargo,	 la
gestión	de	todas	estas	solicitudes	puede	resultar	complicada.

Evitar	la	espera	circular
Es	 el	 enfoque	más	 habitual	 para	 impedir	 el	 bloqueo	mutuo.	 En	 la	mayoría	 de
sistemas,	basta	con	una	sencilla	convención	acordada	entre	ambas	partes.

En	el	ejemplo	anterior	del	subproceso	1	que	quiere	tanto	el	recurso	1	como
el	2,	y	el	subproceso	2	que	desea	tanto	el	recurso	2	como	el	1,	al	forzar	a	ambos
subprocesos	 a	 que	 asignen	 los	 recursos	 en	 el	 mismo	 orden	 se	 imposibilita	 la
espera	circular.

En	general,	si	todos	los	subprocesos	pueden	acordar	un	orden	global	de	los
recursos	 y	 si	 todos	 asignan	 los	 recursos	 en	 ese	 orden,	 el	 bloqueo	 mutuo	 es
imposible.	 Pero	 como	 todas	 las	 estrategias,	 también	 se	 pueden	 producir
problemas:
	

El	orden	de	adquisición	puede	no	corresponderse	al	orden	de	uso;	por	tanto,
un	recurso	adquirido	al	inicio	puede	que	no	se	use	hasta	el	final.	Esto	puede
bloquear	recursos	más	tiempo	de	lo	estrictamente	necesario.
En	ocasiones	no	se	puede	imponer	un	orden	de	adquisición	de	recursos.	Si
el	 ID	 del	 segundo	 recurso	 proviene	 de	 una	 operación	 realizada	 en	 el
primero,	ese	orden	no	es	factible.

Por	 tanto,	 existen	 varias	 formas	 de	 evitar	 el	 bloqueo	 mutuo.	 Algunas
provocan	 inanición,	 mientras	 que	 otras	 usan	 la	 CPU	 en	 exceso	 y	 reducen	 la
capacidad	de	respuesta.	¡TANSTAAFL![122]

El	aislamiento	de	la	parte	relacionada	con	subprocesos	de	su	solución	para
permitir	 ajustes	 y	 experimentación	 es	 una	 forma	 de	 aprender	 a	 determinar	 las
estrategias	óptimas.

Probar	código	con	múltiples	subprocesos

¿Cómo	se	puede	crear	una	prueba	que	demuestre	que	el	siguiente	código	no	es

correcto?
	01:	 	public	class	ClassWithThreadingProblem	{	

	02:	 	int	nextId;	

	03:	

	04:	 	public	int	takeNextId()	{	

	05:	 	return	nextId++;	

	06:	 	}	

	07:	 	}	

Veamos	la	descripción	de	una	prueba	que	lo	demuestre:
	

Recordar	el	valor	actual	de	nextId.
Crear	dos	subprocesos	y	que	cada	uno	invoque	takeNextId()	una	vez.
Comprobar	que	el	valor	de	nextId	es	dos	más	que	el	inicial.
Ejecutar	hasta	demostrar	que	nextId	sólo	se	ha	incrementado	en	uno	y	no
en	dos.

En	el	Listado	A-2	se	reproduce	la	prueba:

Listado	A-2
ClassWithThreadingProblemTest.java.

	01:	 	package	example;	

	02:	

	03:	 	import	static	org.junit.Assert.fail;	

	04:	

	05:	 	import	org.junit.Test;	

	06:	

	07:	 	public	class	ClassWithThreadingProblemTest	{	

	08:	 	@Test	

	09:	 	public	void	twoThreadsShouldFailEventually()	throws	Exception	{	

	10:	 	final	ClassWithThreadingProblem	classWithThreadingProblem	

		 	=	new	ClassWithThreadingProblem();	

	11:	

	12:	 	Runnable	runnable	=	new	Runnable()	{	

	13:	 	public	void	run()	{	

	14:	 	ClassWithThreadingProblem.takeNextId();	

	15:	 	}	

	16:	 	};	

	17:	

	18:	 	for	(int	i	=	0;	i	<	50000;	++i)	{	

	19:	 	int	startingId	=	classWithThreadingProblem.lastId;	

	20:	 	int	expectedResult	=	2	+	startingId;	

	21:	

	22:	 	Thread	t1	=	new	Thread(runnable);	

	23:	 	Thread	t2	=	new	Thread(runnable);	

	24:	 	t1.start();	

	25:	 	t2.start();	

	26:	 	t1.join();	

	27:	 	t2.join();	

	28:	

	29:	 	int	endingId	=	classWithThreadingProblem.lastId;	

	30:	

	31:	 	if	(endingId	!=	expectedResult)	

	32:	 	return;	

	33:	 	}	

	34:	

	35:	 	fail(“Should	have	exposed	a	threading	issue	but	it	did	not.”);	

	36:	 	}	

	37:	 	}	

	Línea	 	Descripción	
	10	 	Crear	una	sola	instancia	de	ClassWithThreadingProblem	.	Debemos

usar	la	palabra	clave	final	ya	que	se	usa	después	en	una	clase	interna
anónima.

	12-16	 	Crear	una	clase	interna	anónima	que	use	la	instancia	de
ClassWithThreadingProblem	.

	18	 	Ejecutar	este	código	hasta	demostrar	que	falla,	pero	no	tanto	como	para
que	la	prueba	tarde	demasiado.	Es	un	acto	de	equilibrio;	no	queremos
esperar	demasiado	para	demostrar	el	fallo.	Elegir	la	cantidad	de
ejecuciones	es	complicado,	aunque	como	veremos	después,	esta	cifra	se
puede	reducir	considerablemente.	

	19	 	Recordar	el	valor	inicial,	la	prueba	intenta	demostrar	que	el	código	de
ClassWithThreadingProblem		es	incorrecto.	Si	se	supera	la	prueba,	lo
habrá	demostrado.	Si	la	prueba	falla,	habrá	sido	incapaz	de	demostrarlo.

	20	 	Esperamos	que	el	valor	final	sea	dos	más	que	el	actual.	
	22-23	 	Crear	dos	subprocesos	que	usen	el	objeto	creado	en	las	líneas	12-16.	De

este	modo	contamos	con	dos	posibles	subprocesos	que	intentan	usar
nuestra	instancia	de	ClassWithThreadingProblem		y	ambos	interfieren
entre	sí.

	24-25	 	Hacer	que	los	dos	subprocesos	se	puedan	ejecutar.	
	26-27	 	Esperar	a	que	terminen	los	dos	subprocesos	antes	de	comprobar	los

resultados.	
	29	 	Registrar	el	valor	final.	
	31-32	 	¿Es	diferente	endingId		a	lo	que	esperábamos?	En	caso	afirmativo,	se

finaliza	la	prueba;	hemos	demostrado	que	el	código	es	incorrecto.	En
caso	negativo,	volver	a	intentarlo.

	35	 	Si	hemos	llegado	hasta	aquí,	la	prueba	no	ha	podido	demostrar	que	el
código	de	producción	era	incorrecto	en	una	cantidad	de	tiempo
razonable;	el	código	ha	fallado.	O	no	es	incorrecto	o	no	hemos	realizado
suficientes	iteraciones	para	que	se	produzca	la	condición	de	fallo.	

Esta	 prueba	 establece	 las	 condiciones	 de	 un	 problema	 de	 actualización

concurrente.	Sin	embargo,	el	problema	es	tan	infrecuente	que	la	mayoría	de	las
veces	la	prueba	no	lo	detecta.

En	 realidad,	 para	 detectar	 el	 problema	 debemos	 establecer	 el	 número	 de
iteraciones	en	más	de	un	millón.	Incluso	con	esa	cantidad,	en	diez	ejecuciones	de
un	bucle	de	1	000	000,	el	problema	sólo	apareció	una	vez,	lo	que	significa	que
debemos	 aumentar	 las	 iteraciones	 para	 obtener	 fallos	 fiables.	 ¿Cuánto	 estamos
dispuestos	a	esperar?

Aunque	 ajustáramos	 la	 prueba	 para	 obtener	 fallos	 fiables	 en	 un	 equipo,
seguramente	 tendríamos	que	ajustarla	con	otros	valores	para	 ilustrar	el	 fallo	en
otro	equipo,	sistema	operativo	o	versión	de	la	MVJ.

Y	es	un	problema	sencillo.	Si	no	podemos	demostrarlo,	¿qué	pasará	cuando
detectemos	problemas	realmente	complejos?

¿Qué	 enfoques	 debemos	 adoptar	 para	 demostrar	 este	 sencillo	 fallo?	 Y,
sobre	 todo,	¿cómo	podemos	crear	pruebas	que	demuestren	 fallos	en	un	código
más	 complejo?	 ¿Cómo	 podremos	 saber	 si	 el	 código	 tiene	 fallos	 cuando	 ni
siquiera	sabemos	dónde	buscar?

Veamos	algunas	sugerencias:
	

Pruebas	 Monte	 Carlo:	 Crear	 pruebas	 flexibles	 que	 se	 puedan	 ajustar.
Después,	ejecutarlas	repetidamente,	por	ejemplo,	en	un	servidor	de	prueba,
y	 cambiar	 los	 valores	 de	 ajuste	 aleatoriamente.	 Si	 las	 pruebas	 fallan,	 el
código	es	 incorrecto.	Diseñe	las	pruebas	en	las	fases	 iniciales	para	que	un
servidor	 de	 integración	 continua	 las	 ejecute	 lo	 antes	 posible.	 Registre	 las
condiciones	de	fallo	de	las	pruebas.
Ejecutar	la	prueba	en	todas	las	plataformas	de	desarrollo:	De	forma	repetida
y	 continuada.	 Cuanto	más	 tiempo	 se	 ejecuten	 las	 pruebas	 sin	 fallos,	más
probable	es	que

El	código	de	producción	sea	correcto	o
Las	pruebas	no	sean	adecuadas	para	revelar	los	problemas.

Ejecutar	 las	 pruebas	 en	 un	 equipo	 con	 distintas	 cargas:	 Si	 puede	 simular
cargas	similares	a	las	del	entorno	de	producción,	hágalo.

Sin	embargo,	aunque	realice	todos	estos	pasos,	no	es	probable	que	detecte
problemas	de	subprocesos	en	el	código.	Los	problemas	más	complicados	son	los
que	sólo	se	producen	una	vez	cada	mil	millones	de	oportunidades.	Son	el	azote
de	los	sistemas	complejos.

Herramientas	para	probar	código	basado	en
subprocesos

IBM	ha	creado	la	herramienta	ConTest[123].	Lo	que	hace	es	instrumentar	las	clases
para	aumentar	las	probabilidades	de	que	falle	el	código	sin	subprocesos.

No	tenemos	relación	directa	con	IBM	ni	con	el	equipo	que	ha	desarrollado
ConTest.	Un	 colega	 nos	 la	 descubrió.	 Tras	 varios	minutos	 de	 usarla,	 notamos
una	gran	mejoría	en	la	detección	de	errores.

A	continuación,	le	indicamos	cómo	usar	ConTest:
	

Crear	 pruebas	 y	 código	 de	 producción,	 asegurándonos	 que	 haya	 pruebas
diseñadas	 específicamente	 para	 simular	 varios	 usuarios	 con	 diferentes
cargas,	como	mencionamos	antes.
Instrumentar	el	código	de	pruebas	y	producción	con	ConTest.
Ejecutar	las	pruebas.

Al	instrumentar	el	código	con	ConTest,	la	tasa	de	éxito	pasó	de	un	fallo	por
cada	millón	de	iteraciones	a	un	fallo	en	30	iteraciones.	Los	valores	de	bucle	de
las	distintas	ejecuciones	de	la	prueba	tras	la	instrumentación	son	los	siguientes:
13,	23,	0,	54,	16,	14,	6,	69,	107,	49,	2.	Evidentemente,	las	clases	instrumentadas
fallaban	antes	y	con	mayor	fiabilidad.

Conclusión

En	 este	 capítulo	 hemos	 realizado	 un	 breve	 recorrido	 por	 el	 vasto	 y	 complejo
territorio	de	la	programación	concurrente.	Apenas	hemos	mostrado	la	superficie.
Nos	 hemos	 centrado	 en	 disciplinas	 para	 mantener	 la	 limpieza	 del	 código
concurrente,	pero	hay	mucho	más	que	aprender	si	tiene	pensado	diseñar	sistemas
concurrentes.	 Le	 recomendamos	 que	 empiece	 por	 el	 libro	 de	 Doug	 Lea
Concurrent	Programming	in	Java:	Design	Principles	and	Patterns[124].

En	 este	 capítulo	 hemos	 presentado	 la	 actualización	 concurrente	 y	 las
disciplinas	 de	 sincronización	 y	 bloqueo	 para	 evitarla.	 Hemos	 visto	 cómo	 los
subprocesos	pueden	mejorar	la	producción	de	un	sistema	vinculado	a	E/S	y	las
técnicas	limpias	para	lograr	dichas	mejoras.	Hemos	descrito	el	bloqueo	mutuo	y
las	disciplinas	para	evitarlo	de	forma	limpia.

Por	 último,	 hemos	 analizado	 estrategias	 para	 mostrar	 problemas	 de

concurrencia	mediante	la	instrumentación	del	código.

Ejemplos	de	código	completos

Cliente/Servidor	sin	subprocesos

Listado	A-3
Server.java

package	com.objectmentor.clientserver.nonthreaded;

import	java.io.IOException;

import	java.net.ServerSocket;

import	java.net.Socket;

import	java.net.SocketException;

import	common.MessageUtils;

public	class	Server	implements	Runnable	{

ServerSocket	serverSocket;

volatile	boolean	keepProcessing	=	true;

public	Server(int	port,	int	millisecondsTimeout)	throws	IOException	{

serverSocket	=	new	ServerSocket(port);

serverSocket.setSoTimeout(millisecondsTimeout);

}

public	void	run()	{

System.out.printf(“Server	Starting\n”);

while	(keepProcessing)	{

try	{

System.out.printf(“accepting	client\n”);

Socket	socket	=	serverSocket.accept();

System.out.printf(“got	client\n”);

process(socket);

}	catch	(Exception	e)	{

handle(e);

}

}

}

private	void	handle(Exception	e)	{

if	(!(e	instanceof	SocketException))	{

e.printStackTrace();

}

}

public	void	stopProcessing()	{

keepProcessing	=	false;

closeIgnoringException(serverSocket);

}

void	process(Socket	socket)	{

if	(socket	==	null)

return;

try	{

System.out.printf(“Server:	getting	message\n”);

String	message	=	MessageUtils.getMessage(socket);

System.out.printf(“Server:	got	message:	%s\n”,	message);

Thread.sleep(1000);

System.out.printf(“Server:	sending	reply:	%s\n”,	message);

MessageUtils.sendMessage(socket,	“Processed:	”	+	message);

System.out.printf(“Server:	sent\n”);

closeIgnoringException(socket);

}	catch	(Exception	e)	{

e.printStackTrace();

}

}

private	void	closeIgnoringException(Socket	socket)	{

if	(socket	!=	null)

try	{

socket.close();

}	catch	(IOException	ignore)	{

}

}

private	void	closeIgnoringException(ServerSocket	serverSocket)	{

if	(serverSocket	!=	null)

try	{

serverSocket.close();

}	catch	(IOException	ignore)	{

}

}

}

Listado	A-4
ClientTest.java.

package	com.objectmentor.clientserver.nonthreaded;

import	java.io.IOException;

import	java.net.ServerSocket;

import	java.net.Socket;

import	java.net.SocketException;

import	common.MessageUtils;

public	class	Server	implements	Runnable	{

ServerSocket	serverSocket;

volatile	boolean	keepProcessing	=	true;

public	Server(int	port,	int	millisecondsTimeout)	throws	IOException	{

serverSocket	=	new	ServerSocket(port);

serverSocket.setSoTimeout(millisecondsTimeout);

}

public	void	run()	{

System.out.printf(“Server	Starting\n”);

while	(keepProcessing)	{

try	{

System.out.printf(“accepting	client\n”);

Socket	socket	=	serverSocket.accept();

System.out.printf(“got	client\n”);

process(socket);

}	catch	(Exception	e)	{

handle(e);

}

}

}

private	void	handle(Exception	e)	{

if	(!(e	instanceof	SocketException))	{

e.printStackTrace();

}

}

public	void	stopProcessing()	{

keepProcessing	=	false;

closeIgnoringException(serverSocket);

}

void	process(Socket	socket)	{

if	(socket	==	null)

return;

try	{

System.out.printf(“Server:	getting	message\n”);

String	message	=	MessageUtils.getMessage(socket);

System.out.printf(“Server:	got	message:	%s\n”,	message);

Thread.sleep(1000);

System.out.printf(“Server:	sending	reply:	%s\n”,	message);

MessageUtils.sendMessage(socket,	“Processed:	”	+	message);

System.out.printf(“Server:	sent\n”);

closeIgnoringException(socket);

}	catch	(Exception	e)	{

e.printStackTrace();

}

}

private	void	closeIgnoringException(Socket	socket)	{

if	(socket	!=	null)

try	{

socket.close();

}	catch	(IOException	ignore)	{

}

}

private	void	closeIgnoringException(ServerSocket	serverSocket)	{

if	(serverSocket	!=	null)

try	{

serverSocket.close();

}	catch	(IOException	ignore)	{

}

}

}

Listado	A-5
MessageUtils.java.

package	common;

import	java.io.IOException;

import	java.io.InputStream;

import	java.io.ObjectInputStream;

import	java.io.ObjectOutputStream;

import	java.io.OutputStream;

import	java.net.Socket;

public	class	MessageUtils	{

public	static	void	sendMessage(Socket	socket,	String	message)

throws	IOException	{

OutputStream	stream	=	socket.getOutputStream();

ObjectOutputStream	oos	=	new	ObjectOutputStream(stream);

oos.writeUTF(message);

oos.flush();

}

public	static	String	getMessage(Socket	socket)	throws	IOException	{

InputStream	stream	=	socket.getInputStream();

ObjectInputStream	ois	=	new	ObjectInputStream(stream);

return	ois.readUTF();

}

}

Cliente/Servidor	con	subprocesos
Para	cambiar	el	servidor	para	que	use	subprocesos	basta	con	cambiar	el	mensaje
process	(las	nuevas	líneas	se	muestran	en	negrita	para	destacarlas):

void	process(final	Socket	socket)	{

if	(socket	==	null)

return;

Runnable	clientHandler	=	new	Runnable()	{
public	void	run()	{

try	{

System.out.printf(“Server:	getting	message\n”);

String	message	=	MessageUtils.getMessage(socket);

System.out.printf(“Server:	got	message:	%s\n”,	message);

Thread.sleep(1000);

System.out.printf(“Server:	sending	reply:	%s\n”,	message);

MessageUtils.sendMessage(socket,	“Processed:	”	+	message);

System.out.printf(“Server:	sent\n”);

closeIgnoringException(socket);

}	catch	(Exception	e)	{

e.printStackTrace();

}

}

};

Thread	clientConnection	=	new	Thread(clientHandler);
clientConnection.start();

}

Apéndice	B
org.jfree.date.SerialDate

Listado	B-1
SerialDate.Java

	1	 	/*==	

	2	 	*	JCommon:	biblioteca	gratuita	de	clases	de	propósito	general	para	Java(tm)	

	3	 	*==	

	4	 	*	

	5	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	colaboradores.	

	6	 	*	

	7	 	*	Información	del	proyecto:	http://www.jfree.org/jcommon/index.html	

	8	 	*	

	9	 	*	Esta	biblioteca	es	software	gratuito;	puede	distribuirla	y/o	modificarla	

	10	 	*	bajo	las	condiciones	de	la	Licencia	pública	general	GNU	publicada	por	

	11	 	*	la	Free	Software	Foundation;	ya	sea	la	versión	2.1	de	la	licencia,	u	

	12	 	*	otra	versión	posterior	(de	su	elección).	

	13	 	*	

	14	 	*	Esta	biblioteca	se	distribuye	con	la	intención	de	que	sea	útil,	pero	

	15	 	*	SIN	GARANTÍA	ALGUNA,	incluida	la	garantía	implícita	de	COMERCIABILIDAD	

	16	 	*	e	IDONEIDAD	PARA	UN	DETERMINADO	FIN.	Consulte	la	Licencia	

	17	 	*	pública	general	GNU	si	necesita	más	información	al	respecto.	

	18	 	*	

	19	 	*	Debería	haber	recibido	una	copia	de	la	Licencia	pública	general	GNU	

	20	 	*	junto	a	esta	biblioteca;	en	caso	contrario,	contacte	con	la	Free	Software	

	21	 	*	Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301,	

	22	 	*	EE.UU.	

	23	 	*	

	24	 	*	[Java	es	una	marca	comercial	o	marca	comercial	registrada	de	Sun	

	25	 	*	Microsystems,	Inc.	en	Estados	Unidos	y	otros	países.]	

	26	 	*	

	27	 	*	------------------	

	28	 	*	SerialDate.java	

	29	 	*	------------------	

	30	 	*	(C)	Copyright	2001-2005,	de	Object	Refinery	Limited.	

	31	 	*	

	32	 	*	Autor	original:	David	Gilbert	(para	Object	Refinery	Limited);	

	33	 	*	Colaborador(es):	-;	

	34	 	*	

	35	 	*	$Id:	SerialDate.java,v	1.7	2005/11/03	09:25:17	mungady	Exp	$	

	36	 	*	

	37	 	*	Cambios	(11-Oct-2001)	

	38	 	*	--------------------------------------	

	39	 	*	11-Oct-2001:	Reorganización	de	la	clase	y	cambio	a	un	nuevo	paquete	

	40	 	*	com.jrefinery.date	(DG);	

	41	 	*	05-Nov-2001:	Se	añade	un	método	getDescription()	y	se	elimina	la	clase	

	42	 	*	NotableDate	(DG);	

	43	 	*	12-Nov-2001:	IBD	requiere	el	método	setDescription(),	una	vez	eliminada	la	clase	

	44	 	*	NotableDate	(DG);	Se	cambian	getPreviousDayOfWeek(),	

	45	 	*	getFollowingDayOfWeek()	y	getNearestDayOfWeek()	para	corregir	

	46	 	*	errores	(DG);	

	47	 	*	05-Dic-2001:	Error	corregido	en	la	clase	SpreadsheetDate	(DG);	

	48	 	*	29-May-2002:	Se	transfieren	las	constantes	de	mes	a	una	interfaz	independiente	

	49	 	*	(MonthConstants)	(DG);	

	50	 	*	27-Ago-2002:	Error	corregido	en	el	método	addMonths(),	gracias	a	Nálevka	Petr	(DG);	

	51	 	*	03-Oct-2002:	Errores	indicados	por	Checkstyle	(DG)	corregidos;	

	52	 	*	13-Mar-2003:	Implementación	de	Serializable	(DG);	

	53	 	*	29-May-2003:	Error	corregido	en	el	método	addMonths	(DG);	

	54	 	*	04-Sep-2003:	Implementación	de	Comparable.	Actualización	de	los	javadoc	isInRange	(DG);	

	55	 	*	05-Ene-2005:	Error	corregido	en	el	método	addYears()	(1096282)	(DG);	

	56	 	*	

	57	 	*/	

	58	

	59	 	package	org.jfree.date;	

	60	

	61	 	import	java.io.Serializable;	

	62	 	import	java.text.DateFormatSymbols;	

	63	 	import	java.text.SimpleDateFormat;	

	64	 	import	java.util.Calendar;	

	65	 	import	java.util.GregorianCalendar;	

	66	

	67	 	/**	

	68	 	*	Clase	abstracta	que	define	nuestros	requisitos	para	manipular	fechas,	

	68	 	*	sin	limitación	a	una	determinada	implementación.	

	70	 	*	<P>	

	71	 	*	Requisito	1:	coincidir	al	menos	con	el	procesamiento	de	fechas	en	Excel;	

	72	 	*	Requisito	2:	la	clase	es	inmutable;	

	73	 	*	<P>	

	74	 	*	¿Por	qué	no	usar	java.util.Date?	Lo	haremos,	cuando	tenga	sentido.	En	ocasiones,	

	75	 	*	java.util.Date	puede	ser	demasiado	precisa;	representa	un	instante	en	el	tiempo,	

	76	 	*	con	una	precisión	de	1/1000	de	segundo	(y	la	fecha	depende	de	la	

	77	 	*	zona	horaria).	En	ocasiones	sólo	querremos	representar	un	día	concreto	(como	el	21	

	78	 	*	de	enero	de	2015)	sin	preocuparnos	de	la	hora	del	día,	la	

	79	 	*	zona	horaria	u	otros	aspectos.	Para	eso	hemos	definido	DayDate.	

	80	 	*	<P>	

	81	 	*	Puede	invocar	getInstance()	para	obtener	una	subclase	concreta	de	SerialDate,	

	82	 	*	sin	preocuparse	de	su	implementación	exacta	

	83	 	*	

	84	 	*	@author	David	Gilbert	

	85	 	*/	

	86	 	public	abstract	class	SerialDate	implements	Comparable,	

	87	 	Serializable,	

	88	 	MonthConstants	{	

	89	

	90	 	/**	Para	serialización.	*/	

	91	 	private	static	final	long	serialVersionUID	=	-293716040467423637L;	

	92	

	93	 	/**	Símbolos	de	formato	de	fecha.	*/	

	94	 	public	static	final	DateFormatSymbols	

	95	 	DATE_FORMAT_SYMBOLS	=	new	SimpleDateFormat().getDateFormatSymbols();	

	96	

	97	 	/**	Número	de	serie	para	el	1	de	enero	de	1900.	*/	

	98	 	public	static	final	int	SERIAL_LOWER_BOUND	=	2;	

	99	

	100	 	/**	Número	de	serie	para	el	31	de	diciembre	de	9999.	*/	

	101	 	public	static	final	int	SERIAL_UPPER_BOUND	=	2958465;	

	102	

	103	 	/**	Valor	de	año	más	bajo	admitido	por	este	formato	de	fecha.	*/	

	104	 	public	static	final	int	MINIMUM_YEAR_SUPPORTED	=	1900;	

	105	

	106	 	/**	Valor	de	año	más	alto	admitido	por	este	formato	de	fecha.	*/	

	107	 	public	static	final	int	MAXIMUM_YEAR_SUPPORTED	=	9999;	

	108	

	109	 	/**	Constante	útil	para	lunes;	equivale	a	java.util.Calendar.MONDAY.	*/	

	110	 	public	static	final	int	MONDAY	=	Calendar.MONDAY;	

	111	

	112	 	/**	

	113	 	*	Constante	útil	para	martes;	equivale	a	java.util.Calendar.TUESDAY.	

	114	 	*	/	

	115	 	public	static	final	int	TUESDAY	=	Calendar.TUESDAY;	

	116	

	117	 	/**	

	118	 	*	Constante	útil	para	miércoles;	equivale	a	

	119	 	*	java.util.Calendar.WEDNESDAY.	

	120	 	*/	

	121	 	public	static	final	int	WEDNESDAY	=	Calendar.WEDNESDAY;	

	122	

	123	 	/**	

	124	 	*	Constante	útil	para	jueves;	equivale	a	java.util.Calendar.THURSDAY.	

	125	 	*/	

	126	 	public	static	final	int	THURSDAY	=	Calendar.THURSDAY;	

	127	

	128	 	/**	Constante	útil	para	viernes;	equivale	a	java.util.Calendar.FRIDAY.	*/	

	129	 	public	static	final	int	FRIDAY	=	Calendar.FRIDAY;	

	130	

	131	 	/**	

	132	 	*	Constante	útil	para	sábado;	equivale	a	java.util.Calendar.SATURDAY.	

	133	 	*/	

	134	 	public	static	final	int	SATURDAY	=	Calendar.SATURDAY;	

	135	

	136	 	/**	Constante	útil	para	domingo;	equivale	a	java.util.Calendar.SUNDAY.	*/	

	137	 	public	static	final	int	SUNDAY	=	Calendar.SUNDAY;	

	138	

	139	 	/**	Número	de	días	de	cada	mes	en	años	no	bisiestos.	*/	

	140	 	static	final	int[]	LAST_DAY_OF_MONTH	=	

	141	 	{0,	31,	28,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31};	

	142	

	143	 	/**	Número	de	días	en	un	año	(no	bisiesto)	hasta	el	final	de	cada	mes.	*/	

	144	 	static	final	int[]	AGGREGATE_DAYS_TO_END_OF_MONTH	=	

	145	 	{0,	31,	59,	90,	120,	151,	181,	212,	243,	273,	304,	334,	365};	

	146	

	147	 	/**	Número	de	días	en	un	año	hasta	el	final	del	mes	anterior.	*/	

	148	 	static	final	int[]	AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH	=	

	149	 	{0,	0,	31,	59,	90,	120,	151,	181,	212,	243,	273,	304,	334,	365};	

	150	

	151	 	/**	Número	de	días	en	un	año	bisiesto	hasta	el	final	de	cada	mes.	*/	

	152	 	static	final	int[]	LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH	=	

	153	 	{0,	31,	60,	91,	121,	152,	182,	213,	244,	274,	305,	335,	366};	

	154	

	155	 	/**	

	156	 	*	Número	de	días	en	un	año	bisiesto	hasta	el	final	del	mes	anterior.	

	157	 	*/	

	158	 	static	final	int[]	

	159	 	LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH	=	

	160	 	{0,	0,	31,	60,	91,	121,	152,	182,	213,	244,	274,	305,	335,	366};	

	161	

	162	 	/**	Una	constante	útil	para	hacer	referencia	a	la	primera	semana	del	mes.	*/	

	163	 	public	static	final	int	FIRST_WEEK_IN_MONTH	=	1;	

	164	

	165	 	/**	Una	constante	útil	para	hacer	referencia	a	la	segunda	semana	del	mes.	*/	

	166	 	public	static	final	int	SECOND_WEEK_IN_MONTH	=	2;	

	167	

	168	 	/**	Una	constante	útil	para	hacer	referencia	a	la	tercera	semana	del	mes.	*/	

	169	 	public	static	final	int	THIRD_WEEK_IN_MONTH	=	3;	

	170	

	171	 	/**	Una	constante	útil	para	hacer	referencia	a	la	cuarta	semana	del	mes.	*/	

	172	 	public	static	final	int	FOURTH_WEEK_IN_MONTH	=	4;	

	173	

	174	 	/**	Una	constante	útil	para	hacer	referencia	a	la	última	semana	del	mes.	*/	

	175	 	public	static	final	int	LAST_WEEK_IN_MONTH	=	0;	

	176	

	177	 	/**	Constante	de	intervalo.	*/	

	178	 	public	static	final	int	INCLUDE_NONE	=	0;	

	179	

	180	 	/**	Constante	de	intervalo.	*/	

	181	 	public	static	final	int	INCLUDE_FIRST	=	1;	

	182	

	183	 	/**	Constante	de	intervalo.	*/	

	184	 	public	static	final	int	INCLUDE_SECOND	=	2;	

	185	

	186	 	/**	Constante	de	intervalo.	*/	

	187	 	public	static	final	int	INCLUDE_BOTH	=	3;	

	188	

	189	 	/**	

	190	 	*	Constante	útil	para	especificar	un	día	de	la	semana	con	respecto	a	una	fecha	

	191	 	*	fija.	

	192	 	*/	

	193	 	public	static	final	int	PRECEDING	=	-1;	

	194	

	195	 	/**	

	196	 	*	Constante	útil	para	especificar	un	día	de	la	semana	con	respecto	a	una	fecha	

	197	 	*	fija.	

	198	 	*/	

	199	 	public	static	final	int	NEAREST	=	0;	

	200	

	201	 	/**	

	202	 	*	Constante	útil	para	especificar	un	día	de	la	semana	con	respecto	a	una	fecha	

	203	 	*	fija.	

	204	 	*/	

	205	 	public	static	final	int	FOLLOWING	=	1;	

	206	

	207	 	/**	Una	descripción	para	la	fecha.	*/	

	208	 	private	String	description;	

	209	

	210	 	/**	

	211	 	*	Constructor	predeterminado.	

	212	 	*/	

	213	 	protected	SerialDate()	{	

	214	 	}	

	215	

	216	 	/**	

	217	 	*	Devuelve	<code>true</code>	si	el	código	entero	proporcionado	representa	un	

	218	 	*	día	de	la	semana	válido	y	<code>false</code>	en	caso	contrario.	

	219	 	*	

	220	 	*	@param	code	el	código	del	que	se	comprueba	la	validez.	

	221	 	*	

	222	 	*	@return	<code>true</code>	si	el	código	entero	proporcionado	representa	un	

	223	 	*	día	de	la	semana	válido	y	<code>false</code>	en	caso	contrario.	

	224	 	*/	

	225	 	public	static	boolean	isValidWeekdayCode(final	int	code)	{	

	227	 	switch(code)	{	

	228	 	case	SUNDAY:	

	229	 	case	MONDAY:	

	230	 	case	TUESDAY:	

	231	 	case	WEDNESDAY:	

	232	 	case	THURSDAY:	

	233	 	case	FRIDAY:	

	234	 	case	SATURDAY:	

	235	 	return	true;	

	236	 	default:	

	237	 	return	false;	

	238	 	}	

	239	

	240	 	}	

	241	

	242	 	/**	

	243	 	*	Convierte	la	cadena	proporcionada	en	un	día	de	la	semana.	

	244	 	*	

	245	 	*	@param	s	una	cadena	que	representa	el	día	de	la	semana.	

	246	 	*	

	247	 	*	@return	<code>-1</code>	si	la	cadena	no	se	puede	convertir	o	el	día	de	

	248	 	*	la	semana	en	caso	contrario.	

	249	 	*/	

	250	 	public	static	int	stringToWeekdayCode(String	s)	{	

	251	

	252	 	final	String[]	shortWeekdayNames	

	253	 	=	DATE_FORMAT_SYMBOLS.getShortWeekdays();	

	254	 	final	String[]	weekDayNames	=	DATE_FORMAT_SYMBOLS.getWeekdays();	

	255	

	256	 	int	result	=	-1;	

	257	 	s	=	s.trim();	

	258	 	for	(int	i	=	0;	i	<	weekDayNames.length;	i++)	{	

	259	 	if	(s.equals(shortWeekdayNames[i]))	{	

	260	 	result	=	i;	

	261	 	break;	

	262	 	}	

	263	 	if	(s.equals(weekDayNames[i]))	{	

	264	 	result	=	i;	

	265	 	break;	

	266	 	}	

	267	 	}	

	268	 	return	result;	

	269	

	270	 	}	

	271	

	272	 	/**	

	273	 	*	Devuelve	una	representación	en	cadena	del	día	de	la	semana	proporcionado.	

	274	 	*	<P>	

	275	 	*	Necesitamos	un	enfoque	mejor.	

	276	 	*	

	277	 	*	@param	weekday	el	día	de	la	semana.	

	278	 	*	

	279	 	*	@return	una	cadena	que	representa	el	día	de	la	semana	proporcionado.	

	280	 	*/	

	281	 	public	static	String	weekdayCodeToString(final	int	weekday)	{	

	282	

	283	 	final	String[]	weekdays	=	DATE_FORMAT_SYMBOLS.getWeekdays();	

	284	 	return	weekdays[weekday];	

	285	

	286	 	}	

	287	

	288	 	/**	

	289	 	*	Devuelve	una	matriz	de	nombres	de	mes.	

	290	 	*	

	291	 	*	@return	una	matriz	de	nombres	de	mes.	

	292	 	*/	

	293	 	public	static	String[]	getMonths()	{	

	294	

	295	 	return	getMonths(false);	

	296	

	297	 	}	

	298	

	299	 	/**	

	300	 	*	Devuelve	una	matriz	de	nombres	de	mes.	

	301	 	*	

	302	 	*	@param	shortened	un	indicador	para	indicar	que	deben	devolverse	los	nombres	

	303	 	*	de	mes	en	formato	reducido.	

	304	 	*	

	305	 	*	@return	una	matriz	de	nombres	de	mes.	

	306	 	*/	

	307	 	public	static	String[]	getMonths(final	boolean	shortened)	{	

	308	

	309	 	if	(shortened)	{	

	310	 	return	DATE_FORMAT_SYMBOLS.getShortMonths();	

	311	 	}	

	312	 	else	{	

	313	 	return	DATE_FORMAT_SYMBOLS.getMonths();	

	314	 	}	

	315	

	316	 	}	

	317	

	318	 	/**	

	319	 	*	Devuelve	true	si	el	código	entero	proporcionado	representa	un	mes	válido.	

	320	 	*	

	321	 	*	@param	code	el	código	del	que	se	comprueba	la	validez.	

	322	 	*	

	323	 	*	return	<code>true</code>	si	el	código	entero	proporcionado	representa	un	

	324	 	*	mes	válido.	

	325	 	*/	

	326	 	public	static	boolean	isValidMonthCode(final	int	code)	{	

	327	

	328	 	switch(code)	{	

	329	 	case	JANUARY:	

	330	 	case	FEBRUARY:	

	331	 	case	MARCH:	

	332	 	case	APRIL:	

	333	 	case	MAY:	

	334	 	case	JUNE:	

	335	 	case	JULY:	

	336	 	case	AUGUST:	

	337	 	case	SEPTEMBER:	

	338	 	case	OCTOBER:	

	339	 	case	NOVEMBER:	

	340	 	case	DECEMBER:	

	341	 	return	true;	

	342	 	default:	

	343	 	return	false;	

	344	 	}	

	345	

	346	 	}	

	347	

	348	 	/**	

	349	 	*	Devuelve	el	trimestre	del	mes	especificado.	

	350	 	*	

	351	 	*	@param	code	el	código	del	mes	(1-12).	

	352	 	*	

	353	 	*	@return	el	trimestre	al	que	pertenece	el	mes.	

	354	 	*	@throws	java.lang.IllegalArgumentException	

	355	 	*/	

	356	 	public	static	int	monthCodeToQuarter(final	int	code)	{	

	357	

	358	 	switch(code)	{	

	359	 	case	JANUARY:	

	360	 	case	FEBRUARY:	

	361	 	case	MARCH:	return	1;	

	362	 	case	APRIL:	

	363	 	case	MAY:	

	364	 	case	JUNE:	return	2;	

	365	 	case	JULY:	

	366	 	case	AUGUST:	

	367	 	case	SEPTEMBER:	return	3;	

	368	 	case	OCTOBER:	

	369	 	case	NOVEMBER:	

	370	 	case	DECEMBER:	return	4;	

	371	 	default:	throw	new	IllegalArgumentException(

	372	 	“SerialDate.monthCodeToQuarter:	invalid	month	code.”);	

	373	 	}	

	374	

	375	 	}	

	376	

	377	 	/**	

	378	 	*	Devuelve	una	cadena	que	representa	el	mes	proporcionado.	

	379	 	*	<P>	

	380	 	*	La	cadena	devuelta	es	la	forma	extensa	del	nombre	del	mes	obtenido	de	la	

	381	 	*	configuración	regional.	

	382	 	*	

	383	 	*	@param	month	el	mes.	

	384	 	*	

	385	 	*	@return	una	cadena	que	representa	el	mes	proporcionado	

	386	 	*/	

	387	 	public	static	String	monthCodeToString(final	int	month)	{	

	388	

	389	 	return	monthCodeToString(month,	false);	

	390	

	391	 	}	

	392	

	393	 	/**	

	394	 	*	Devuelve	una	cadena	que	representa	el	mes	proporcionado.	

	395	 	*	<P>	

	396	 	*	La	cadena	devuelta	es	la	forma	extensa	o	reducida	del	nombre	del	mes	

	397	 	*	obtenido	de	la	configuración	regional.	

	398	 	*	

	399	 	*	@param	month	el	mes.	

	400	 	*	@param	shortened	si	<code>true</code>	devuelve	la	abreviatura	del	

	401	 	*	mes.	

	402	 	*	

	403	 	*	@return	una	cadena	que	representa	el	mes	proporcionado.	

	404	 	*	@throws	java.lang.IllegalArgumentException	

	405	 	*/	

	406	 	public	static	String	monthCodeToString(final	int	month,	

	407	 	final	boolean	shortened)	{	

	408	

	409	 	//	comprobar	argumentos…	

	410	 	if	(!isValidMonthCode(month))	{	

	411	 	throw	new	IllegalArgumentException(

	412	 	“SerialDate.monthCodeToString:	month	outside	valid	range.”);	

	413	 	}	

	414	

	415	 	final	String[]	months;	

	416	

	417	 	if	(shortened)	{	

	418	 	months	=	DATE_FORMAT_SYMBOLS.getShortMonths();	

	419	 	}	

	420	 	else	{	

	421	 	months	=	DATE_FORMAT_SYMBOLS.getMonths();	

	422	 	}	

	423	

	424	 	return	months[month	-	1];	

	425	

	426	 	}	

	427	

	428	 	/**	

	429	 	*	Convierte	una	cadena	en	el	código	del	mes.	

	430	 	*	<P>	

	431	 	*	Este	método	devuelve	una	de	las	constantes	JANUARY,	FEBRUARY,	…,	

	432	 	*	DECEMBER	correspondientes	a	la	cadena.	Si	la	cadena	no	se	

	433	 	*	reconoce,	este	método	devuelve	-1.	

	434	 	*	

	435	 	*	@param	s	la	cadena	que	analizar.	

	436	 	*	

	437	 	*	@return	<code>-1</code>	si	la	cadena	no	se	puede	analizar,	o	el	mes	del	

	438	 	*	año	en	caso	contrario.	

	439	 	*/	

	440	 	public	static	int	stringToMonthCode(String	s)	{	

	441	

	442	 	final	String[]	shortMonthNames	=	DATE_FORMAT_SYMBOLS.getShortMonths();	

	443	 	final	String[]	monthNames	=	DATE_FORMAT_SYMBOLS.getMonths();	

	444	

	445	 	int	result	=	-1;	

	446	 	s	=	s.trim();	

	447	

	448	 	//	primero	intentar	analizar	la	cadena	como	entero	(1-12)…	

	449	 	try	{	

	450	 	result	=	Integer.parseInt(s);	

	451	 	}	

	452	 	catch	(NumberFormatException	e)	{	

	453	 	//	suprimir	

	454	 	}	

	455	

	456	 	//	buscar	por	los	nombres	de	los	meses…	

	457	 	if	((result	<	1)	||	(result	>	12))	{	

	458	 	for	(int	i	=	0;	i	<	monthNames.length;	i++)	{	

	459	 	if	(s.equals(shortMonthNames[i]))	{	

	460	 	result	=	i	+	1;	

	461	 	break;	

	462	 	}	

	463	 	if	(s.equals(monthNames[i]))	{	

	464	 	result	=	i	+	1;	

	465	 	break;	

	466	 	}	

	467	 	}	

	468	 	}	

	469	

	470	 	return	result;	

	471	

	472	 	}	

	473	

	474	 	/**	

	475	 	*	Devuelve	true	si	el	código	entero	proporcionado	representa	una	semana	

	476	 	*	del	mes	válida	y	false	en	caso	contrario	

	477	 	*	

	478	 	*	@param	code	el	código	del	que	se	comprueba	la	validez.	

	479	 	*	@return	<code>true</code>	si	el	código	entero	proporcionado	representa	una	

	480	 	*	semana	del	mes	válida.	

	481	 	*/	

	482	 	public	static	boolean	isValidWeekInMonthCode(final	int	code)	{	

	483	

	484	 	switch(code)	{	

	485	 	case	FIRST_WEEK_IN_MONTH:	

	486	 	case	SECOND_WEEK_IN_MONTH:	

	487	 	case	THIRD_WEEK_IN_MONTH:	

	488	 	case	FOURTH_WEEK_IN_MONTH:	

	489	 	case	LAST_WEEK_IN_MONTH:	return	true;	

	490	 	default:	return	false;	

	491	 	}	

	492	

	493	 	}	

	494	

	495	 	/**	

	496	 	*	Determina	si	el	año	especificado	es	bisiesto	o	no.	

	497	 	*	

	498	 	*	@param	yyyy	el	año	(entre	1900	y	9999).	

	499	 	*	

	500	 	*	@return	<code>true</code>	si	el	año	especificado	es	bisiesto.	

	501	 	*/	

	502	 	public	static	boolean	isLeapYear(final	int	yyyy)	{	

	503	

	504	 	if	((yyyy	%	4)	!=	0)	{	

	505	 	return	false;	

	506	 	}	

	507	 	else	if	((yyyy	%	400)	==	0)	{	

	508	 	return	true;	

	509	 	}	

	510	 	else	if	((yyyy	%	100)	==	0)	{	

	511	 	return	false;	

	512	 	}	

	513	 	else	{	

	514	 	return	true;	

	515	 	}	

	516	

	517	 	}	

	518	

	519	 	/**	

	520	 	*	Devuelve	el	número	de	años	bisiestos	desde	1900	hasta	el	año	especificado	

	521	 	*	INCLUSIVE.	

	522	 	*	<P>	

	523	 	*	1900	no	es	un	año	bisiesto.	

	524	 	*	

	525	 	*	@param	yyyy	el	año	(entre	1900	y	9999).	

	526	 	*	

	527	 	*	@return	el	número	de	años	bisiestos	desde	1900	hasta	el	año	especificado.	

	528	 	*/	

	529	 	public	static	int	leapYearCount(final	int	yyyy)	{	

	530	

	531	 	final	int	leap4	=	(yyyy	-	1896)	/	4;	

	532	 	final	int	leap100	=	(yyyy	-	1800)	/	100;	

	533	 	final	int	leap400	=	(yyyy	-	1600)	/	400;	

	534	 	return	leap4	-	leap100	+	leap400;	

	535	

	536	 	}	

	537	

	538	 	/**	

	539	 	*	Devuelve	el	número	del	último	día	del	mes,	teniendo	en	cuenta	los	

	540	 	*	años	bisiestos.	

	541	 	*	

	542	 	*	@param	month	el	mes.	

	543	 	*	@param	yyyy	el	año	(entre	1900	y	9999).	

	544	 	*	

	545	 	*	@return	el	número	del	último	día	del	mes.	

	546	 	*/	

	547	 	public	static	int	lastDayOfMonth(final	int	month,	final	int	yyyy)	{	

	548	

	549	 	final	int	result	=	LAST_DAY_OF_MONTH[month];	

	550	 	if	(month	!=	FEBRUARY)	{	

	551	 	return	result;	

	552	 	}	

	553	 	else	if	(isLeapYear(yyyy))	{	

	554	 	return	result	+	1;	

	555	 	}	

	556	 	else	{	

	557	 	return	result;	

	558	 	}	

	559	

	560	 	}	

	561	

	562	 	/**	

	563	 	*	Crea	una	nueva	fecha	añadiendo	el	número	especificado	de	días	a	la	fecha	

	564	 	*	base.	

	565	 	*	

	566	 	*	@param	days	el	número	de	días	que	añadir	(puede	ser	negativo).	

	567	 	*	@param	base	la	fecha	base.	

	568	 	*	

	569	 	*	@return	una	nueva	fecha.	

	570	 	*/	

	571	 	public	static	SerialDate	addDays(final	int	days,	final	SerialDate	base)	{	

	572	

	573	 	final	int	serialDayNumber	=	base.toSerial()	+	days;	

	574	 	return	SerialDate.createInstance(serialDayNumber);	

	575	

	576	 	}	

	577	

	578	 	/**	

	579	 	*	Crea	una	nueva	fecha	añadiendo	el	número	especificado	de	meses	a	la	fecha	

	580	 	*	base.	

	581	 	*	<P>	

	582	 	*	Si	la	fecha	base	es	próxima	al	final	del	mes,	el	día	del	resultado	

	583	 	*	se	puede	ajustar	ligeramente:	31	Mayo	+	1	mes	=	30	Junio.	

	584	 	*	

	585	 	*	@param	months	el	número	de	meses	que	añadir	(puede	ser	negativo).	

	586	 	*	@param	base	la	fecha	base.	

	587	 	*	

	588	 	*	@return	una	nueva	fecha.	

	589	 	*/	

	590	 	public	static	SerialDate	addMonths(final	int	months,	

	591	 	final	SerialDate	base)	{	

	592	

	593	 	final	int	yy	=	(12	*	base.getYYYY()	+	base.getMonth()	+	months	-	1)	

	594	 	/	12;	

	595	 	final	int	mm	=	(12	*	base.getYYYY()	+	base.getMonth()	+	months	–	1)	

	596	 	%	12	+	1;	

	597	 	final	int	dd	=	Math.min(

	598	 	base.getDayOfMonth(),	SerialDate.lastDayOfMonth(mm,	yy)	

	599);	

	600	 	return	SerialDate.createInstance(dd,	mm,	yy);	

	601	

	602	 	}	

	603	

	604	 	/**	

	605	 	*	Crea	una	nueva	fecha	añadiendo	el	número	especificado	de	años	a	la	fecha	

	606	 	*	base.	

	607	 	*	

	608	 	*	@param	years	el	número	de	años	que	añadir	(puede	ser	negativo).	

	609	 	*	@param	base	la	fecha	base.	

	610	 	*	

	611	 	*	@return	Una	nueva	fecha.	

	612	 	*/	

	613	 	public	static	SerialDate	addYears(final	int	years,	final	SerialDate	base)	{	

	614	

	615	 	final	int	baseY	=	base.getYYYY();	

	616	 	final	int	baseM	=	base.getMonth();	

	617	 	final	int	baseD	=	base.getDayOfMonth();	

	618	

	619	 	final	int	targetY	=	baseY	+	years;	

	620	 	final	int	targetD	=	Math.min(

	621	 	baseD,	SerialDate.lastDayOfMonth(baseM,	targetY)	

	622);	

	623	

	624	 	return	SerialDate.createInstance(targetD,	baseM,	targetY);	

	625	

	626	 	}	

	627	

	628	 	/**	

	629	 	*	Devuelve	la	última	fecha	correspondiente	al	día	de	la	semana	especificado	y	

	630	 	*	ANTERIOR	a	la	fecha	base.	

	631	 	*	

	632	 	*	@param	targetWeekday	un	código	para	el	día	de	la	semana	de	destino.	

	633	 	*	@param	base	la	fecha	base.	

	634	 	*	

	635	 	*	@return	la	última	fecha	correspondiente	al	día	de	la	semana	especificado	y	

	636	 	*	ANTERIOR	a	la	fecha	base.	

	637	 	*/	

	638	 	public	static	SerialDate	getPreviousDayOfWeek(final	int	targetWeekday,	

	639	 	final	SerialDate	base)	{	

	640	

	641	 	//	comprobar	argumentos…	

	642	 	if	(!SerialDate.isValidWeekdayCode(targetWeekday))	{	

	643	 	throw	new	IllegalArgumentException(

	644	 	“Invalid	day-of-the-week	code.”	

	645);	

	646	 	}	

	647	

	648	 	//	buscar	la	fecha…	

	649	 	final	int	adjust;	

	650	 	final	int	baseDOW	=	base.getDayOfWeek();	

	651	 	if	(baseDOW	>	targetWeekday)	{	

	652	 	adjust	=	Math.min(0,	targetWeekday	-	baseDOW);	

	653	 	}	

	654	 	else	{	

	655	 	adjust	=	-7	+	Math.max(0,	targetWeekday	-	baseDOW);	

	656	 	}	

	657	

	658	 	return	SerialDate.addDays(adjust,	base);	

	659	

	660	 	}	

	661	

	662	 	/**	

	663	 	*	Devuelve	la	primera	fecha	que	coincide	con	el	día	de	la	semana	especificado	

	664	 	*	y	POSTERIOR	a	la	fecha	base.	

	665	 	*	

	666	 	*	@param	targetWeekday	un	código	para	el	día	de	la	semana	de	destino.	

	667	 	*	@param	base	la	fecha	base.	

	668	 	*	

	669	 	*	@return	la	primera	fecha	que	coincide	con	el	día	de	la	semana	especificado	

	670	 	*	y	POSTERIOR	a	la	fecha	base.	

	671	 	*/	

	672	 	public	static	SerialDate	getFollowingDayOfWeek(final	int	targetWeekday,	

	673	 	final	SerialDate	base)	{	

	674	

	675	 	//	comprobar	argumentos…	

	676	 	if	(!SerialDate.isValidWeekdayCode(targetWeekday))	{	

	677	 	throw	new	IllegalArgumentException(

	678	 	“Invalid	day-of-the-week	code.”	

	679);	

	680	 	}	

	681	

	682	 	//	buscar	la	fecha…	

	683	 	final	int	adjust;	

	684	 	final	int	baseDOW	=	base.getDayOfWeek();	

	685	 	if	(baseDOW	>	targetWeekday)	{	

	686	 	adjust	=	7	+	Math.min(0,	targetWeekday	-	baseDOW);	

	687	 	}	

	688	 	else	{	

	689	 	adjust	=	Math.max(0,	targetWeekday	-	baseDOW);	

	690	 	}	

	691	

	692	 	return	SerialDate.addDays(adjust,	base);	

	693	 	}	

	694	

	695	 	/**	

	696	 	*	Devuelve	la	fecha	que	coincide	con	el	día	de	la	semana	especificado	y	más	

	697	 	*	PRÓXIMA	a	la	fecha	base.	

	698	 	*	

	699	 	*	@param	targetDOW	un	código	para	el	día	de	la	semana	de	destino.	

	700	 	*	@param	base	la	fecha	base.	

	701	 	*	

	702	 	*	@return	la	fecha	que	coincide	con	el	día	de	la	semana	especificado	y	más	

	703	 	*	PRÓXIMA	a	la	fecha	base.	

	704	 	*/	

	705	 	public	static	SerialDate	getNearestDayOfWeek(final	int	targetDOW,	

	706	 	final	SerialDate	base)	{	

	707	

	708	 	//	comprobar	argumentos…	

	709	 	if	(!SerialDate.isValidWeekdayCode(targetDOW))	{	

	710	 	throw	new	IllegalArgumentException(

	711	 	“Invalid	day-of-the-week	code.”	

	712);	

	713	 	}	

	714	

	715	 	//	buscar	la	fecha…	

	716	 	final	int	baseDOW	=	base.getDayOfWeek();	

	717	 	int	adjust	=	-Math.abs(targetDOW	-	baseDOW);	

	718	 	if	(adjust	>=	4)	{	

	719	 	adjust	=	7	-	adjust;	

	720	 	}	

	721	 	if	(adjust	<=	-4)	{	

	722	 	adjust	=	7	+	adjust;	

	723	 	}	

	724	 	return	SerialDate.addDays(adjust,	base);	

	725	

	726	 	}	

	727	

	728	 	/**	

	729	 	*	Avanzar	la	fecha	hasta	el	último	día	del	mes.	

	730	 	*	

	731	 	*	@param	base	la	fecha	base.	

	732	 	*	

	733	 	*	@return	una	nueva	fecha	de	serie.	

	734	 	*/	

	735	 	public	SerialDate	getEndOfCurrentMonth(final	SerialDate	base)	{	

	736	 	final	int	last	=	SerialDate.lastDayOfMonth(

	737	 	base.getMonth(),	base.getYYYY()	

	738);	

	739	 	return	SerialDate.createInstance(last,	base.getMonth(),	base.getYYYY());	

	740	 	}	

	741	

	742	 	/**	

	743	 	*	Devuelve	una	cadena	correspondiente	al	código	de	la	semana	del	mes.	

	744	 	*	<P>	

	745	 	*	Necesitamos	un	enfoque	mejor.	

	746	 	*	

	747	 	*	@param	count	un	código	entero	que	representa	la	semana	del	mes.	

	748	 	*	

	749	 	*	@return	una	cadena	correspondiente	al	código	de	la	semana	del	mes.	

	750	 	*/	

	751	 	public	static	String	weekInMonthToString(final	int	count)	{	

	752	

	753	 	switch	(count)	{	

	754	 	case	SerialDate.FIRST_WEEK_IN_MONTH	:	return	“First”;	

	755	 	case	SerialDate.SECOND_WEEK_IN_MONTH	:	return	“Second”;	

	756	 	case	SerialDate.THIRD_WEEK_IN_MONTH	:	return	“Third”;	

	757	 	case	SerialDate.FOURTH_WEEK_IN_MONTH	:	return	“Fourth”;	

	758	 	case	SerialDate.LAST_WEEK_IN_MONTH	:	return	“Last”;	

	759	 	default	:	

	760	 	return	“SerialDate.weekInMonthToString():	invalid	code.”;	

	761	 	}	

	762	

	763	 	}	

	764	

	765	 	/**	

	766	 	*	Devuelve	una	cadena	que	representa	el	valor	‘relativo’	proporcionado.	

	767	 	*	<P>	

	768	 	*	Necesitamos	un	enfoque	mejor.	

	769	 	*	

	770	 	*	@param	relative	una	constante	que	representa	el	valor	‘relativo’.	

	771	 	*	

	772	 	*	@return	una	cadena	que	representa	el	valor	‘relativo’	proporcionado.	

	773	 	*/	

	774	 	public	static	String	relativeToString(final	int	relative)	{	

	775	

	776	 	switch	(relative)	{	

	777	 	case	SerialDate.PRECEDING	:	return	“Preceding”;	

	778	 	case	SerialDate.NEAREST	:	return	“Nearest”;	

	779	 	case	SerialDate.FOLLOWING	:	return	“Following”;	

	780	 	default	:	return	“ERROR	:	Relative	To	String”;	

	781	 	}	

	782	

	783	 	}	

	784	

	785	 	/**	

	786	 	*	Método	de	factoría	que	devuelve	una	instancia	de	una	subclase	concreta	de	

	787	 	*	{@link	SerialDate}.	

	788	 	*	

	789	 	*	@param	day	el	día	(1-31).	

	790	 	*	@param	month	el	mes	(1-12).	

	791	 	*	@param	yyyy	el	año	(entre	1900	y	9999).	

	792	 	*	

	793	 	*	@return	Una	instancia	de	{@link	SerialDate}	

	794	 	*/	

	795	 	public	static	SerialDate	createInstance(final	int	day,	final	int	month,	

	796	 	final	int	yyyy)	{	

	797	 	return	new	SpreadsheetDate(day,	month,	yyyy);	

	798	 	}	

	799	

	800	 	/**	

	801	 	*	Método	de	factoría	que	devuelve	una	instancia	de	una	subclase	concreta	de	

	802	 	*	{@link	SerialDate}.	

	803	 	*	

	804	 	*	@param	serial	numero	de	serie	del	día	(1	de	enero	de	1900	=	2).	

	805	 	*	

	806	 	*	@return	una	instancia	de	SerialDate.	

	807	 	*/	

	808	 	public	static	SerialDate	createInstance(final	int	serial)	{	

	809	 	return	new	SpreadsheetDate(serial);	

	810	 	}	

	811	

	812	 	/**	

	813	 	*	Método	de	factoría	que	devuelve	una	instancia	de	una	subclase	de	SerialDate.	

	814	 	*	

	815	 	*	@param	date	Un	objeto	de	fecha	de	Java.	

	816	 	*	

	817	 	*	@return	una	instancia	de	SerialDate.	

	818	 	*/	

	818	 	public	static	SerialDate	createInstance(final	java.util.Date	date)	{	

	820	

	821	 	final	GregorianCalendar	calendar	=	new	GregorianCalendar();	

	822	 	calendar.setTime(date);	

	823	 	return	new	SpreadsheetDate(calendar.get(Calendar.DATE),	

	824	 	calendar.get(Calendar.MONTH)	+	1,	

	825	 	calendar.get(Calendar.YEAR));	

	826	

	827	 	}	

	828	

	829	 	/**	

	830	 	*	Devuelve	el	número	de	serie	de	la	fecha,	siendo	el	1	de	enero	de	1900	=	2	(se	

	831	 	*	corresponde,	casi	totalmente,	al	sistema	de	numeración	empleado	en	Microsoft	

	832	 	*	Excel	para	Windows	y	Lotus	1-2-3).	

	833	 	*	

	834	 	*	@return	el	número	de	serie	de	la	fecha.	

	835	 	*/	

	836	 	public	abstract	int	toSerial();	

	837	

	838	 	/**	

	839	 	*	Devuelve	java.util.Date.	Como	java.util.Date	tiene	mayor	precisión	que	

	840	 	*	SerialDate,	debemos	definir	una	convención	para	“la	hora	del	día”.	

	841	 	*	

	842	 	*	@return	this	como	<code>java.util.Date</code>.	

	843	 	*/	

	844	 	public	abstract	java.util.Date	toDate();	

	845	

	846	 	/**	

	847	 	*	Devuelve	una	descripción	de	la	fecha.	

	848	 	*	

	849	 	*	@return	una	descripción	de	la	fecha.	

	850	 	*/	

	851	 	public	String	getDescription()	{	

	852	 	return	this.description;	

	853	 	}	

	854	

	855	 	/**	

	856	 	*	Establece	la	descripción	de	la	fecha.	

	857	 	*	

	858	 	*	@param	description	la	nueva	descripción	de	la	fecha.	

	859	 	*/	

	860	 	public	void	setDescription(final	String	description)	{	

	861	 	this.description	=	description;	

	862	 	}	

	863	

	864	 	/**	

	865	 	*	Convierte	la	fecha	en	una	cadena.	

	866	 	*	

	867	 	*	@return	una	representación	en	cadena	de	la	fecha.	

	868	 	*/	

	869	 	public	String	toString()	{	

	870	 	return	getDayOfMonth()	+	“-”	+	SerialDate.monthCodeToString(getMonth())	

	871	 	+	“-”	+	getYYYY();	

	872	 	}	

	873	

	874	 	/**	

	875	 	*	Devuelve	el	año	(con	un	intervalo	válido	de	1900	a	9999).	

	876	 	*	

	877	 	*	@return	el	año.	

	878	 	*/	

	879	 	public	abstract	int	getYYYY();	

	880	

	881	 	/**	

	882	 	*	Devuelve	el	mes	(Enero	=	1,	Febrero	=	2,	Marzo	=	3).	

	883	 	*	

	884	 	*	@return	el	mes	del	año.	

	885	 	*/	

	886	 	public	abstract	int	getMonth();	

	887	

	888	 	/**	

	889	 	*	Devuelve	el	día	del	mes.	

	890	 	*	

	891	 	*	@return	el	día	del	mes.	

	892	 	*/	

	893	 	public	abstract	int	getDayOfMonth();	

	894	

	895	 	/**	

	896	 	*	Devuelve	el	día	de	la	semana.	

	897	 	*	

	898	 	*	@return	el	día	de	la	semana.	

	899	 	*/	

	900	 	public	abstract	int	getDayOfWeek();	

	901	

	902	 	/**	

	903	 	*	Devuelve	la	diferencia	(en	días)	entre	esta	fecha	y	la	

	904	 	*	‘otra’	fecha	especificada.	

	905	 	*	<P>	

	906	 	*	El	resultado	es	positivo	si	esta	fecha	es	posterior	a	la	‘otra’	y	

	907	 	*	negativo	si	es	anterior.	

	908	 	*	

	909	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	910	 	*	

	911	 	*	@return	la	diferencia	entre	esta	fecha	y	la	otra.	

	912	 	*/	

	913	 	public	abstract	int	compare(SerialDate	other);	

	914	

	915	 	/**	

	916	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	917	 	*	SerialDate	especificada.	

	918	 	*	

	919	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	920	 	*	

	921	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	que	

	922	 	*	la	SerialDate	especificada.	

	923	 	*/	

	924	 	public	abstract	boolean	isOn(SerialDate	other);	

	925	

	926	 	/**	

	927	 	*	Devuelve	true	si	esta	SerialDate	representa	una	fecha	anterior	en	

	928	 	*	comparación	a	la	SerialDate	especificada.	

	929	 	*	

	930	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	931	 	*	

	932	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	una	fecha	anterior	

	933	 	*	en	comparación	a	la	SerialDate	especificada.	

	934	 	*/	

	935	 	public	abstract	boolean	isBefore(SerialDate	other);	

	936	

	937	 	/**	

	938	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	939	 	*	SerialDate	especificada.	

	940	 	*	

	941	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	942	 	*	

	943	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	

	944	 	*	que	la	SerialDate	especificada.	

	945	 	*/	

	946	 	public	abstract	boolean	isOnOrBefore(SerialDate	other);	

	947	

	948	 	/**	

	949	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	950	 	*	SerialDate	especificada.	

	951	 	*	

	952	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	953	 	*	

	954	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	

	955	 	*	que	la	SerialDate	especificada.	

	956	 	*/	

	957	 	public	abstract	boolean	isAfter(SerialDate	other);	

	958	

	959	 	/**	

	960	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	961	 	*	SerialDate	especificada.	

	962	 	*	

	963	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	964	 	*	

	965	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	

	966	 	*	que	la	SerialDate	especificada.	

	967	 	*/	

	968	 	public	abstract	boolean	isOnOrAfter(SerialDate	other);	

	969	

	970	 	/**	

	971	 	*	Devuelve	<code>true</code>	si	{@link	SerialDate}	se	encuentra	en	el	

	972	 	*	rango	especificado	(INCLUSIVE).	El	orden	de	fecha	de	d1	y	d2	no	es	

	973	 	*	importante.	

	974	 	*	

	975	 	*	@param	d1	fecha	límite	del	rango.	

	976	 	*	@param	d2	la	otra	fecha	límite	del	rango.	

	977	 	*	

	978	 	*	@return	Un	valor	booleano.	

	979	 	*/	

	980	 	public	abstract	boolean	isInRange(SerialDate	d1,	SerialDate	d2);	

	981	

	982	 	/**	

	983	 	*	Devuelve	<code>true</code>	si	{@link	SerialDate}	se	encuentra	en	el	

	984	 	*	rango	especificado	(el	invocador	especifica	si	los	puntos	finales	se	

	985	 	*	incluyen	o	no).	El	orden	de	fecha	de	d1	y	d2	no	es	importante.	

	986	 	*	

	987	 	*	@param	d1	fecha	límite	del	rango.	

	988	 	*	@param	d2	la	otra	fecha	límite	del	rango.	

	989	 	*	@param	include	un	código	que	controla	si	las	fechas	inicial	y	final	

	990	 	*	se	incluyen	o	no	en	el	rango.	

	991	 	*	

	992	 	*	@return	Un	valor	booleano.	

	993	 	*/	

	994	 	public	abstract	boolean	isInRange(SerialDate	d1,	SerialDate	d2,	

	995	 	int	include);	

	996	

	997	 	/**	

	998	 	*	Devuelve	la	última	fecha	que	coincide	con	el	día	de	la	semana	especificado	y	

	999	 	*	que	es	ANTERIOR	a	esta	fecha.	

	1000	 	*	

	1001	 	*	@param	targetDOW	un	código	para	el	día	de	la	semana	de	destino.	

	1002	 	*	

	1003	 	*	@return	la	última	fecha	que	coincide	con	el	día	de	la	semana	especificado	y	

	1004	 	*	que	es	ANTERIOR	a	esta	fecha.	

	1005	 	*/	

	1006	 	public	SerialDate	getPreviousDayOfWeek(final	int	targetDOW)	{	

	1007	 	return	getPreviousDayOfWeek(targetDOW,	this);	

	1008	 	}	

	1009	

	1010	 	/**	

	1011	 	*	Devuelve	la	primera	fecha	que	coincide	con	el	día	de	la	semana	especificado	

	1012	 	*	y	que	es	POSTERIOR	a	esta	fecha.	

	1013	 	*	

	1014	 	*	@param	targetDOW	un	código	para	el	día	de	la	semana	de	destino.	

	1015	 	*	

	1016	 	*	@return	la	primera	fecha	que	coincide	con	el	día	de	la	semana	especificado	

	1017	 	*	que	es	POSTERIOR	a	esta	fecha.	

	1018	 	*/	

	1019	 	public	SerialDate	getFollowingDayOfWeek(final	int	targetDOW)	{	

	1020	 	return	getFollowingDayOfWeek(targetDOW,	this);	

	1021	 	}	

	1022	

	1023	 	/**	

	1024	 	*	Devuelve	la	fecha	más	próxima	que	coincide	con	el	día	de	la	semana	especificado.	

	1025	 	*	

	1026	 	*	@param	targetDOW	un	código	para	el	día	de	la	semana	de	destino.	

	1027	 	*	

	1028	 	*	@return	la	fecha	más	próxima	que	coincide	con	el	día	de	la	semana	especificado.	

	1029	 	*/	

	1030	 	public	SerialDate	getNearestDayOfWeek(final	int	targetDOW)	{	

	1031	 	return	getNearestDayOfWeek(targetDOW,	this);	

	1032	 	}	

	1033	

	1034	 	}	

Listado	B-2
SerialDateTest.java

	1	 	/*	===	

	2	 	*	JCommon	:	biblioteca	gratuita	de	clases	de	propósito	general	para	Java(tm)	

	3	 	*	===	

	4	 	*	

	5	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	colaboradores.	

	6	 	*	

	7	 	*	Información	del	projecto:	http://www.jfree.org/jcommon/index.html	

	8	 	*	

	9	 	*	Esta	biblioteca	es	software	gratuito;	puede	distribuirla	y/o	modificarla	

	10	 	*	bajo	las	condiciones	de	la	Licencia	pública	general	GNU	publicada	por	

	11	 	*	la	Free	Software	Foundation;	ya	sea	la	versión	2.1	de	la	licencia,	u	

	12	 	*	otra	versión	posterior	(de	su	elección).	

	13	 	*	

	14	 	*	Esta	biblioteca	se	distribuye	con	la	intención	de	que	sea	útil,	pero	

	15	 	*	SIN	GARANTÍA	ALGUNA,	incluida	la	garantía	implícita	de	COMERCIABILIDAD	

	16	 	*	e	IDONEIDAD	PARA	UN	DETERMINADO	FIN.	Consulte	la	Licencia	pública	general	GNU	

	17	 	*	si	necesita	más	información	al	respecto.	

	18	 	*	

	19	 	*	Debería	haber	recibido	una	copia	de	la	Licencia	pública	general	GNU	

	20	 	*	junto	a	esta	biblioteca;	en	caso	contrario,	contacte	con	la	Free	Software	

	21	 	*	Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301,	

	22	 	*	EE.UU.	

	23	 	*	

	24	 	*	[Java	es	una	marca	comercial	o	marca	comercial	registrada	de	Sun	

	25	 	*	Microsystems,	Inc.	en	Estados	Unidos	y	otros	países.]	

	26	 	*	

	27	 	*	-------------------------	

	28	 	*	SerialDateTests.java	

	29	 	*	-------------------------	

	30	 	*	(C)	Copyright	2001-2005,	por	Object	Refinery	Limited.	

	31	

	32	 	*	Autor	original:	David	Gilbert	(por	Object	Refinery	Limited);	

	33	 	*	Colaborador(es):	-;	

	34	

	35	 	*	$Id:	SerialDateTests.java,v	1.6	2005/11/16	15:58:40	taqua	Exp	$	

	36	

	37	 	*	Cambios	

	38	 	*	-----------	

	39	 	*	15-Nov-2001:	Version	1	(DG);	

	40	 	*	25-Jun-2002:	Se	elimina	la	importación	innecesaria	(DG);	

	41	 	*	24-Oct-2002:	Errores	indicados	Checkstyle	corregidos	(DG);	

	42	 	*	13-Mar-2003:	Se	añade	prueba	de	serialización	(DG);	

	43	 	*	05-Jan-2005:	Se	añade	prueba	para	el	informe	de	errores	1096282	(DG);	

	44	 	*	

	45	 	*/	

	46	

	47	 	package	org.jfree.date.junit;	

	48	

	49	 	import	java.io.ByteArrayInputStream;	

	50	 	import	java.io.ByteArrayOutputStream;	

	51	 	import	java.io.ObjectInput;	

	52	 	import	java.io.ObjectInputStream;	

	53	 	import	java.io.ObjectOutput;	

	54	 	import	java.io.ObjectOutputStream;	

	55	

	56	 	import	junit.framework.Test;	

	57	 	import	junit.framework.TestCase;	

	58	 	import	junit.framework.TestSuite;	

	59	

	60	 	import	org.jfree.date.MonthConstants;	

	61	 	import	org.jfree.date.SerialDate;	

	62	

	63	 	/**	

	64	 	*	Pruebas	JUnit	para	la	clase	{@link	SerialDate}.	

	65	 	*/	

	66	 	public	class	SerialDateTests	extends	TestCase	{	

	67	

	68	 	/**	Fecha	que	representa	9	de	noviembre.	

	69	 	private	SerialDate	nov9Y2001;	

	70	

	71	 	/**	

	72	 	*	Crea	un	nuevo	caso	de	prueba.	

	73	 	*	

	74	 	*	@param	name	el	nombre.	

	75	 	*/	

	76	 	public	SerialDateTests(final	String	name)	{	

	77	 	super(name);	

	78	 	}	

	79	

	80	 	/**	

	81	 	*	Devuelve	una	suite	de	pruebas	para	el	ejecutor	de	pruebas	JUnit.	

	82	 	*	

	83	 	*	@return	La	suite	de	pruebas.	

	84	 	*/	

	85	 	public	static	Test	suite()	{	

	86	 	return	new	TestSuite(SerialDateTests.class);	

	87	 	}	

	88	

	89	 	/**	

	90	 	*	Problema.	

	91	 	*/	

	92	 	protected	void	setUp()	{	

	93	 	this.nov9Y2001	=	SerialDate.createInstance(9,	MonthConstants.NOVEMBER,	2001);	

	94	 	}	

	95	

	96	 	/**	

	97	 	*	9	Nov	2001	más	dos	meses	debe	ser	9	Ene	2002.	

	98	 	*/	

	99	 	public	void	testAddMonthsTo9Nov2001()	{	

	100	 	final	SerialDate	jan9Y2002	=	SerialDate.addMonths(2,	this.nov9Y2001);	

	101	 	final	SerialDate	answer	=	SerialDate.createInstance(9,	1,	2002);	

	102	 	assertEquals(answer,	jan9Y2002);	

	103	 	}	

	104	

	105	 	/**	

	106	 	*	Caso	de	prueba	de	un	error,	ya	corregido.	

	107	 	*/	

	108	 	public	void	testAddMonthsTo5Oct2003()	{	

	109	 	final	SerialDate	d1	=	SerialDate.createInstance(5,	MonthConstants.OCTOBER,	2003);	

	110	 	final	SerialDate	d2	=	SerialDate.addMonths(2,	d1);	

	111	 	assertEquals(d2,	SerialDate.createInstance(5,	MonthConstants.DECEMBER,	2003));	

	112	 	}	

	113	

	114	 	/**	

	115	 	*	Caso	de	prueba	de	un	error,	ya	corregido.	

	116	 	*/	

	117	 	public	void	testAddMonthsTo1Jan2003()	{	

	118	 	final	SerialDate	d1	=	SerialDate.createInstance(1,	MonthConstants.JANUARY,	2003);	

	119	 	final	SerialDate	d2	=	SerialDate.addMonths(0,	d1);	

	120	 	assertEquals(d2,	d1);	

	121	 	}	

	122	

	123	 	/**	

	124	 	*	El	lunes	anterior	al	viernes	9	de	noviembre	de	2001	debe	ser	el	5	de	noviembre.	

	125	 	*/	

	126	 	public	void	testMondayPrecedingFriday9Nov2001()	{	

	127	 	SerialDate	mondayBefore	=	SerialDate.getPreviousDayOfWeek(

	128	 	SerialDate.MONDAY,	this.nov9Y2001	

	129);	

	130	 	assertEquals(5,	mondayBefore.getDayOfMonth());	

	131	 	}	

	132	

	133	 	/**	

	134	 	*	El	lunes	posterior	al	viernes	9	de	noviembre	de	2001	debe	ser	el	12	de	noviembre.	

	135	 	*/	

	136	 	public	void	testMondayFollowingFriday9Nov2001()	{	

	137	 	SerialDate	mondayAfter	=	SerialDate.getFollowingDayOfWeek(

	138	 	SerialDate.MONDAY,	this.nov9Y2001	

	139);	

	140	 	assertEquals(12,	mondayAfter.getDayOfMonth());	

	141	 	}	

	142	

	143	 	/**	

	144	 	*	El	lunes	más	próximo	al	viernes	9	de	noviembre	de	2001	debe	ser	el	12	de	noviembre.	

	145	 	*/	

	146	 	public	void	testMondayNearestFriday9Nov2001()	{	

	147	 	SerialDate	mondayNearest	=	SerialDate.getNearestDayOfWeek(

	148	 	SerialDate.MONDAY,	this.nov9Y2001	

	149);	

	150	 	assertEquals(12,	mondayNearest.getDayOfMonth());	

	151	 	}	

	152	

	153	 	/**	

	154	 	*	El	lunes	más	próximo	al	22	de	enero	de	1970	cae	en	el	19.	

	155	 	*/	

	156	 	public	void	testMondayNearest22Jan1970()	{	

	157	 	SerialDate	jan22Y1970	=	SerialDate.createInstance(22,	MonthConstants.JANUARY,	1970);	

	158	 	SerialDate	mondayNearest	=	SerialDate.getNearestDayOfWeek(SerialDate.MONDAY,	jan22Y1970);	

	159	 	assertEquals(19,	mondayNearest.getDayOfMonth());	

	160	 	}	

	161	

	162	 	/**	

	163	 	*	El	problema	es	que	la	conversión	de	días	en	cadenas	devuelva	el	resultado	

	164	 	*	correcto.	En	realidad	este	resultado	depende	de	la	configuración	regional.	

	165	 	*/	

	166	 	public	void	testWeekdayCodeToString()	{	

	167	

	168	 	final	String	test	=	SerialDate.weekdayCodeToString(SerialDate.SATURDAY);	

	169	 	assertEquals(“Saturday”,	test);	

	170	

	171	 	}	

	172	

	173	 	/**	

	174	 	*	Probar	la	conversión	de	una	cadena	en	día	de	la	semana.	Esta	prueba	falla	si	

	175	 	*	la	configuración	regional	predeterminada	no	usa	nombres	de	días	en	inglés	

	176	 	*/	

	177	 	public	void	testStringToWeekday()	{	

	178	

	179	 	int	weekday	=	SerialDate.stringToWeekdayCode(“Wednesday”);	

	180	 	assertEquals(SerialDate.WEDNESDAY,	weekday);	

	181	

	182	 	weekday	=	SerialDate.stringToWeekdayCode(“	Wednesday	”);	

	183	 	assertEquals(SerialDate.WEDNESDAY,	weekday);	

	184	

	185	 	weekday	=	SerialDate.stringToWeekdayCode(“Wed”);	

	186	 	assertEquals(SerialDate.WEDNESDAY,	weekday);	

	187	

	188	 	}	

	189	

	190	 	/**	

	191	 	*	Probar	la	conversión	de	una	cadena	en	mes.	Esta	prueba	falla	si	la	

	192	 	*	configuración	regional	predeterminada	no	usa	nombres	de	días	en	inglés	

	193	 	*/	

	194	 	public	void	testStringToMonthCode()	{	

	195	

	196	 	int	m	=	SerialDate.stringToMonthCode(“January”);	

	197	 	assertEquals(MonthConstants.JANUARY,	m);	

	198	

	199	 	m	=	SerialDate.stringToMonthCode(“	January	”);	

	200	 	assertEquals(MonthConstants.JANUARY,	m);	

	201	

	202	 	m	=	SerialDate.stringToMonthCode(“Jan”);	

	203	 	assertEquals(MonthConstants.JANUARY,	m);	

	204	

	205	 	}	

	206	

	207	 	/**	

	208	 	*	Probar	la	conversión	de	un	código	de	mes	en	cadena.	

	209	 	*/	

	210	 	public	void	testMonthCodeToStringCode()	{	

	211	

	212	 	final	String	test	=	SerialDate.monthCodeToString(MonthConstants.DECEMBER);	

	213	 	assertEquals(“December”,	test);	

	214	

	215	 	}	

	216	

	217	 	/**	

	218	 	*	1900	no	es	un	año	bisiesto.	

	219	 	*/	

	220	 	public	void	testIsNotLeapYear1900()	{	

	221	 	assertTrue(!SerialDate.isLeapYear(1900));	

	222	 	}	

	223	

	224	 	/**	

	225	 	*	2000	es	un	año	bisiesto.	

	226	 	*/	

	227	 	public	void	testIsLeapYear2000()	{	

	228	 	assertTrue(SerialDate.isLeapYear(2000));	

	229	 	}	

	230	

	231	 	/**	

	232	 	*	El	número	de	años	bisiestos	desde	1900	y	hasta	1899	incluido	es	0.	

	233	 	*/	

	234	 	public	void	testLeapYearCount1899()	{	

	235	 	assertEquals(SerialDate.leapYearCount(1899),	0);	

	236	 	}	

	237	

	238	 	/**	

	239	 	*	El	número	de	años	bisiestos	desde	1900	y	hasta	1903	incluido	es	0.	

	240	 	*/	

	241	 	public	void	testLeapYearCount1903()	{	

	242	 	assertEquals(SerialDate.leapYearCount(1903),	0);	

	243	 	}	

	244	

	245	 	/**	

	246	 	*	El	número	de	años	bisiestos	desde	1900	y	hasta	1904	incluido	es	1.	

	247	 	*/	

	248	 	public	void	testLeapYearCount1904()	{	

	249	 	assertEquals(SerialDate.leapYearCount(1904),	1);	

	250	 	}	

	251	

	252	 	/**	

	253	 	*	El	número	de	años	bisiestos	desde	1900	y	hasta	1999	incluido	es	24.	

	254	 	*/	

	255	 	public	void	testLeapYearCount1999()	{	

	256	 	assertEquals(SerialDate.leapYearCount(1999),	24);	

	257	 	}	

	258	

	259	 	/**	

	260	 	*	El	número	de	años	bisiestos	desde	1900	y	hasta	2000	incluido	es	25.	

	261	 	*/	

	262	 	public	void	testLeapYearCount2000()	{	

	263	 	assertEquals(SerialDate.leapYearCount(2000),	25);	

	264	 	}	

	265	

	266	 	/**	

	267	 	*	Serializar	una	instancia,	restaurarla	y	comprobar	la	igualdad.	

	268	 	*/	

	269	 	public	void	testSerialization()	{	

	270	

	271	 	SerialDate	d1	=	SerialDate.createInstance(15,	4,	2000);	

	272	 	SerialDate	d2	=	null;	

	273	

	274	 	try	{	

	275	 	ByteArrayOutputStream	buffer	=	new	ByteArrayOutputStream();	

	276	 	ObjectOutput	out	=	new	ObjectOutputStream(buffer);	

	277	 	out.writeObject(d1);	

	278	 	out.close();	

	279	

	280	 	ObjectInput	in	=	new	ObjectInputStream(

	new	 	ByteArrayInputStream(buffer.toByteArray()));	

	281	 	d2	=	(SerialDate)	in.readObject();	

	282	 	in.close();	

	283	 	}	

	284	 	catch	(Exception	e)	{	

	285	 	System.out.println(e.toString());	

	286	 	}	

	287	 	assertEquals(d1,	d2);	

	288	

	289	 	}	

	290	

	291	 	/**	

	292	 	*	Prueba	para	el	informe	de	error	1096282	(ya	corregido).	

	293	 	*/	

	294	 	public	void	test1096282()	{	

	295	 	SerialDate	d	=	SerialDate.createInstance(29,	2,	2004);	

	296	 	d	=	SerialDate.addYears(1,	d);	

	297	 	SerialDate	expected	=	SerialDate.createInstance(28,	2,	2005);	

	298	 	assertTrue(d.isOn(expected));	

	299	 	}	

	300	

	301	 	/**	

	302	 	*	Diversas	pruebas	para	el	método	addMonths().	

	303	 	*/	

	304	 	public	void	testAddMonths()	{	

	305	 	SerialDate	d1	=	SerialDate.createInstance(31,	5,	2004);	

	307	 	SerialDate	d2	=	SerialDate.addMonths(1,	d1);	

	308	 	assertEquals(30,	d2.getDayOfMonth());	

	309	 	assertEquals(6,	d2.getMonth());	

	310	 	assertEquals(2004,	d2.getYYYY());	

	311	

	312	 	SerialDate	d3	=	SerialDate.addMonths(2,	d1);	

	313	 	assertEquals(31,	d3.getDayOfMonth());	

	314	 	assertEquals(7,	d3.getMonth());	

	315	 	assertEquals(2004,	d3.getYYYY());	

	316	

	317	 	SerialDate	d4	=	SerialDate.addMonths(1,	SerialDate.addMonths(1,	d1));	

	318	 	assertEquals(30,	d4.getDayOfMonth());	

	319	 	assertEquals(7,	d4.getMonth());	

	320	 	assertEquals(2004,	d4.getYYYY());	

	321	 	}	

	322	 	}	

Listado	B-3
MonthConstants.java

	1	 	/*	===	

	2	 	*	JCommon	:	biblioteca	gratuita	de	clases	de	propósito	general	para	Java(tm)	

	3	 	*	===	

	4	 	*	

	5	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	colaboradores.	

	6	 	*	

	7	 	*	Información	del	proyecto:	http://www.jfree.org/jcommon/index.html	

	8	 	*	

	9	 	*	Esta	biblioteca	es	software	gratuito;	puede	distribuirla	y/o	modificarla	

	10	 	*	bajo	las	condiciones	de	la	Licencia	pública	general	GNU	publicada	por	

	11	 	*	la	Free	Software	Foundation;	ya	sea	la	versión	2.1	de	la	licencia,	u	

	12	 	*	otra	versión	posterior	(de	su	elección).	

	13	 	*	

	14	 	*	Esta	biblioteca	se	distribuye	con	la	intención	de	que	sea	útil,	pero	

	15	 	*	SIN	GARANTÍA	ALGUNA,	incluida	la	garantía	implícita	de	COMERCIABILIDAD	

	16	 	*	e	IDONEIDAD	PARA	UN	DETERMINADO	FIN.	Consulte	la	Licencia	pública	general	GNU	

	17	 	*	si	necesita	más	información	al	respecto.	

	18	 	*	

	19	 	*	Debería	haber	recibido	una	copia	de	la	Licencia	pública	general	GNU	

	20	 	*	junto	a	esta	biblioteca;	en	caso	contrario,	contacte	con	la	Free	Software	

	21	 	*	Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301,	

	22	 	*	EE.UU.	

	23	 	*	

	24	 	*	[Java	es	una	marca	comercial	o	marca	comercial	registrada	de	Sun	

	25	 	*	Microsystems,	Inc.	en	Estados	Unidos	y	otros	países.]	

	26	 	*	

	27	 	*	----------------------	

	28	 	*	MonthConstants.java	

	29	 	*	----------------------	

	30	 	*	(C)	Copyright	2002,	2003,	de	Object	Refinery	Limited.	

	31	 	*	

	32	 	*	Autor	original:	David	Gilbert	(para	Object	Refinery	Limited);	

	33	 	*	Colaborador(es):	-;	

	34	 	*	

	35	 	*	$Id:	MonthConstants.java,v	1.4	2005/11/16	15:58:40	taqua	Exp	$	

	36	 	*	

	37	 	*	Cambios	

	38	 	*	----------	

	39	 	*	29-May-2002	:	Version	1	(code	moved	from	SerialDate	class)	(DG);	

	40	 	*	

	41	 	*/	

	42	

	43	 	package	org.jfree.date;	

	44	

	45	 	/**	

	46	 	*	Constantes	útiles	para	los	meses.	NO	son	equivalentes	a	las	

	47	 	*	constantes	definidas	por	java.util.Calendar	(donde	JANUARY=0	y	DECEMBER=11).	

	48	 	*	<P>	

	49	 	*	Se	usa	en	las	clases	SerialDate	y	RegularTimePeriod.	

	50	 	*	

	51	 	*	@author	David	Gilbert	

	52	 	*/	

	53	 	public	interface	MonthConstants	{	

	54	

	55	 	/**	Constante	para	Enero.	*/	

	56	 	public	static	final	int	JANUARY	=	1;	

	57	

	58	 	/**	Constante	para	Febrero.	*/	

	59	 	public	static	final	int	FEBRUARY	=	2;	

	60	

	61	 	/**	Constante	para	Marzo.	*/	

	62	 	public	static	final	int	MARCH	=	3;	

	63	

	64	 	/**	Constante	para	Abril.	*/	

	65	 	public	static	final	int	APRIL	=	4;	

	66	

	67	 	/**	Constante	para	Mayo.	*/	

	68	 	public	static	final	int	MAY	=	5;	

	69	

	70	 	/**	Constante	para	Junio.	*/	

	71	 	public	static	final	int	JUNE	=	6;	

	72	

	73	 	/**	Constante	para	Julio.	*/	

	74	 	public	static	final	int	JULY	=	7;	

	75	

	76	 	/**	Constante	para	Agosto.	*/	

	77	 	public	static	final	int	AUGUST	=	8;	

	78	

	79	 	/**	Constante	para	Septiembre.	*/	

	80	 	public	static	final	int	SEPTEMBER	=	9;	

	81	

	82	 	/**	Constante	para	Octubre.	*/	

	83	 	public	static	final	int	OCTOBER	=	10;	

	84	

	85	 	/**	Constante	para	Noviembre.	*/	

	86	 	public	static	final	int	NOVEMBER	=	11;	

	87	

	88	 	/**	Constante	para	Diciembre.	*/	

	89	 	public	static	final	int	DECEMBER	=	12;	

	90	

	91	 	}	

Listado	B-4
BobsSerialDateTest.java

	1	 	package	org.jfree.date.junit;	

	2	

	3	 	import	junit.framework.TestCase;	

	4	 	import	org.jfree.date.*;	

	5	 	import	static	org.jfree.date.SerialDate.*;	

	6	

	7	 	import	java.util.*;	

	8	

	9	 	public	class	BobsSerialDateTest	extends	TestCase	{	

	10	

	11	 	public	void	testIsValidWeekdayCode()	throws	Exception	{	

	12	 	for	(int	day	=	1;	day	<=	7;	day++)	

	13	 	assertTrue(isValidWeekdayCode(day));	

	14	 	assertFalse(isValidWeekdayCode(0));	

	15	 	assertFalse(isValidWeekdayCode(8));	

	16	 	}	

	17	

	18	 	public	void	testStringToWeekdayCode()	throws	Exception	{	

	19	

	20	 	assertEquals(-1,	stringToWeekdayCode(“Hello”));	

	21	 	assertEquals(MONDAY,	stringToWeekdayCode(“Monday”));	

	22	 	assertEquals(MONDAY,	stringToWeekdayCode(“Mon”));	

	23	 	//todo	assertEquals(MONDAY,stringToWeekdayCode(“monday”));	

	24	 	//	assertEquals(MONDAY,stringToWeekdayCode(“MONDAY”));	

	25	 	//	assertEquals(MONDAY,	stringToWeekdayCode(“mon”));	

	26	

	27	 	assertEquals(TUESDAY,	stringToWeekdayCode(“Tuesday”));	

	28	 	assertEquals(TUESDAY,	stringToWeekdayCode(“Tue”));	

	29	 	//	assertEquals(TUESDAY,stringToWeekdayCode(“tuesday”));	

	30	 	//	assertEquals(TUESDAY,StringToWeekdayCode(“TUESDAY”));	

	31	 	//	assertEquals(TUESDAY,	stringToWeekdayCode(“tue”));	

	32	 	//	assertEquals(TUESDAY,	stringToWeekdayCode(“tues”));	

	33	

	34	 	assertEquals(WEDNESDAY,	stringToWeekdayCode	(“Wednesday”));	

	35	 	assertEquals(WEDNESDAY,	stringToWeekdayCode(“Wed”));	

	36	 	//	assertEquals(WEDNESDAY,stringToWeekdayCode(“wednesday”));	

	37	 	//	assertEquals(WEDNESDAY,stringToWeekdayCode(“WEDNESDAY”));	

	38	 	//	assertEquals(WEDNESDAY,	StringToWeekdayCode(“wed”));	

	39	

	40	 	assertEquals(THURSDAY,	stringToWeekdayCode(“Thursday”));	

	41	 	assertEquals(THURSDAY,	stringToWeekdayCode(“Thu”));	

	42	 	//	assertEquals(THURSDAY,stringToWeekdayCode(“thursday”));	

	43	 	//	assertEquals(THURSDAY,stringToWeekdayCode(“THURSDAY”));	

	44	 	//	assertEquals(THURSDAY,	stringToWeekdayCode(“thu”));	

	45	 	//	assertEquals(THURSDAY,	stringToWeekdayCode(“thurs”));	

	46	

	47	 	assertEquals(FRIDAY,	stringToWeekdayCode(“Friday”));	

	48	 	assertEquals(FRIDAY,	stringToWeekdayCode(“Fri”));	

	49	 	//	assertEquals(FRIDAY,stringToWeekdayCode(“friday”));	

	50	 	//	assertEquals(FRIDAY,stringToWeekdayCode(“FRIDAY”));	

	51	 	//	assertEquals(FRIDAY,	StringToWeekdayCode(“fri”));	

	52	

	53	 	assertEquals(SATURDAY,	stringToWeekdayCode(“Saturday”));	

	54	 	assertEquals(SATURDAY,	stringToWeekdayCode(“Sat”));	

	55	 	//	assertEquals(SATURDAY,stringToWeekdayCode(“saturday”));	

	56	 	//	assertEquals(SATURDAY,stringToWeekdayCode(“SATURDAY”));	

	57	 	//	assertEquals(SATURDAY,	stringToWeekdayCode(“sat”));	

	58	

	59	 	assertEquals(SUNDAY,	stringToWeekdayCode(“Sunday”));	

	60	 	assertEquals(SUNDAY,	stringToWeekdayCode(“Sun”));	

	61	 	//	assertEquals(SUNDAY,stringToWeekdayCode(“sunday”));	

	62	 	//	assertEquals(SUNDAY,stringToWeekdayCode(“SUNDAY”));	

	63	 	//	assertEquals(SUNDAY,	stringToWeekdayCode(“sun”));	

	64	 	}	

	65	

	66	 	public	void	testWeekdayCodeToString()	throws	Exception	{	

	67	 	assertEquals(“Sunday”,	weekdayCodeToString(SUNDAY));	

	68	 	assertEquals(“Monday”,	weekdayCodeToString(MONDAY));	

	69	 	assertEquals(“Tuesday”,	weekdayCodeToString(TUESDAY));	

	70	 	assertEquals(“Wednesday”,	weekdayCodeToString(WEDNESDAY));	

	71	 	assertEquals(“Thursday”,	weekdayCodeToString(THURSDAY));	

	72	 	assertEquals(“Friday”,	weekdayCodeToString(FRIDAY));	

	73	 	assertEquals(“Saturday”,	weekdayCodeToString(SATURDAY));	

	74	 	}	

	75	

	76	 	public	void	testIsValidMonthCode()	throws	Exception	{	

	77	 	for	(int	i	=	1;	i	<=	12;	i++)	

	78	 	assertTrue(isValidMonthCode(i));	

	79	 	assertFalse(isValidMonthCode(0));	

	80	 	assertFalse(isValidMonthCode(13));	

	81	 	}	

	82	

	83	 	public	void	testMonthToQuarter()	throws	Exception	{	

	84	 	assertEquals(1,	monthCodeToQuarter(JANUARY));	

	85	 	assertEquals(1,	monthCodeToQuarter(FEBRUARY));	

	86	 	assertEquals(1,	monthCodeToQuarter(MARCH));	

	87	 	assertEquals(2,	monthCodeToQuarter(APRIL));	

	88	 	assertEquals(2,	monthCodeToQuarter(MAY));	

	89	 	assertEquals(2,	monthCodeToQuarter(JUNE));	

	90	 	assertEquals(3,	monthCodeToQuarter(JULY));	

	91	 	assertEquals(3,	monthCodeToQuarter(AUGUST));	

	92	 	assertEquals(3,	monthCodeToQuarter(SEPTEMBER));	

	93	 	assertEquals(4,	monthCodeToQuarter(OCTOBER));	

	94	 	assertEquals(4,	monthCodeToQuarter(NOVEMBER));	

	95	 	assertEquals(4,	monthCodeToQuarter(DECEMBER));	

	96	

	97	 	try	{	

	98	 	monthCodeToQuarter(-1);	

	99	 	fail(“Invalid	Month	Code	should	throw	exception”);	

	100	 	}	catch	(IllegalArgumentException	e)	{	

	101	 	}	

	102	 	}	

	103	

	104	 	public	void	testMonthCodeToString()	throws	Exception	{	

	105	 	assertEquals(“January”,	monthCodeToString(JANUARY));	

	106	 	assertEquals(“February”,	monthCodeToString(FEBRUARY));	

	107	 	assertEquals(“March”,	monthCodeToString(MARCH));	

	108	 	assertEquals(“April”,	monthCodeToString(APRIL));	

	109	 	assertEquals(“May”,	monthCodeToString(MAY));	

	110	 	assertEquals(“June”,	monthCodeToString(JUNE));	

	111	 	assertEquals(“July”,	monthCodeToString(JULY));	

	112	 	assertEquals(“August”,	monthCodeToString(AUGUST));	

	113	 	assertEquals(“September”,	monthCodeToString(SEPTEMBER));	

	114	 	assertEquals(“October”,	monthCodeToString(OCTOBER));	

	115	 	assertEquals(“November”,	monthCodeToString(NOVEMBER));	

	116	 	assertEquals(“December”,	monthCodeToString(DECEMBER));	

	117	

	118	 	assertEquals(“Jan”,	monthCodeToString(JANUARY,	true));	

	119	 	assertEquals(“Feb”,	monthCodeToString(FEBRUARY,	true));	

	120	 	assertEquals(“Mar”,	monthCodeToString(MARCH,	true));	

	121	 	assertEquals(“Apr”,	monthCodeToString(APRIL,	true));	

	122	 	assertEquals(“May”,	monthCodeToString(MAY,	true));	

	123	 	assertEquals(“Jun”,	monthCodeToString(JUNE,	true));	

	124	 	assertEquals(“Jul”,	monthCodeToString(JULY,	true));	

	125	 	assertEquals(“Aug”,	monthCodeToString(AUGUST,	true));	

	126	 	assertEquals(“Sep”,	monthCodeToString(SEPTEMBER,	true));	

	127	 	assertEquals(“Oct”,	monthCodeToString(OCTOBER,	true));	

	128	 	assertEquals(“Nov”,	monthCodeToString(NOVEMBER,	true));	

	129	 	assertEquals(“Dec”,	monthCodeToString(DECEMBER,	true));	

	130	

	131	 	try	{	

	132	 	monthCodeToString(-1);	

	133	 	fail(“Invalid	month	code	should	throw	exception”);	

	134	 	}	catch	(IllegalArgumentException	e)	{	

	135	 	}	

	136	

	137	 	}	

	138	

	139	 	public	void	testStringToMonthCode()	throws	Exception	{	

	140	 	assertEquals(JANUARY,stringToMonthCode(“1”));	

	141	 	assertEquals(FEBRUARY,stringToMonthCode(“2”));	

	142	 	assertEquals(MARCH,stringToMonthCode(“3”));	

	143	 	assertEquals(APRIL,stringToMonthCode(“4”));	

	144	 	assertEquals(MAY,stringToMonthCode(“5”));	

	145	 	assertEquals(JUNE,stringToMonthCode(“6”));	

	146	 	assertEquals(JULY,stringToMonthCode(“7”));	

	147	 	assertEquals(AUGUST,stringToMonthCode(“8”));	

	148	 	assertEquals(SEPTEMBER,stringToMonthCode(“9”));	

	149	 	assertEquals(OCTOBER,stringToMonthCode(“10”));	

	150	 	assertEquals(NOVEMBER,	stringToMonthCode(“11”));	

	151	 	assertEquals(DECEMBER,stringToMonthCode(“12”));	

	152	

	153	 	//todo	assertEquals(-1,	stringToMonthCode(“0”));	

	154	 	//	assertEquals(-1,	stringToMonthCode(“13”));	

	155	

	156	 	assertEquals(-1,stringToMonthCode(“Hello”));	

	157	

	158	 	for	(int	m	=	1;	m	<=	12;	m++)	{	

	159	 	assertEquals(m,	stringToMonthCode(monthCodeToString(m,	false)));	

	160	 	assertEquals(m,	stringToMonthCode(monthCodeToString(m,	true)));	

	161	 	}	

	162	

	163	 	//	assertEquals(1,stringToMonthCode(“jan”));	

	164	 	//	assertEquals(2,stringToMonthCode(“feb”));	

	165	 	//	assertEquals(3,stringToMonthCode(“mar”));	

	166	 	//	assertEquals(4,stringToMonthCode(“apr”));	

	167	 	//	assertEquals(5,stringToMonthCode(“may”));	

	168	 	//	assertEquals(6,stringToMonthCode(“jun”));	

	169	 	//	assertEquals(7,stringToMonthCode(“jul”));	

	170	 	//	assertEquals(8,stringToMonthCode(“aug”));	

	171	 	//	assertEquals(9,stringToMonthCode(“sep”));	

	172	 	//	assertEquals(10,stringToMonthCode(“oct”));	

	173	 	//	assertEquals(11,stringToMonthCode(“nov”));	

	174	 	//	assertEquals(12,stringToMonthCode(“dec”));	

	175	

	176	 	//	assertEquals(1,stringToMonthCode(“JAN”));	

	177	 	//	assertEquals(2,stringToMonthCode(“FEB”));	

	178	 	//	assertEquals(3,stringToMonthCode(“MAR”));	

	179	 	//	assertEquals(4,stringToMonthCode(“APR”));	

	180	 	//	assertEquals(5,stringToMonthCode(“MAY”));	

	181	 	//	assertEquals(6,stringToMonthCode(“JUN”));	

	182	 	//	assertEquals(7,stringToMonthCode(“JUL”));	

	183	 	//	assertEquals(8,stringToMonthCode(“AUG”));	

	184	 	//	assertEquals(9,stringToMonthCode(“SEP”));	

	185	 	//	assertEquals(10,stringToMonthCode(“OCT”));	

	186	 	//	assertEquals(11,stringToMonthCode(“NOV”));	

	187	 	//	assertEquals(12,stringToMonthCode(“DEC”));	

	188	

	189	 	//	assertEquals(1,stringToMonthCode(“january”));	

	190	 	//	assertEquals(2,stringToMonthCode(“february”));	

	191	 	//	assertEquals(3,stringToMonthCode(“march”));	

	192	 	//	assertEquals(4,stringToMonthCode(“april”));	

	193	 	//	assertEquals(5,stringToMonthCode(“may”));	

	194	 	//	assertEquals(6,stringToMonthCode(“june”));	

	195	 	//	assertEquals(7,stringToMonthCode(“july”));	

	196	 	//	assertEquals(8,stringToMonthCode(“august”));	

	197	 	//	assertEquals(9,stringToMonthCode(“september”));	

	198	 	//	assertEquals(10,stringToMonthCode(“october”));	

	199	 	//	assertEquals(11,stringToMonthCode(“november”));	

	200	 	//	assertEquals(12,stringToMonthCode(“december”));	

	201	

	202	 	//	assertEquals(1,stringToMonthCode(“JANUARY”));	

	203	 	//	assertEquals(2,stringToMonthCode(“FEBRUARY”));	

	204	 	//	assertEquals(3,stringToMonthCode(“MAR”));	

	205	 	//	assertEquals(4,stringToMonthCode(“APRIL”));	

	206	 	//	assertEquals(5,stringToMonthCode(“MAY”));	

	207	 	//	assertEquals(6,stringToMonthCode(“JUNE”));	

	208	 	//	assertEquals(7,stringToMonthCode(“JULY”));	

	209	 	//	assertEquals(8,stringToMonthCode(“AUGUST”));	

	210	 	//	assertEquals(9,stringToMonthCode(“SEPTEMBER”));	

	211	 	//	assertEquals(10,stringToMonthCode(“OCTOBER”));	

	212	 	//	assertEquals(11,stringToMonthCode(“NOVEMBER”));	

	213	 	//	assertEquals(12,stringToMonthCode(“DECEMBER”));	

	214	 	}	

	215	

	216	 	public	void	testIsValidWeekInMonthCode()	throws	Exception	{	

	217	 	for	(int	w	=	0;	w	<=	4;	w++)	{	

	218	 	assertTrue(isValidWeekInMonthCode(w));	

	219	 	}	

	220	 	assertFalse(isValidWeekInMonthCode(5));	

	221	 	}	

	222	

	223	 	public	void	testIsLeapYear()	throws	Exception	{	

	224	 	assertFalse(isLeapYear(1900));	

	225	 	assertFalse(isLeapYear(1901));	

	226	 	assertFalse(isLeapYear(1902));	

	227	 	assertFalse(isLeapYear(1903));	

	228	 	assertTrue(isLeapYear(1904));	

	229	 	assertTrue(isLeapYear(1908));	

	230	 	assertFalse(isLeapYear(1955));	

	231	 	assertTrue(isLeapYear(1964));	

	232	 	assertTrue(isLeapYear(1980));	

	233	 	assertTrue(isLeapYear(2000));	

	234	 	assertFalse(isLeapYear(2001));	

	235	 	assertFalse(isLeapYear(2100));	

	236	 	}	

	237	

	238	 	public	void	testLeapYearCount()	throws	Exception	{	

	239	 	assertEquals(0,	leapYearCount(1900));	

	240	 	assertEquals(0,	leapYearCount(1901));	

	241	 	assertEquals(0,	leapYearCount(1902));	

	242	 	assertEquals(0,	leapYearCount(1903));	

	243	 	assertEquals(1,	leapYearCount(1904));	

	244	 	assertEquals(1,	leapYearCount(1905));	

	245	 	assertEquals(1,	leapYearCount(1906));	

	246	 	assertEquals(1,	leapYearCount(1907));	

	247	 	assertEquals(2,	leapYearCount(1908));	

	248	 	assertEquals(24,	leapYearCount(1999));	

	249	 	assertEquals(25,	leapYearCount(2001));	

	250	 	assertEquals(49,	leapYearCount(2101));	

	251	 	assertEquals(73,	leapYearCount(2201));	

	252	 	assertEquals(97,	leapYearCount(2301));	

	253	 	assertEquals(122,	leapYearCount(2401));	

	254	 	}	

	255	

	256	 	public	void	testLastDayOfMonth()	throws	Exception	{	

	257	 	assertEquals(31,	lastDayOfMonth(JANUARY,	1901));	

	258	 	assertEquals(28,	lastDayOfMonth(FEBRUARY,	1901));	

	259	 	assertEquals(31,	lastDayOfMonth(MARCH,	1901));	

	260	 	assertEquals(30,	lastDayOfMonth(APRIL,	1901));	

	261	 	assertEquals(31,	lastDayOfMonth(MAY,	1901));	

	262	 	assertEquals(30,	lastDayOfMonth(JUNE,	1901));	

	263	 	assertEquals(31,	lastDayOfMonth(JULY,	1901));	

	264	 	assertEquals(31,	lastDayOfMonth(AUGUST,	1901));	

	265	 	assertEquals(30,	lastDayOfMonth(SEPTEMBER,	1901));	

	266	 	assertEquals(31,	lastDayOfMonth(OCTOBER,	1901));	

	267	 	assertEquals(30,	lastDayOfMonth(NOVEMBER,	1901));	

	268	 	assertEquals(31,	lastDayOfMonth(DECEMBER,	1901));	

	269	 	assertEquals(29,	lastDayOfMonth(FEBRUARY,	1904));	

	270	 	}	

	271	

	272	 	public	void	testAddDays()	throws	Exception	{	

	273	 	SerialDate	newYears	=	d(1,	JANUARY,	1900);	

	274	 	assertEquals(d(2,	JANUARY,	1900),	addDays(1,	newYears));	

	275	 	assertEquals(d(1,	FEBRUARY,	1900),	addDays(31,	newYears));	

	276	 	assertEquals(d(1,	JANUARY,	1901),	addDays(365,	newYears));	

	277	 	assertEquals(d(31,	DECEMBER,	1904),	addDays(5	*	365,	newYears));	

	278	 	}	

	279	

	280	 	private	static	SpreadsheetDate	d(int	day,	int	month,	int	year)	

		 	{	return	new	SpreadsheetDate(day,	month,	year);	}	

	281	

	282	 	public	void	testAddMonths()	throws	Exception	{	

	283	 	assertEquals(d(1,	FEBRUARY,	1900),	addMonths(1,	d(1,	JANUARY,	1900)));	

	284	 	assertEquals(d(28,	FEBRUARY,	1900),	addMonths(1,	d(31,	JANUARY,	1900)));	

	285	 	assertEquals(d(28,	FEBRUARY,	1900),	addMonths(1,	d(30,	JANUARY,	1900)));	

	286	 	assertEquals(d(28,	FEBRUARY,	1900),	addMonths(1,	d(29,	JANUARY,	1900)));	

	287	 	assertEquals(d(28,	FEBRUARY,	1900),	addMonths(1,	d(28,	JANUARY,	1900)));	

	288	 	assertEquals(d(27,	FEBRUARY,	1900),	addMonths(1,	d(27,	JANUARY,	1900)));	

	289	

	290	 	assertEquals(d(30,	JUNE,	1900),	addMonths(5,	d(31,	JANUARY,	1900)));	

	291	 	assertEquals(d(30,	JUNE,	1901),	addMonths(17,	d(31,	JANUARY,	1900)));	

	292	

	293	 	assertEquals(d(29,	FEBRUARY,	1904),	addMonths(49,	d(31,	JANUARY,	1900)));	

	294	

	295	 	}	

	296	

	297	 	public	void	testAddYears()	throws	Exception	{	

	298	 	assertEquals(d(1,	JANUARY,	1901),	addYears(1,	d(1,	JANUARY,	1900)));	

	299	 	assertEquals(d(28,	FEBRUARY,	1905),	addYears(1,	d(29,	FEBRUARY,	1904)));	

	300	 	assertEquals(d(28,	FEBRUARY,	1905),	addYears(1,	d(28,	FEBRUARY,	1904)));	

	301	 	assertEquals(d(28,	FEBRUARY,	1904),	addYears(1,	d(28,	FEBRUARY,	1903)));	

	302	 	}	

	303	

	304	 	public	void	testGetPreviousDayOfWeek()	throws	Exception	{	

	305	 	assertEquals(d(24,	FEBRUARY,	2006),	getPreviousDayOfWeek(FRIDAY,	d(1,	MARCH,	2006)));	

	306	 	assertEquals(d(22,	FEBRUARY,	2006),	getPreviousDayOfWeek(WEDNESDAY,	d(1,	MARCH,	2006)));	

	307	 	assertEquals(d(29,	FEBRUARY,	2004),	getPreviousDayOfWeek(SUNDAY,	d(3,	MARCH,	2004)));	

	308	 	assertEquals(d(29,	DECEMBER,	2004),	getPreviousDayOfWeek(WEDNESDAY,	d(5,	JANUARY,	2005)));	

	309	

	310	 	try	{	

	311	 	getPreviousDayOfWeek(-1,	d(1,	JANUARY,	2006));	

	312	 	fail(“Invalid	day	of	week	code	should	throw	exception”);	

	313	 	}	catch	(IllegalArgumentException	e)	{	

	314	 	}	

	315	 	}	

	316	

	317	 	public	void	testGetFollowingDayOfWeek()	throws	Exception	{	

	318	 	//	assertEquals(d(1,	JANUARY,	2005),getFollowingDayOfWeek(SATURDAY,	d(25,	DECEMBER,	2004)));	

	319	 	assertEquals(d(1,	JANUARY,	2005),	getFollowingDayOfWeek(SATURDAY,	d(26,	DECEMBER,	2004)));	

	320	 	assertEquals(d(3,	MARCH,	2004),	getFollowingDayOfWeek(WEDNESDAY,	d(28,	FEBRUARY,	2004)));	

	321	

	322	 	try	{	

	323	 	getFollowingDayOfWeek(-1,	d(1,	JANUARY,	2006));	

	324	 	fail(“Invalid	day	of	week	code	should	throw	exception”);	

	325	 	}	catch	(IllegalArgumentException	e)	{	

	326	 	}	

	327	 	}	

	328	

	329	 	public	void	testGetNearestDayOfWeek()	throws	Exception	{	

	330	 	assertEquals(d(16,	APRIL,	2006),	getNearestDayOfWeek(SUNDAY,	d(16,	APRIL,	2006)));	

	331	 	assertEquals(d(16,	APRIL,	2006),	getNearestDayOfWeek(SUNDAY,	d(17,	APRIL,	2006)));	

	332	 	assertEquals(d(16,	APRIL,	2006),	getNearestDayOfWeek(SUNDAY,	d(18,	APRIL,	2006)));	

	333	 	assertEquals(d(16,	APRIL,	2006),	getNearestDayOfWeek(SUNDAY,	d(19,	APRIL,	2006)));	

	334	 	assertEquals(d(23,	APRIL,	2006),	getNearestDayOfWeek(SUNDAY,	d(20,	APRIL,	2006)));	

	335	 	assertEquals(d(23,	APRIL,	2006),	getNearestDayOfWeek(SUNDAY,	d(21,	APRIL,	2006)));	

	336	 	assertEquals(d(23,	APRIL,	2006),	getNearestDayOfWeek(SUNDAY,	d(22,	APRIL,	2006)));	

	337	

	338	 	//todo	assertEquals(d(17,	APRIL,	2006),	getNearestDayOfWeek(MONDAY,	d(16,	APRIL,	2006)));	

	339	 	assertEquals(d(17,	APRIL,	2006),	getNearestDayOfWeek(MONDAY,	d(17,	APRIL,	2006)));	

	340	 	assertEquals(d(17,	APRIL,	2006),	getNearestDayOfWeek(MONDAY,	d(18,	APRIL,	2006)));	

	341	 	assertEquals(d(17,	APRIL,	2006),	getNearestDayOfWeek(MONDAY,	d(19,	APRIL,	2006)));	

	342	 	assertEquals(d(17,	APRIL,	2006),	getNearestDayOfWeek(MONDAY,	d(20,	APRIL,	2006)));	

	343	 	assertEquals(d(24,	APRIL,	2006),	getNearestDayOfWeek(MONDAY,	d(21,	APRIL,	2006)));	

	344	 	assertEquals(d(24,	APRIL,	2006),	getNearestDayOfWeek(MONDAY,	d(22,	APRIL,	2006)));	

	345	

	346	 	//	assertEquals(d(18,	APRIL,	2006),	getNearestDayOfWeek(TUESDAY,	d(16,	APRIL,	2006)));	

	347	 	//	assertEquals(d(18,	APRIL,	2006),	getNearestDayOfWeek(TUESDAY,	d(17,	APRIL,	2006)));	

	348	 	assertEquals(d(18,	APRIL,	2006),	getNearestDayOfWeek(TUESDAY,	d(18,	APRIL,	2006)));	

	349	 	assertEquals(d(18,	APRIL,	2006),	getNearestDayOfWeek(TUESDAY,	d(19,	APRIL,	2006)));	

	350	 	assertEquals(d(18,	APRIL,	2006),	getNearestDayOfWeek(TUESDAY,	d(20,	APRIL,	2006)));	

	351	 	assertEquals(d(18,	APRIL,	2006),	getNearestDayOfWeek(TUESDAY,	d(21,	APRIL,	2006)));	

	352	 	assertEquals(d(25,	APRIL,	2006),	getNearestDayOfWeek(TUESDAY,	d(22,	APRIL,	2006)));	

	353	

	354	 	//	assertEquals(d(19,	APRIL,	2006),	getNearestDayOfWeek(WEDNESDAY,	d(16,	APRIL,	2006)));	

	355	 	//	assertEquals(d(19,	APRIL,	2006),	getNearestDayOfWeek(WEDNESDAY,	d(17,	APRIL,	2006)));	

	356	 	//	assertEquals(d(19,	APRIL,	2006),	getNearestDayOfWeek(WEDNESDAY,	d(18,	APRIL,	2006)));	

	357	 	assertEquals(d(19,	APRIL,	2006),	getNearestDayOfWeek(WEDNESDAY,	d(19,	APRIL,	2006)));	

	358	 	assertEquals(d(19,	APRIL,	2006),	getNearestDayOfWeek(WEDNESDAY,	d(20,	APRIL,	2006)));	

	359	 	assertEquals(d(19,	APRIL,	2006),	getNearestDayOfWeek(WEDNESDAY,	d(21,	APRIL,	2006)));	

	360	 	assertEquals(d(19,	APRIL,	2006),	getNearestDayOfWeek(WEDNESDAY,	d(22,	APRIL,	2006)));	

	361	

	362	 	//	assertEquals(d(13,	APRIL,	2006),	getNearestDayOfWeek(THURSDAY,	d(16,	APRIL,	2006)));	

	363	 	//	assertEquals(d(20,	APRIL,	2006),	getNearestDayOfWeek(THURSDAY,	d(17,	APRIL,	2006)));	

	364	 	//	assertEquals(d(20,	APRIL,	2006),	getNearestDayOfWeek(THURSDAY,	d(18,	APRIL,	2006)));	

	365	 	//	assertEquals(d(20,	APRIL,	2006),	getNearestDayOfWeek(THURSDAY,	d(19,	APRIL,	2006)));	

	366	 	assertEquals(d(20,	APRIL,	2006),	getNearestDayOfWeek(THURSDAY,	d(20,	APRIL,	2006)));	

	367	 	assertEquals(d(20,	APRIL,	2006),	getNearestDayOfWeek(THURSDAY,	d(21,	APRIL,	2006)));	

	368	 	assertEquals(d(20,	APRIL,	2006),	getNearestDayOfWeek(THURSDAY,	d(22,	APRIL,	2006)));	

	369	

	370	 	//	assertEquals(d(14,	APRIL,	2006),	getNearestDayOfWeek(FRIDAY,	d(16,	APRIL,	2006)));	

	371	 	//	assertEquals(d(14,	APRIL,	2006),	getNearestDayOfWeek(FRIDAY,	d(17,	APRIL,	2006)));	

	372	 	//	assertEquals(d(21,	APRIL,	2006),	getNearestDayOfWeek(FRIDAY,	d(18,	APRIL,	2006)));	

	373	 	//	assertEquals(d(21,	APRIL,	2006),	getNearestDayOfWeek(FRIDAY,	d(19,	APRIL,	2006)));	

	374	 	//	assertEquals(d(21,	APRIL,	2006),	getNearestDayOfWeek(FRIDAY,	d(20,	APRIL,	2006)));	

	375	 	assertEquals(d(21,	APRIL,	2006),	getNearestDayOfWeek(FRIDAY,	d(21,	APRIL,	2006)));	

	376	 	assertEquals(d(21,	APRIL,	2006),	getNearestDayOfWeek(FRIDAY,	d(22,	APRIL,	2006)));	

	377	

	378	 	//	assertEquals(d(15,	APRIL,	2006),	getNearestDayOfWeek(SATURDAY,	d(16,	APRIL,	2006)));	

	379	 	//	assertEquals(d(15,	APRIL,	2006),	getNearestDayOfWeek(SATURDAY,	d(17,	APRIL,	2006)));	

	380	 	//	assertEquals(d(15,	APRIL,	2006),	getNearestDayOfWeek(SATURDAY,	d(18,	APRIL,	2006)));	

	381	 	//	assertEquals(d(22,	APRIL,	2006),	getNearestDayOfWeek(SATURDAY,	d(19,	APRIL,	2006)));	

	382	 	//	assertEquals(d(22,	APRIL,	2006),	getNearestDayOfWeek(SATURDAY,	d(20,	APRIL,	2006)));	

	383	 	//	assertEquals(d(22,	APRIL,	2006),	getNearestDayOfWeek(SATURDAY,	d(21,	APRIL,	2006)));	

	384	 	assertEquals(d(22,	APRIL,	2006),	getNearestDayOfWeek(SATURDAY,	d(22,	APRIL,	2006)));	

	385	

	386	 	try	{	

	387	 	getNearestDayOfWeek(-1,	d(1,	JANUARY,	2006));	

	388	 	fail(“Invalid	day	of	week	code	should	throw	exception”);	

	389	 	}	catch	(IllegalArgumentException	e)	{	

	390	 	}	

	391	 	}	

	392	

	393	 	public	void	testEndOfCurrentMonth()	throws	Exception	{	

	394	 	SerialDate	d	=	SerialDate.createInstance(2);	

	395	 	assertEquals(d(31,	JANUARY,	2006),	d.getEndOfCurrentMonth(d(1,	JANUARY,	2006)));	

	396	 	assertEquals(d(28,	FEBRUARY,	2006),	d.getEndOfCurrentMonth(d(1,	FEBRUARY,	2006)));	

	397	 	assertEquals(d(31,	MARCH,	2006),	d.getEndOfCurrentMonth(d(1,	MARCH,	2006)));	

	398	 	assertEquals(d(30,	APRIL,	2006),	d.getEndOfCurrentMonth(d(1,	APRIL,	2006)));	

	399	 	assertEquals(d(31,	MAY,	2006),	d.getEndOfCurrentMonth(d(1,	MAY,	2006)));	

	400	 	assertEquals(d(30,	JUNE,	2006),	d.getEndOfCurrentMonth(d(1,	JUNE,	2006)));	

	401	 	assertEquals(d(31,	JULY,	2006),	d.getEndOfCurrentMonth(d(1,	JULY,	2006)));	

	402	 	assertEquals(d(31,	AUGUST,	2006),	d.getEndOfCurrentMonth(d(1,	AUGUST,	2006)));	

	403	 	assertEquals(d(30,	SEPTEMBER,	2006),	d.getEndOfCurrentMonth(d(1,	SEPTEMBER,	2006)));	

	404	 	assertEquals(d(31,	OCTOBER,	2006),	d.getEndOfCurrentMonth(d(1,	OCTOBER,	2006)));	

	405	 	assertEquals(d(30,	NOVEMBER,	2006),	d.getEndOfCurrentMonth(d(1,	NOVEMBER,	2006)));	

	406	 	assertEquals(d(31,	DECEMBER,	2006),	d.getEndOfCurrentMonth(d(1,	DECEMBER,	2006)));	

	407	 	assertEquals(d(29,	FEBRUARY,	2008),	d.getEndOfCurrentMonth(d(1,	FEBRUARY,	2008)));	

	408	 	}	

	409	

	410	 	public	void	testWeekInMonthToString()	throws	Exception	{	

	411	 	assertEquals(“First”,weekInMonthToString(FIRST_WEEK_IN_MONTH));	

	412	 	assertEquals(“Second”,weekInMonthToString(SECOND_WEEK_IN_MONTH));	

	413	 	assertEquals(“Third”,weekInMonthToString(THIRD_WEEK_IN_MONTH));	

	414	 	assertEquals(“Fourth”,weekInMonthToString(FOURTH_WEEK_IN_MONTH));	

	415	 	assertEquals(“Last”,weekInMonthToString(LAST_WEEK_IN_MONTH));	

	416	

	417	 	//todo	try	{	

	418	 	//	weekInMonthToString(-1);	

	419	 	//	fail(“Invalid	week	code	should	throw	exception”);	

	420	 	//	}	catch	(IllegalArgumentException	e)	{	

	421	 	//	}	

	422	 	}	

	423	

	424	 	public	void	testRelativeToString()	throws	Exception	{	

	425	 	assertEquals(“Preceding”,relativeToString(PRECEDING));	

	426	 	assertEquals(“Nearest”,relativeToString(NEAREST));	

	427	 	assertEquals(“Following”,relativeToString(FOLLOWING));	

	428	

	429	 	//todo	try	{	

	430	 	//	relativeToString(-1000);	

	431	 	//	fail(“Invalid	relative	code	should	throw	exception”);	

	432	 	//	}	catch	(IllegalArgumentException	e)	{	

	433	 	//	}	

	434	 	}	

	435	

	436	 	public	void	testCreateInstanceFromDDMMYYYY()	throws	Exception	{	

	437	 	SerialDate	date	=	createInstance(1,	JANUARY,	1900);	

	438	 	assertEquals(1,date.getDayOfMonth());	

	439	 	assertEquals(JANUARY,date.getMonth());	

	440	 	assertEquals(1900,date.getYYYY());	

	441	 	assertEquals(2,date.toSerial());	

	442	 	}	

	443	

	444	 	public	void	testCreateInstanceFromSerial()	throws	Exception	{	

	445	 	assertEquals(d(1,	JANUARY,	1900),createInstance(2));	

	446	 	assertEquals(d(1,	JANUARY,	1901),	createInstance(367));	

	447	 	}	

	448	

	449	 	public	void	testCreateInstanceFromJavaDate()	throws	Exception	{	

	450	 	assertEquals(d(1,	JANUARY,	1900),	

		 	createInstance(new	GregorianCalendar(1900,0,1).getTime()));	

	451	 	assertEquals(d(1,	JANUARY,	2006),	

		 	createInstance(new	GregorianCalendar(2006,0,1).getTime()));	

	452	 	}	

	453	

	454	 	public	static	void	main(String[]	args)	{	

	455	 	junit.textui.TestRunner.run(BobsSerialDateTest.class);	

	456	 	}	

	457	 	}	

Listado	B-5
SpreadsheetDate.java.

	1	 	/*	===	

	2	 	*	JCommon:	biblioteca	gratuita	de	clases	de	propósito	general	para	Java(tm)	

	3	 	*	===	

	4	 	*	

	5	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	colaboradores.	

	6	 	*	

	7	 	*	Información	del	proyecto:	http://www.jfree.org/jcommon/index.html	

	8	 	*	

	9	 	*	Esta	biblioteca	es	software	gratuito;	puede	distribuirla	y/o	modificarla	

	10	 	*	bajo	las	condiciones	de	la	Licencia	pública	general	GNU	publicada	por	

	11	 	*	la	Free	Software	Foundation;	ya	sea	la	versión	2.1	de	la	licencia,	u	

	12	 	*	otra	versión	posterior	(de	su	elección).	

	13	 	*	

	14	 	*	Esta	biblioteca	se	distribuye	con	la	intención	de	que	sea	útil,	pero	

	15	 	*	SIN	GARANTÍA	ALGUNA,	incluida	la	garantía	implícita	de	COMERCIABILIDAD	

	16	 	*	e	IDONEIDAD	PARA	UN	DETERMINADO	FIN.	Consulte	la	Licencia	pública	general	GNU	

	17	 	*	si	necesita	más	información	al	respecto.	

	18	 	*	

	19	 	*	Debería	haber	recibido	una	copia	de	la	Licencia	pública	general	GNU	

	20	 	*	junto	a	esta	biblioteca;	en	caso	contrario,	contacte	con	la	Free	Software	

	21	 	*	Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301,	

	22	 	*	EE.UU.	

	23	 	*	

	24	 	*	[Java	es	una	marca	comercial	o	marca	comercial	registrada	de	Sun	

	25	 	*	Microsystems,	Inc.	en	Estados	Unidos	y	otros	países.]	

	26	 	*	

	27	 	*	--------------------------	

	28	 	*	SpreadsheetDate.java	

	29	 	*	--------------------------	

	30	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	colaboradores.	

	31	 	*	

	32	 	*	Autor	original:	David	Gilbert	(por	Object	Refinery	Limited);	

	33	 	*	Colaboradores(s):	-;	

	34	 	*	

	35	 	*	$Id:	SpeadsheetDate.java,v	1.8	2005/11/03	09:25:39	mungady	Exp	$	

	36	 	*	

	37	 	*	Cambios	

	38	 	*	----------	

	39	 	*	11-Oct-2001	:	Version	1	(DG);	

	40	 	*	05-Nov-2001	:	Se	añaden	los	métodos	getDescription()	y	setDescription()	(DG);	

	41	 	*	12-Nov-2001	:	Se	cambia	el	nombre	ExcelDate.java	por	SpreadsheetDate.java	(DG);	

	42	 	*	Se	corrige	un	error	a	la	hora	de	calcular	el	día,	mes	y	año	a	

	43	 	*	partir	del	número	de	serie	(DG);	

	44	 	*	24-Jan-2002	:	Se	corrige	un	error	a	la	hora	de	calcular	el	número	de	serie	a	

	45	 	*	partir	del	día,	mes	y	año.	Gracias	a	Trevor	Kills	por	el	informe	(DG);	

	46	 	*	29-May-2002	:	Se	añade	el	método	equals(Object)	(SourceForge	ID	558850)	(DG);	

	47	 	*	03-Oct-2002	:	Se	corrigen	los	errores	detectados	por	Checkstyle	(DG);	

	48	 	*	13-Mar-2003	:	Implementación	de	Serializable	(DG);	

	49	 	*	04-Sep-2003	:	Métodos	isInRange()	completados	(DG);	

	50	 	*	05-Sep-2003	:	Implementación	de	Comparable	(DG);	

	51	 	*	21-Oct-2003	:	Se	añade	el	método	hashCode()	(DG);	

	52	 	*	

	53	 	/*	

	54	

	55	 	package	org.jfree.date;	

	56	

	57	 	import	java.util.Calendar;	

	58	 	import	java.util.Date;	

	59	 	/**	

	60	

	61	 	*	Representa	una	con	un	entero,	de	forma	similar	a	la	

	62	 	*	implementación	en	Microsoft	Excel.	El	intervalo	de	fechas	admitido	es	

	63	 	*	1-Ene-1900	a	31-Dic-9999.	

	64	 	*	<P>	

	65	 	*	Recuerde	que	Excel	tiene	un	error	que	reconoce	el	año	

	66	 	*	1900	como	bisiesto	cuando	en	realidad	no	lo	es.	Encontrará	más	

	67	 	*	información	en	el	sitio	Web	de	Microsoft,	en	el	artículo	Q181370:	

	68	 	*	<P>	

	69	 	*	http://support.microsoft.com/support/kb/articles/Q181/3/70.asp	

	70	 	*	<P>	

	71	 	*	Excel	usa	como	convención	que	el	1-Ene-1900	=	1.	Esta	clase	usa	la	

	72	 	*	convención	de	que	1-Ene-1900	=	2.	

	73	 	*	Como	resultado,	el	número	de	día	de	esta	clase	será	diferente	al	de	

	74	 	*	Excel	para	enero	y	febrero	de	1900…	pero	Excel	añade	un	día	

	75	 	*	más	(29-Feb-1900	que	en	realidad	no	existe)	y	a	partir	de	ahí	

	76	 	*	los	números	de	los	días	coinciden.	

	77	 	*	

	78	 	*	@author	David	Gilbert	

	79	 	*/	

	80	 	public	class	SpreadsheetDate	extends	SerialDate	{	

	81	

	82	 	/**	Para	serialización.	*/	

	83	 	private	static	final	long	serialVersionUID	=	-2039586705374454461L;	

	84	

	85	 	/**	

	86	 	*	El	número	de	día	(1-Ene-1900	=	2,	2-Ene-1900	=	3…,	31-Dic-9999	=	

	87	 	*	2958465).	

	88	 	*/	

	89	 	private	int	serial;	

	90	

	91	 	/**	El	día	del	mes	(de	1	a	28,	29,	30	o	31	en	función	del	mes).	*/	

	92	 	private	int	day;	

	93	

	94	 	/**	El	mes	del	año	(de	1	a	12).	*/	

	95	 	private	int	month;	

	96	

	97	 	/**	El	año	(de	1900	a	9999).	*/	

	98	 	private	int	year;	

	99	

	100	 	/**	Una	descripción	opcional	para	la	fecha.	*/	

	101	 	private	String	description;	

	102	

	103	 	/**	

	104	 	*	Crear	una	nueva	instancia	de	la	fecha.	

	105	 	*	

	106	 	*	@param	day	el	día	(entre	1	y	28/29/30/31).	

	107	 	*	@param	month	el	mes	(entre	1	y	12).	

	108	 	*	@param	year	el	año	(entre	1900	y	9999).	

	109	 	*/	

	110	 	public	SpreadsheetDate(final	int	day,	final	int	month,	final	int	year)	{	

	111	

	112	 	if	((year	>=	1900)	&&	(year	<=	9999))	{	

	113	 	this.year	=	year;	

	114	 	}	

	115	 	else	{	

	116	 	throw	new	IllegalArgumentException(

	117	 	“The	‘year’	argument	must	be	in	range	1900	to	9999.”	

	118);	

	119	 	}	

	120	

	121	 	if	((month	>=	MonthConstants.JANUARY)	

	122	 	&&	(month	<=	MonthConstants.DECEMBER))	{	

	123	 	this.month	=	month;	

	124	 	}	

	125	 	else	{	

	126	 	throw	new	IllegalArgumentException(

	127	 	“The	‘month’	argument	must	be	in	the	range	1	to	12.”	

	128);	

	129	 	}	

	130	

	131	 	if	((day	>=	1)	&&	(day	<=	SerialDate.lastDayOfMonth(month,	year)))	{	

	132	 	this.day	=	day;	

	133	 	}	

	134	 	else	{	

	135	 	throw	new	IllegalArgumentException(“Invalid	‘day’	argument.”);	

	136	 	}	

	137	

	138	 	//	es	necesario	sincronizar	el	número	de	serie	con	el	día-mes-año…	

	139	 	this.serial	=	calcSerial(day,	month,	year);	

	140	

	141	 	this.description	=	null;	

	142	

	143	 	}	

	144	

	145	 	/**	

	146	 	*	Constructor	estándar:	crear	un	nuevo	objeto	de	fecha	que	representa	el	

	147	 	*	número	de	día	especificado	(que	debe	estar	comprendido	entre	2	y	2958465).	

	148	 	*	

	149	 	*	@param	serial	número	de	serie	para	el	día	(entre	2	y	2958465).	

	150	 	*/	

	151	 	public	SpreadsheetDate(final	int	serial)	{	

	152	

	153	 	if	((serial	>=	SERIAL_LOWER_BOUND)	&&	(serial	<=	SERIAL_UPPER_BOUND))	{	

	154	 	this.serial	=	serial;	

	155	 	}	

	156	 	else	{	

	157	 	throw	new	IllegalArgumentException(

	158	 	“SpreadsheetDate:	Serial	must	be	in	range	2	to	2958465.”);	

	159	 	}	

	160	

	161	 	//	el	día-mes-año	debe	estar	sincronizado	con	el	número	de	serie…	

	162	 	calcDayMonthYear();	

	163	

	164	 	}	

	165	

	166	 	/**	

	167	 	*	Devuelve	la	descripción	adjuntada	a	la	fecha.	No	es	

	168	 	*	obligatorio	que	la	fecha	tenga	una	descripción,	pero	resulta	útil	

	169	 	*	en	algunas	aplicaciones.	

	170	 	*	

	171	 	*	@return	La	descripción	adjuntada	a	la	fecha.	

	172	 	*/	

	173	 	public	String	getDescription()	{	

	174	 	return	this.description;	

	175	 	}	

	176	

	177	 	/**	

	178	 	*	Establece	la	descripción	de	la	fecha.	

	179	 	*	

	180	 	*	@param	description	la	descripción	de	esta	fecha	(<code>null</code>	

	181	 	*	se	permite)	

	182	 	*/	

	183	 	public	void	setDescription(final	String	description)	{	

	184	 	this.description	=	description;	

	185	 	}	

	186	

	187	 	/**	

	188	 	*	Devuelve	el	número	de	serie	de	la	fecha,	siendo	el	1	de	enero	1900	=	2	

	189	 	*	(se	corresponde,	casi	totalmente,	al	sistema	de	numeración	empleado	en	

	190	 	*	Microsoft	Excel	para	Windows	y	Lotus	1-2-3).	

	191	 	*	

	192	 	*	@return	El	número	de	serie	de	la	fecha.	

	193	 	*/	

	194	 	public	int	toSerial()	{	

	195	 	return	this.serial;	

	196	 	}	

	197	

	198	 	/**	

	199	 	*	Devuelve	una	<code>java.util.Date</code>	equivalente	a	esta	fecha.	

	200	 	*	

	201	 	*	@return	La	fecha.	

	202	 	*/	

	203	 	public	Date	toDate()	{	

	204	 	final	Calendar	calendar	=	Calendar.getInstance();	

	205	 	calendar.set(getYYYY(),	getMonth()	-	1,	getDayOfMonth(),	0,	0,	0);	

	206	 	return	calendar.getTime();	

	207	 	}	

	208	

	209	 	/**	

	210	 	*	Devuelve	el	año	(con	un	intervalo	válido	de	1900	a	9999).	

	211	 	*	

	212	 	*	@return	El	año.	

	213	 	*/	

	214	 	public	int	getYYYY()	{	

	215	 	return	this.year;	

	216	 	}	

	217	

	218	 	/**	

	219	 	*	Devuelve	el	mes	(Enero	=	1,	Febrero	=	2,	Marzo	=	3).	

	220	 	*	

	221	 	*	@return	El	mes	del	año.	

	222	 	*/	

	223	 	public	int	getMonth()	{	

	224	 	return	this.month;	

	225	 	}	

	226	

	227	 	/**	

	228	 	*	Devuelve	el	día	del	mes.	

	229	 	*	

	230	 	*	@return	El	día	del	mes.	

	231	 	*/	

	232	 	public	int	getDayOfMonth()	{	

	233	 	return	this.day;	

	234	 	}	

	235	

	236	 	/**	

	237	 	*	Devuelve	un	código	que	representa	el	día	de	la	semana.	

	238	 	*	<P>	

	239	 	*	Los	códigos	se	definen	en	la	clase	{@link	SerialDate}	como:	

	240	 	*	<code>SUNDAY</code>,	<code>MONDAY</code>,	<code>TUESDAY</code>,	

	241	 	*	<code>WEDNESDAY</code>,	<code>THURSDAY</code>,	<code>FRIDAY</code>,	y	

	242	 	*	<code>SATURDAY</code>.	

	243	 	*	

	244	 	*	@return	Un	código	que	representa	el	día	de	la	semana.	

	245	 	*/	

	246	 	public	int	getDayOfWeek()	{	

	247	 	return	(this.serial	+	6)	%	7	+	1;	

	248	 	}	

	249	

	250	 	/**	

	251	 	*	Prueba	la	igualdad	de	esta	fecha	con	un	objeto	arbitrario.	

	252	 	*	<P>	

	253	 	*	Este	método	SÓLO	devuelve	true	si	el	objeto	es	una	instancia	de	la	

	254	 	*	clase	base	{@link	SerialDate}	y	representa	el	mismo	día	que	

	255	 	*	{@link	SpreadsheetDate}.	

	256	 	*	

	257	 	*	@param	object	el	objeto	que	comparar	(se	permite	<code>null</code>).	

	258	 	*	

	259	 	*	@return	Un	valor	booleano.	

	260	 	*/	

	261	 	public	boolean	equals(final	Object	object)	{	

	262	

	263	 	if	(object	instanceof	SerialDate)	{	

	264	 	final	SerialDate	s	=	(SerialDate)	object;	

	265	 	return	(s.toSerial()	==	this.toSerial());	

	266	 	}	

	267	 	else	{	

	268	 	return	false;	

	269	 	}	

	270	

	271	 	}	

	272	

	273	 	/**	

	274	 	*	Devuelve	un	código	hash	para	la	instancia	de	este	objeto.	

	275	 	*	

	276	 	*	@return	Un	código	hash.	

	277	 	*/	

	278	 	public	int	hashCode()	{	

	279	 	return	toSerial();	

	280	 	}	

	281	

	282	 	/**	

	283	 	*	Devuelve	la	diferencia	(en	días)	entre	esta	fecha	y	la	

	284	 	*	‘otra’	fecha	especificada.	

	285	 	*	

	286	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	287	 	*	

	288	 	*	@return	La	diferencia	(en	días)	entre	esta	fecha	y	la	

	289	 	*	otra’	fecha	especificada.	

	290	 	*/	

	291	 	public	int	compare(final	SerialDate	other)	{	

	292	 	return	this.serial	–	other.toSerial();	

	293	 	}	

	294	

	295	 	/**	

	296	 	*	Implementa	el	método	necesario	para	la	interfaz	Comparable.	

	297	 	*	

	298	 	*	@param	other	el	otro	objeto	(normalmente	otro	SerialDate).	

	299	 	*	

	300	 	*	@return	Un	entero	negativo,	cero	o	un	entero	positivo	si	este	objeto	

	301	 	*	es	menor	que,	igual	o	mayor	que	el	objeto	especificado.	

	302	 	*/	

	303	 	public	int	compareTo(final	Object	other)	{	

	304	 	return	compare((SerialDate)	other);	

	305	 	}	

	306	

	307	 	/**	

	308	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	309	 	*	SerialDate	especificada.	

	310	 	*	

	311	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	312	 	*	

	313	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	que	

	314	 	*	la	otra	SerialDate	especificada.	

	315	 	*/	

	316	 	public	boolean	isOn(final	SerialDate	other)	{	

	317	 	return	(this.serial	==	other.toSerial());	

	318	 	}	

	319	

	320	 	/**	

	321	 	*	Devuelve	true	si	esta	SerialDate	representa	una	fecha	anterior	a	

	322	 	*	la	SerialDate	especificada.	

	323	 	*	

	324	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	325	 	*	

	326	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	una	fecha	anterior	a	

	327	 	*	la	SerialDate	especificada.	

	328	 	*/	

	329	 	public	boolean	isBefore(final	SerialDate	other)	{	

	330	 	return	(this.serial	<	other.toSerial());	

	331	 	}	

	332	

	333	 	/**	

	334	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	335	 	*	SerialDate	especificada.	

	336	 	*	

	337	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	338	 	*	

	339	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	

	340	 	*	que	la	SerialDate	especificada.	

	341	 	*/	

	342	 	public	boolean	isOnOrBefore(final	SerialDate	other)	{	

	343	 	return	(this.serial	<=	other.toSerial());	

	344	 	}	

	345	

	346	 	/**	

	347	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	348	 	*	SerialDate	especificada.	

	349	 	*	

	350	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	351	 	*	

	352	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	

	353	 	*	que	la	SerialDate	especificada.	

	354	 	*/	

	355	 	public	boolean	isAfter(final	SerialDate	other)	{	

	356	 	return	(this.serial	>	other.toSerial());	

	357	 	}	

	358	

	359	 	/**	

	360	 	*	Devuelve	true	si	esta	SerialDate	representa	la	misma	fecha	que	la	

	361	 	*	SerialDate	especificada.	

	362	 	*	

	363	 	*	@param	other	la	fecha	con	la	que	se	compara.	

	364	 	*	

	365	 	*	@return	<code>true</code>	si	esta	SerialDate	representa	la	misma	fecha	

	366	 	*	que	la	SerialDate	especificada.	

	367	 	*/	

	368	 	public	boolean	isOnOrAfter(final	SerialDate	other)	{	

	369	 	return	(this.serial	>=	other.toSerial());	

	370	 	}	

	371	

	372	 	/**	

	373	 	*	Devuelve	<code>true</code>	si	{@link	SerialDate}	se	encuentra	en	el	

	374	 	*	intervalo	especificado	(INCLUSIVE).	El	orden	de	fecha	de	d1	y	d2	no	es	

	375	 	*	importante.	

	376	 	*	

	377	 	*	@param	d1	una	fecha	límite	para	el	rango.	

	378	 	*	@param	d2	la	otra	fecha	límite	para	el	rango.	

	379	 	*	

	380	 	*	@return	Un	valor	booleano.	

	381	 	*/	

	382	 	public	boolean	isInRange(final	SerialDate	d1,	final	SerialDate	d2)	{	

	383	 	return	isInRange(d1,	d2,	SerialDate.INCLUDE_BOTH);	

	384	 	}	

	385	

	386	 	/**	

	387	 	*	Devuelve	true	si	esta	SerialDate	se	encuentra	en	el	intervalo	especificado	

	388	 	*	(el	invocador	especifica	si	los	puntos	finales	se	incluyen	o	no).	El	orden	

	389	 	*	de	d1	y	d2	no	es	importante.	

	390	 	*	

	391	 	*	@param	d1	una	fecha	límite	para	el	rango.	

	392	 	*	@param	d2	la	otra	fecha	límite	para	el	rango.	

	393	 	*	@param	include	un	código	que	controla	si	la	fecha	inicial	y	final	

	394	 	*	se	incluyen	en	el	intervalo.	

	395	 	*	

	396	 	*	@return	<code>true</code>	si	esta	SerialDate	se	encuentra	en	el	intervalo	

	397	 	*	especificado.	

	398	 	*/	

	399	 	public	boolean	isInRange(final	SerialDate	d1,	final	SerialDate	d2,	

	400	 	final	int	include)	{	

	401	 	final	int	s1	=	d1.toSerial();	

	402	 	final	int	s2	=	d2.toSerial();	

	403	 	final	int	start	=	Math.min(s1,	s2);	

	404	 	final	int	end	=	Math.max(s1,	s2);	

	405	

	406	 	final	int	s	=	toSerial();	

	407	 	if	(include	==	SerialDate.INCLUDE_BOTH)	{	

	408	 	return	(s	>=	start	&&	s	<=	end);	

	409	 	}	

	410	 	else	if	(include	==	SerialDate.INCLUDE_FIRST)	{	

	411	 	return	(s	>=	start	&&	s	<	end);	

	412	 	}	

	413	 	else	if	(include	==	SerialDate.INCLUDE_SECOND)	{	

	414	 	return	(s	>	start	&&	s	<=	end);	

	415	 	}	

	416	 	else	{	

	417	 	return	(s	>	start	&&	s	<	end);	

	418	 	}	

	419	 	}	

	420	

	421	 	/**	

	422	 	*	Calcular	el	número	de	serie	a	partir	del	día,	mes	y	año.	

	423	 	*	<P>	

	424	 	*	1-Ene-1900	=	2.	

	425	 	*	

	426	 	*	@param	d	el	día.	

	427	 	*	@param	m	el	mes.	

	428	 	*	@param	y	el	año.	

	429	 	*	

	430	 	*	@return	el	número	de	serie	a	partir	del	día,	mes	y	año.	

	431	 	*/	

	432	 	private	int	calcSerial(final	int	d,	final	int	m,	final	int	y)	{	

	433	 	final	int	yy	=	((y	-	1900)	*	365)	+	SerialDate.leapYearCount(y	-	1);	

	434	 	int	mm	=	SerialDate.AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[m];	

	435	 	if	(m	>	MonthConstants.FEBRUARY)	{	

	436	 	if	(SerialDate.isLeapYear(y))	{	

	437	 	mm	=	mm	+	1;	

	438	 	}	

	439	 	}	

	440	 	final	int	dd	=	d;	

	441	 	return	yy	+	mm	+	dd	+	1;	

	442	 	}	

	443	

	444	 	/**	

	445	 	*	Calcular	el	día,	mes	y	año	a	partir	del	número	de	serie.	

	446	 	*/	

	447	 	private	void	calcDayMonthYear()	{	

	448	

	449	 	//	obtener	el	año	a	partir	del	número	de	serie	de	la	fecha	

	450	 	final	int	days	=	this.serial	-	SERIAL_LOWER_BOUND;	

	451	 	//	sobrevalorado	ya	que	ignoramos	los	días	bisiestos	

	452	 	final	int	overestimatedYYYY	=	1900	+	(days	/	365);	

	453	 	final	int	leaps	=	SerialDate.leapYearCount(overestimatedYYYY);	

	454	 	final	int	nonleapdays	=	days	-	leaps;	

	455	 	//	subestimado	ya	que	sobrevaloramos	los	años	

	456	 	int	underestimatedYYYY	=	1900	+	(nonleapdays	/	365);	

	457	

	458	 	if	(underestimatedYYYY	==	overestimatedYYYY)	{	

	459	 	this.year	=	underestimatedYYYY;	

	460	 	}	

	461	 	else	{	

	462	 	int	ss1	=	calcSerial(1,	1,	underestimatedYYYY);	

	463	 	while	(ss1	<=	this.serial)	{	

	464	 	underestimatedYYYY	=	underestimatedYYYY	+	1;	

	465	 	ss1	=	calcSerial(1,	1,	underestimatedYYYY);	

	466	 	}	

	467	 	this.year	=	underestimatedYYYY	-	1;	

	468	 	}	

	469	

	470	 	final	int	ss2	=	calcSerial(1,	1,	this.year);	

	471	

	472	 	int[]	daysToEndOfPrecedingMonth	

	473	 	=	AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH;	

	474	

	475	 	if	(isLeapYear(this.year))	{	

	476	 	daysToEndOfPrecedingMonth	

	477	 	=	LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH;	

	478	 	}	

	479	

	480	 	//	get	the	month	from	the	serial	date	

	481	 	int	mm	=	1;	

	482	 	int	sss	=	ss2	+	daysToEndOfPrecedingMonth[mm]	-	1;	

	483	 	while	(sss	<	this.serial)	{	

	484	 	mm	=	mm	+	1;	

	485	 	sss	=	ss2	+	daysToEndOfPrecedingMonth[mm]	-	1;	

	486	 	}	

	487	 	this.month	=	mm	-	1;	

	488	

	489	 	//	el	resto	es	d(+1);	

	490	 	this.day	=	this.serial	-	ss2	

	491	 	-	daysToEndOfPrecedingMonth[this.month]	+	1;	

	492	

	493	 	}	

	494	

	495	 	}	

Listado	B-6
RelativeDayOfWeekRule.java

	1	 	/*	===	

	2	 	*	JCommon	:	biblioteca	gratuita	de	clases	de	propósito	general	para	Java(tm)	

	3	 	*	===	

	4	 	*	

	5	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	colaboradores.	

	6	 	*	

	7	 	*	Información	del	proyecto:	http://www.jfree.org/jcommon/index.html	

	8	 	*	

	9	 	*	Esta	biblioteca	es	software	gratuito;	puede	distribuirla	y/o	modificarla	

	10	 	*	bajo	las	condiciones	de	la	Licencia	pública	general	GNU	publicada	por	

	11	 	*	la	Free	Software	Foundation;	ya	sea	la	versión	2.1	de	la	licencia,	u	

	12	 	*	otra	versión	posterior	(de	su	elección).	

	13	 	*	

	14	 	*	Esta	biblioteca	se	distribuye	con	la	intención	de	que	sea	útil,	pero	

	15	 	*	SIN	GARANTÍA	ALGUNA,	incluida	la	garantía	implícita	de	COMERCIABILIDAD	

	16	 	*	e	IDONEIDAD	PARA	UN	DETERMINADO	FIN.	Consulte	la	Licencia	pública	general	GNU	

	17	 	*	si	necesita	más	información	al	respecto.	

	18	 	*	

	19	 	*	Debería	haber	recibido	una	copia	de	la	Licencia	pública	general	GNU	

	20	 	*	junto	a	esta	biblioteca;	en	caso	contrario,	contacte	con	la	Free	Software	

	21	 	*	Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301,	

	22	 	*	EE.UU.	

	23	 	*	

	24	 	*	[Java	es	una	marca	comercial	o	marca	comercial	registrada	de	Sun	

	25	 	*	Microsystems,	Inc.	en	Estados	Unidos	y	otros	países.]	

	26	 	*	

	27	 	*	--------------------------	

	28	 	*	RelativeDayOfWeekRule.java	

	29	 	*	--------------------------	

	30	 	*	(C)	Copyright	2000-2003,	de	Object	Refinery	Limited	y	colaboradores.	

	31	 	*	

	32	 	*	Autor	original:	David	Gilbert	(por	Object	Refinery	Limited);	

	33	 	*	Colaboradores(s):	-;	

	34	 	*	

	35	 	*	$Id:	RelativeDayOfWeekRule.java,v	1.6	2005/11/16	15:58:40	taqua	Exp	$	

	36	 	*	

	37	 	*	Cambios	(26-Oct-2001)	

	38	 	*	--------------------------	

	39	 	*	26-Oct-2001	:	Se	cambió	el	paquete	por	com.jrefinery.date.*;	

	40	 	*	03-Oct-2002	:	Se	corrigen	los	errores	detectados	por	Checkstyle	(DG);	

	41	 	*	

	42	 	*/	

	43	

	44	 	package	org.jfree.date;	

	45	

	46	 	/**	

	47	 	*	Una	regla	de	fechas	anuales	que	devuelve	una	fecha	por	cada	año	en	función	de	

	48	 	*	(a)	una	regla	de	referencia;	(b)	un	día	de	la	semana	y	(c)	un	parámetro	de	

	49	 	*	selección	(SerialDate.PRECEDING,	SerialDate.NEAREST,	SerialDate.FOLLOWING).	

	50	 	*	<P>	

	51	 	*	Por	ejemplo,	el	Viernes	Santo	se	puede	especificado	‘el	Viernes	ANTERIOR	al	

	52	 	*	domingo	de	Resurrección.	

	53	 	*	

	54	 	*	@author	David	Gilbert	

	55	 	*/	

	56	 	public	class	RelativeDayOfWeekRule	extends	AnnualDateRule	{	

	57	

	58	 	/**	Una	referencia	a	la	regla	de	fechas	anuales	sobre	la	que	se	basa	esta	regla.	*/	

	59	 	private	AnnualDateRule	subrule;	

	60	

	61	 	/**	

	62	 	*	El	día	de	la	semana	(SerialDate.MONDAY,	SerialDate.TUESDAY,	etc).	

	63	 	*/	

	64	 	private	int	dayOfWeek;	

	65	

	66	 	/**	Indica	que	día	de	la	semana	(PRECEDING,	NEAREST	o	FOLLOWING).	*/	

	67	 	private	int	relative;	

	68	

	69	 	/**	

	70	 	*	Constructor	predeterminado:	genera	una	regla	para	el	lunes	siguiente	al	1	de	enero.	

	71	 	*/	

	72	 	public	RelativeDayOfWeekRule()	{	

	73	 	this(new	DayAndMonthRule(),	SerialDate.MONDAY,	SerialDate.FOLLOWING);	

	74	 	}	

	75	

	76	 	/**	

	77	 	*	Constructor	estándar:	genera	una	regla	en	función	de	la	subregla	proporcionada.	

	78	 	*	

	79	 	*	@param	subrule	la	regla	que	determina	la	fecha	de	referencia.	

	80	 	*	@param	dayOfWeek	el	día	de	la	semana	relativo	a	la	fecha	de	referencia.	

	81	 	*	@param	relative	indica	“qué”	día	de	la	semana	(anterior,	más	próximo	

	82	 	*	o	posterior).	

	83	 	*/	

	84	 	public	RelativeDayOfWeekRule(final	AnnualDateRule	subrule,	

	85	 	final	int	dayOfWeek,	final	int	relative)	{	

	86	 	this.subrule	=	subrule;	

	87	 	this.dayOfWeek	=	dayOfWeek;	

	88	 	this.relative	=	relative;	

	89	 	}	

	90	

	91	 	/**	

	92	 	*	Devuelve	la	subregla	(también	denominada	regla	de	referencia).	

	93	 	*	

	94	 	*	@return	La	regla	de	fechas	anuales	que	determina	la	fecha	de	referencia	para	

	95	 	*	esta	regla.	

	96	 	*/	

	97	 	public	AnnualDateRule	getSubrule()	{	

	98	 	return	this.subrule;	

	99	 	}	

	100	

	101	 	/**	

	102	 	*	Establece	la	subregla.	

	103	 	*	

	104	 	*	@param	subrule	la	regla	de	fechas	anuales	que	determina	la	fecha	de	

	105	 	*	referencia	para	esta	regla.	

	106	 	*/	

	107	 	public	void	setSubrule(final	AnnualDateRule	subrule)	{	

	108	 	this.subrule	=	subrule;	

	109	 	}	

	110	

	111	 	/**	

	112	 	*	Devuelve	el	día	de	la	semana	de	esta	regla.	

	113	 	*	

	114	 	*	@return	el	día	de	la	semana	de	esta	regla.	

	115	 	*/	

	116	 	public	int	getDayOfWeek()	{	

	117	 	return	this.dayOfWeek;	

	118	 	}	

	119	

	120	 	/**	

	121	 	*	Establece	el	día	de	la	semana	de	esta	regla.	

	122	 	*	

	123	 	*	@param	dayOfWeek	el	día	de	la	semana	de	(SerialDate.MONDAY,	

	124	 	*	SerialDate.TUESDAY,	etc.).	

	125	 	*/	

	126	 	public	void	setDayOfWeek(final	int	dayOfWeek)	{	

	127	 	this.dayOfWeek	=	dayOfWeek;	

	128	 	}	

	129	

	130	 	/**	

	131	 	*	Devuelve	el	atributo	‘relativo’	que	determina	“qué”	

	132	 	*	día	de	la	semana	nos	interesa	(SerialDate.PRECEDING,	

	133	 	*	SerialDate.NEAREST	o	SerialDate.FOLLOWING).	

	134	 	*	

	135	 	*	@return	El	atributo	‘relativo’.	

	136	 	*/	

	137	 	public	int	getRelative()	{	

	138	 	return	this.relative;	

	139	 	}	

	140	

	141	 	/**	

	142	 	*	Establece	el	atributo	‘relativo’	(SerialDate.PRECEDING,	SerialDate.NEAREST,	

	143	 	*	SerialDate.FOLLOWING).	

	144	 	*	

	145	 	*	@param	relative	determina	“qué”	día	de	la	semana	se	selecciona	con	esta	

	146	 	*	regla.	

	147	 	*/	

	148	 	public	void	setRelative(final	int	relative)	{	

	149	 	this.relative	=	relative;	

	150	 	}	

	151	

	152	 	/**	

	153	 	*	Crea	un	clon	de	esta	regla.	

	154	 	*	

	155	 	*	@return	un	clon	de	esta	regla.	

	156	 	*	

	157	 	*	@throws	CloneNotSupportedException	nunca	debe	producirse.	

	158	 	*/	

	159	 	public	Object	clone()	throws	CloneNotSupportedException	{	

	160	 	final	RelativeDayOfWeekRule	duplicate	

	161	 	=	(RelativeDayOfWeekRule)	super.clone();	

	162	 	duplicate.subrule	=	(AnnualDateRule)	duplicate.getSubrule().clone();	

	163	 	return	duplicate;	

	164	 	}	

	165	

	166	 	/**	

	167	 	*	Devuelve	la	fecha	generada	por	esta	regla,	para	el	año	especificado.	

	168	 	*	

	169	 	*	@param	year	el	año	(1900	<=	year	<=	9999).	

	170	 	*	

	171	 	*	@return	La	fecha	generada	por	esta	regla	para	un	año	concreto	(posiblemente	

	172	 	*	<code>null</code>).	

	173	 	*/	

	174	 	public	SerialDate	getDate(final	int	year)	{	

	175	

	176	 	//	comprobar	argumento…	

	177	 	if	((year	<	SerialDate.MINIMUM_YEAR_SUPPORTED)	

	178	 	||	(year	>	SerialDate.MAXIMUM_YEAR_SUPPORTED))	{	

	179	 	throw	new	IllegalArgumentException(

	180	 	“RelativeDayOfWeekRule.getDate():	year	outside	valid	range.”);	

	181	 	}	

	182	

	183	 	//	calcular	la	fecha…	

	184	 	SerialDate	result	=	null;	

	185	 	final	SerialDate	base	=	this.subrule.getDate(year);	

	186	

	187	 	if	(base	!=	null)	{	

	188	 	switch	(this.relative)	{	

	189	 	case(SerialDate.PRECEDING):	

	190	 	result	=	SerialDate.getPreviousDayOfWeek(this.dayOfWeek,	

	191	 	base);	

	192	 	break;	

	193	 	case(SerialDate.NEAREST):	

	194	 	result	=	SerialDate.getNearestDayOfWeek(this.dayOfWeek,	

	195	 	base);	

	196	 	break;	

	197	 	case(SerialDate.FOLLOWING):	

	198	 	result	=	SerialDate.getFollowingDayOfWeek(this.dayOfWeek,	

	199	 	base);	

	200	 	break;	

	201	 	default:	

	202	 	break;	

	203	 	}	

	204	 	}	

	205	 	return	result;	

	206	

	207	 	}	

	208	

	209	 	}	

Listado	B-7
DayDate.java	(Final)

	1	 	/*	===	

	2	 	*	JCommon:	biblioteca	gratuita	de	clases	de	propósito	general	para	Java(tm)	

	3	 	*	===	

	4	 	*	

	5	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	colaboradores.	

	…	

	36	 	*/	

	37	 	package	org.jfree.date;	

	38	

	39	 	import	java.io.Serializable;	

	40	 	import	java.util.*;	

	41	

	42	 	/**	

	43	 	*	Una	clase	abstracta	que	representa	fechas	inmutables	con	una	precisión	de	

	44	 	*	un	día.	La	implementación	asigna	cada	fecha	a	un	entero	que	

	45	 	*	representa	un	número	ordinal	de	días	de	un	origen	fijo.	

	46	 	*	

	47	 	*	¿Por	qué	no	usar	java.útil.Date?	Lo	haremos,	cuando	tenga	sentido.	En	ocasiones,	

	48	 	*	java.util.Date	puede	ser	demasiado	precisa;	representa	un	instante	en	el	tiempo,	

	49	 	*	con	una	precisión	de	1/1000	de	segundo	(y	la	fecha	depende	de	la	

	50	 	*	zona	horaria).	En	ocasiones	solo	querremos	representar	un	día	concreto	(como	el	21	

	51	 	*	de	enero	de	2015)	sin	preocuparnos	de	la	hora	del	día,	la	

	52	 	*	zona	horaria	u	otros	aspectos.	Para	eso	hemos	definido	SerialDate.	

	53	 	*	

	54	 	*	Usar	DayDateFactory.makeDate	para	crear	una	instancia.	

	55	 	*	

	56	 	*	@author	David	Gilbert	

	57	 	*	@author	Robert	C.	Martin	realizó	gran	parte	de	la	refactorización.	

	58	 	*/	

	59	

	60	 	public	abstract	class	DayDate	implements	Comparable,	Serializable	{	

	61	 	public	abstract	int	getOrdinalDay();	

	62	 	public	abstract	int	getYear();	

	63	 	public	abstract	Month	getMonth();	

	64	 	public	abstract	int	getDayOfMonth();	

	65	

	66	 	protected	abstract	Day	getDayOfWeekForOrdinalZero();	

	67	

	68	 	public	DayDate	plusDays(int	days)	{	

	69	 	return	DayDateFactory.makeDate(getOrdinalDay()	+	days);	

	70	 	}	

	71	

	72	 	public	DayDate	plusMonths(int	months)	{	

	73	 	int	thisMonthAsOrdinal	=	getMonth().toInt()	-	Month.JANUARY.toInt();	

	74	 	int	thisMonthAndYearAsOrdinal	=	12	*	getYear()	+	thisMonthAsOrdinal;	

	75	 	int	resultMonthAndYearAsOrdinal	=	thisMonthAndYearAsOrdinal	+	months;	

	76	 	int	resultYear	=	resultMonthAndYearAsOrdinal	/	12;	

	77	 	int	resultMonthAsOrdinal	=	resultMonthAndYearAsOrdinal	%	12	+	Month.JANUARY.toInt();	

	78	 	Month	resultMonth	=	Month.fromInt(resultMonthAsOrdinal);	

	79	 	int	resultDay	=	correctLastDayOfMonth(getDayOfMonth(),	resultMonth,	resultYear);	

	80	 	return	DayDateFactory.makeDate(resultDay,	resultMonth,	resultYear);	

	81	 	}	

	82	

	83	 	public	DayDate	plusYears(int	years)	{	

	84	 	int	resultYear	=	getYear()	+	years;	

	85	 	int	resultDay	=	correctLastDayOfMonth(getDayOfMonth(),	getMonth(),	resultYear);	

	86	 	return	DayDateFactory.makeDate(resultDay,	getMonth(),	resultYear);	

	87	 	}	

	88	

	89	 	private	int	correctLastDayOfMonth(int	day,	Month	month,	int	year)	{	

	90	 	int	lastDayOfMonth	=	DateUtil.lastDayOfMonth(month,	year);	

	91	 	if	(day	>	lastDayOfMonth)	

	92	 	day	=	lastDayOfMonth;	

	93	 	return	day;	

	94	 	}	

	95	

	96	 	public	DayDate	getPreviousDayOfWeek(Day	targetDayOfWeek)	{	

	97	 	int	offsetToTarget	=	targetDayOfWeek.toInt()	-	getDayOfWeek().toInt();	

	98	 	if	(offsetToTarget	>=	0)	

	99	 	offsetToTarget	-=	7;	

	100	 	return	plusDays(offsetToTarget);	

	101	 	}	

	102	

	103	 	public	DayDate	getFollowingDayOfWeek(Day	targetDayOfWeek)	{	

	104	 	int	offsetToTarget	=	targetDayOfWeek.toInt()	-	getDayOfWeek().toInt();	

	105	 	if	(offsetToTarget	<=	0)	

	106	 	offsetToTarget	+=	7;	

	107	 	return	plusDays(offsetToTarget);	

	108	 	}	

	109	

	110	 	public	DayDate	getNearestDayOfWeek(Day	targetDayOfWeek)	{	

	111	 	int	offsetToThisWeeksTarget	=	targetDayOfWeek.toInt()	-	getDayOfWeek().toInt();	

	112	 	int	offsetToFutureTarget	=	(offsetToThisWeeksTarget	+	7)	%	7;	

	113	 	int	offsetToPreviousTarget	=	offsetToFutureTarget	-	7;	

	114	

	115	 	if	(offsetToFutureTarget	>	3)	

	116	 	return	plusDays(offsetToPreviousTarget);	

	117	 	else	

	118	 	return	plusDays(offsetToFutureTarget);	

	119	 	}	

	120	

	121	 	public	DayDate	getEndOfMonth()	{	

	122	 	Month	month	=	getMonth();	

	123	 	int	year	=	getYear();	

	124	 	int	lastDay	=	DateUtil.lastDayOfMonth(month,	year);	

	125	 	return	DayDateFactory.makeDate(lastDay,	month,	year);	

	126	 	}	

	127	

	128	 	public	Date	toDate()	{	

	129	 	final	Calendar	calendar	=	Calendar.getInstance();	

	130	 	int	ordinalMonth	=	getMonth().toInt()	-	Month.JANUARY.toInt();	

	131	 	calendar.set(getYear(),	ordinalMonth,	getDayOfMonth(),	0,	0,	0);	

	132	 	return	calendar.getTime();	

	133	 	}	

	134	

	135	 	public	String	toString()	{	

	136	 	return	String.format(“%02d-%s-%d”,	getDayOfMonth(),	getMonth(),	getYear());	

	137	 	}	

	138	

	139	 	public	Day	getDayOfWeek()	{	

	140	 	Day	startingDay	=	getDayOfWeekForOrdinalZero();	

	141	 	int	startingOffset	=	startingDay.toInt()	-	Day.SUNDAY.toInt();	

	142	 	int	ordinalOfDayOfWeek	=	(getOrdinalDay()	+	startingOffset)	%	7;	

	143	 	return	Day.fromInt(ordinalOfDayOfWeek	+	Day.SUNDAY.toInt());	

	144	 	}	

	145	

	146	 	public	int	daysSince(DayDate	date)	{	

	147	 	return	getOrdinalDay()	-	date.getOrdinalDay();	

	148	 	}	

	149	

	150	 	public	boolean	isOn(DayDate	other)	{	

	151	 	return	getOrdinalDay()	==	other.getOrdinalDay();	

	152	 	}	

	153	

	154	 	public	boolean	isBefore(DayDate	other)	{	

	155	 	return	getOrdinalDay()	<	other.getOrdinalDay();	

	156	 	}	

	157	

	158	 	public	boolean	isOnOrBefore(DayDate	other)	{	

	159	 	return	getOrdinalDay()	<=	other.getOrdinalDay();	

	160	 	}	

	161	

	162	 	public	boolean	isAfter(DayDate	other)	{	

	163	 	return	getOrdinalDay()	>	other.getOrdinalDay();	

	164	 	}	

	165	

	166	 	public	boolean	isOnOrAfter(DayDate	other)	{	

	167	 	return	getOrdinalDay()	>=	other.getOrdinalDay();	

	168	 	}	

	169	

	170	 	public	boolean	isInRange(DayDate	d1,	DayDate	d2)	{	

	171	 	return	isInRange(d1,	d2,	DateInterval.CLOSED);	

	172	 	}	

	173	

	174	 	public	boolean	isInRange(DayDate	d1,	DayDate	d2,	DateInterval	interval)	{	

	175	 	int	left	=	Math.min(d1.getOrdinalDay(),	d2.getOrdinalDay());	

	176	 	int	right	=	Math.max(d1.getOrdinalDay(),	d2.getOrdinalDay());	

	177	 	return	interval.isIn(getOrdinalDay(),	left,	right);	

	178	 	}	

	179	 	}	

Listado	B-8
Month.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	import	java.text.DateFormatSymbols;	

	4	

	5	 	public	enum	Month	{	

	6	 	JANUARY(1),	FEBRUARY(2),	MARCH(3),	

	7	 	APRIL(4),	MAY(5),	JUNE(6),	

	8	 	JULY(7),	AUGUST(8),	SEPTEMBER(9),	

	9	 	OCTOBER(10),NOVEMBER(11),DECEMBER(12);	

	10	 	private	static	DateFormatSymbols	dateFormatSymbols	=	new	DateFormatSymbols();	

	11	 	private	static	final	int[]	LAST_DAY_OF_MONTH	=	

	12	 	{0,	31,	28,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31};	

	13	

	14	 	private	int	index;	

	15	

	16	 	Month(int	index)	{	

	17	 	this.index	=	index;	

	18	 	}	

	19	

	20	 	public	static	Month	fromInt(int	monthIndex)	{	

	21	 	for	(Month	m	:	Month.values())	{	

	22	 	if	(m.index	==	monthIndex)	

	23	 	return	m;	

	24	 	}	

	25	 	throw	new	IllegalArgumentException(“Invalid	month	index	”	+	monthIndex);	

	26	 	}	

	27	

	28	 	public	int	lastDay()	{	

	29	 	return	LAST_DAY_OF_MONTH[index];	

	30	 	}	

	31	

	32	 	public	int	quarter()	{	

	33	 	return	1	+	(index	-	1)	/	3;	

	34	 	}	

	35	

	36	 	public	String	toString()	{	

	37	 	return	dateFormatSymbols.getMonths()[index	-	1];	

	38	 	}	

	39	

	40	 	public	String	toShortString()	{	

	41	 	return	dateFormatSymbols.getShortMonths()[index	-	1];	

	42	 	}	

	43	

	44	 	public	static	Month	parse(String	s)	{	

	45	 	s	=	s.trim();	

	46	 	for	(Month	m	:	Month.values())	

	47	 	if	(m.matches(s))	

	48	 	return	m;	

	49	

	50	 	try	{	

	51	 	return	fromInt(Integer.parseInt(s));	

	52	 	}	

	53	 	catch	(NumberFormatException	e)	{}	

	54	 	throw	new	IllegalArgumentException(“Invalid	month	”	+	s);	

	55	 	}	

	56	

	57	 	private	boolean	matches(String	s)	{	

	58	 	return	s.equalsIgnoreCase(toString())	||	

	59	 	s.equalsIgnoreCase(toShortString());	

	60	 	}	

	61	

	62	 	public	int	toInt()	{	

	63	 	return	index;	

	64	 	}	

	65	 	}	

Listado	B-9
Day.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	import	java.util.Calendar;	

	4	 	import	java.text.DateFormatSymbols;	

	5	

	6	 	public	enum	Day	{	

	7	 	MONDAY(Calendar.MONDAY),	

	8	 	TUESDAY(Calendar.TUESDAY),	

	9	 	WEDNESDAY(Calendar.WEDNESDAY),	

	10	 	THURSDAY(Calendar.THURSDAY),	

	11	 	FRIDAY(Calendar.FRIDAY),	

	12	 	SATURDAY(Calendar.SATURDAY),	

	13	 	SUNDAY(Calendar.SUNDAY);	

	14	

	15	 	private	final	int	index;	

	16	 	private	static	DateFormatSymbols	dateSymbols	=	new	DateFormatSymbols();	

	17	

	18	 	Day(int	day)	{	

	19	 	index	=	day;	

	20	 	}	

	21	

	22	 	public	static	Day	fromInt(int	index)	throws	IllegalArgumentException	{	

	23	 	for	(Day	d	:	Day.values())	

	24	 	if	(d.index	==	index)	

	25	 	return	d;	

	26	 	throw	new	IllegalArgumentException(

	27	 	String.format(“Illegal	day	index:	%d.”,	index));	

	28	 	}	

	29	

	30	 	public	static	Day	parse(String	s)	throws	IllegalArgumentException	{	

	31	 	String[]	shortWeekdayNames	=	

	32	 	dateSymbols.getShortWeekdays();	

	33	 	String[]	weekDayNames	=	

	34	 	dateSymbols.getWeekdays();	

	35	

	36	 	s	=	s.trim();	

	37	 	for	(Day	day	:	Day.values())	{	

	38	 	if	(s.equalsIgnoreCase(shortWeekdayNames[day.index])	||	

	39	 	s.equalsIgnoreCase(weekDayNames[day.index]))	{	

	40	 	return	day;	

	41	 	}	

	42	 	}	

	43	 	throw	new	IllegalArgumentException(

	44	 	String.format(“%s	is	not	a	valid	weekday	string”,	s));	

	45	 	}	

	46	

	47	 	public	String	toString()	{	

	48	 	return	dateSymbols.getWeekdays()[index];	

	49	 	}	

	50	

	51	 	public	int	toInt()	{	

	52	 	return	index;	

	53	 	}	

	54	 	}	

Listado	B-10
DateInterval.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	public	enum	DateInterval	{	

	4	 	OPEN	{	

	5	 	public	boolean	isIn(int	d,	int	left,	int	right)	{	

	6	 	return	d	>	left	&&	d	<	right;	

	7	 	}	

	8	 	},	

	9	 	CLOSED_LEFT	{	

	10	 	public	boolean	isIn(int	d,	int	left,	int	right)	{	

	11	 	return	d	>=	left	&&	d	<	right;	

	12	 	}	

	13	 	},	

	14	 	CLOSED_RIGHT	{	

	15	 	public	boolean	isIn(int	d,	int	left,	int	right)	{	

	16	 	return	d	>	left	&&	d	<=	right;	

	17	 	}	

	18	 	},	

	19	 	CLOSED	{	

	20	 	public	boolean	isIn(int	d,	int	left,	int	right)	{	

	21	 	return	d	>=	left	&&	d	<=	right;	

	22	 	}	

	23	 	};	

	24	

	25	 	public	abstract	boolean	isIn(int	d,	int	left,	int	right);	

	26	 	}	

Listado	B-11
WeekInMonth.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	public	enum	WeekInMonth	{	

	4	 	FIRST(1),	SECOND(2),	THIRD(3),	FOURTH(4),	LAST(0);	

	5	 	private	final	int	index;	

	6	

	7	 	WeekInMonth(int	index)	{	

	8	 	this.index	=	index;	

	9	 	}	

	10	

	11	 	public	int	toInt()	{	

	12	 	return	index;	

	13	 	}	

	14	 	}	

Listado	B-12
WeekdayRange.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	public	enum	WeekdayRange	{	

	4	 	LAST,	NEAREST,	NEXT	

	5	 	}	

Listado	B-13
DateUtil.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	import	java.text.DateFormatSymbols;	

	4	

	5	 	public	class	DateUtil	{	

	6	 	private	static	DateFormatSymbols	dateFormatSymbols	=	new	DateFormatSymbols();	

	7	

	8	 	public	static	String[]	getMonthNames()	{	

	9	 	return	dateFormatSymbols.getMonths();	

	10	 	}	

	11	

	12	 	public	static	boolean	isLeapYear(int	year)	{	

	13	 	boolean	fourth	=	year	%	4	==	0;	

	14	 	boolean	hundredth	=	year	%	100	==	0;	

	15	 	boolean	fourHundredth	=	year	%	400	==	0;	

	16	 	return	fourth	&&	(!hundredth	||	fourHundredth);	

	17	 	}	

	18	

	19	 	public	static	int	lastDayOfMonth(Month	month,	int	year)	{	

	20	 	if	(month	==	Month.FEBRUARY	&&	isLeapYear(year))	

	21	 	return	month.lastDay()	+	1;	

	22	 	else	

	23	 	return	month.lastDay();	

	24	 	}	

	25	

	26	 	public	static	int	leapYearCount(int	year)	{	

	27	 	int	leap4	=	(year	-	1896)	/	4;	

	28	 	int	leap100	=	(year	-	1800)	/	100;	

	29	 	int	leap400	=	(year	-	1600)	/	400;	

	30	 	return	leap4	-	leap100	+	leap400;	

	31	 	}	

	32	 	}	

Listado	B-14
DayDateFactory.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	public	abstract	class	DayDateFactory	{	

	4	 	private	static	DayDateFactory	factory	=	new	SpreadsheetDateFactory();	

	5	 	public	static	void	setInstance(DayDateFactory	factory)	{	

	6	 	DayDateFactory.factory	=	factory;	

	7	 	}	

	8	

	9	 	protected	abstract	DayDate	_makeDate(int	ordinal);	

	10	 	protected	abstract	DayDate	_makeDate(int	day,	Month	month,	int	year);	

	11	 	protected	abstract	DayDate	_makeDate(int	day,	int	month,	int	year);	

	12	 	protected	abstract	DayDate	_makeDate(java.util.Date	date);	

	13	 	protected	abstract	int	_getMinimumYear();	

	14	 	protected	abstract	int	_getMaximumYear();	

	15	

	16	 	public	static	DayDate	makeDate(int	ordinal)	{	

	17	 	return	factory._makeDate(ordinal);	

	18	 	}	

	19	

	20	 	public	static	DayDate	makeDate(int	day,	Month	month,	int	year)	{	

	21	 	return	factory._makeDate(day,	month,	year);	

	22	 	}	

	23	

	24	 	public	static	DayDate	makeDate(int	day,	int	month,	int	year)	{	

	25	 	return	factory._makeDate(day,	month,	year);	

	26	 	}	

	27	

	28	 	public	static	DayDate	makeDate(java.util.Date	date)	{	

	29	 	return	factory._makeDate(date);	

	30	 	}	

	31	

	32	 	public	static	int	getMinimumYear()	{	

	33	 	return	factory._getMinimumYear();	

	34	 	}	

	35	

	36	 	public	static	int	getMaximumYear()	{	

	37	 	return	factory._getMaximumYear();	

	38	 	}	

	39	 	}	

Listado	B-15
SpreadsheetDateFactory.java	(Final)

	1	 	package	org.jfree.date;	

	2	

	3	 	import	java.util.*;	

	4	

	5	 	public	class	SpreadsheetDateFactory	extends	DayDateFactory	{	

	6	 	public	DayDate	_makeDate(int	ordinal)	{	

	7	 	return	new	SpreadsheetDate(ordinal);	

	8	 	}	

	9	

	10	 	public	DayDate	_makeDate(int	day,	Month	month,	int	year)	{	

	11	 	return	new	SpreadsheetDate(day,	month,	year);	

	12	 	}	

	13	

	14	 	public	DayDate	_makeDate(int	day,	int	month,	int	year)	{	

	15	 	return	new	SpreadsheetDate(day,	month,	year);	

	16	 	}	

	17	

	18	 	public	DayDate	_makeDate(Date	date)	{	

	19	 	final	GregorianCalendar	calendar	=	new	GregorianCalendar();	

	20	 	calendar.setTime(date);	

	21	 	return	new	SpreadsheetDate(

	22	 	calendar.get(Calendar.DATE),	

	23	 	Month.fromInt(calendar.get(Calendar.MONTH)	+	1),	

	24	 	calendar.get(Calendar.YEAR));	

	25	 	}	

	26	

	27	 	protected	int	_getMinimumYear()	{	

	28	 	return	SpreadsheetDate.MINIMUM_YEAR_SUPPORTED;	

	29	 	}	

	30	

	31	 	protected	int	_getMaximumYear()	{	

	32	 	return	SpreadsheetDate.MAXIMUM_YEAR_SUPPORTED;	

	33	 	}	

	34	 	}	

Listado	B-16
SpreadsheetDate.java	(Final)

	1	 	/*	==	

	2	 	*	JCommon:	biblioteca	gratuita	de	clases	de	propósito	general	para	Java(tm)	

	3	 	*	==	

	4	 	*	

	5	 	*	(C)	Copyright	2000-2005,	de	Object	Refinery	Limited	y	Colaboradores.	

	6	 	*	

	…	

	52	 	*	

	53	 	*/	

	54	

	55	 	package	org.jfree.date;	

	56	

	57	 	import	static	org.jfree.date.Month.FEBRUARY;	

	58	

	59	 	import	java.util.*;	

	60	

	61	 	/**	

	62	 	*	Representa	una	fecha	con	un	entero,	de	forma	similar	a	la	

	63	 	*	implementación	en	Microsoft	Excel.	El	intervalo	de	fechas	admitido	es	

	64	 	*	del	1-Ene-1900	al	31-Dic-9999.	

	65	 	*	<p/>	

	66	 	*	Recuerde	que	Excel	tiene	un	error	que	reconoce	el	año	

	67	 	*	1900	como	bisiesto	cuando	en	realidad	no	lo	es.	Encontrará	más	

	68	 	*	información	en	el	sitio	de	Microsoft,	en	el	artículo	Q181370:	

	69	 	*	<p/>	

	70	 	*	http://support.microsoft.com/support/kb/articles/Q181/3/70.asp	

	71	 	*	<p/>	

	72	 	*	Excel	usa	como	convención	que	el	1-Ene-1900	=	1.	Esta	clase	usa	la	

	73	 	*	convención	de	que	el	1-Ene-1900	=	2.	

	74	 	*	Como	resultado,	el	número	de	día	de	esta	clase	será	diferente	al	de	

	75	 	*	Excel	para	enero	y	febrero	de	1900…	pero	Excel	añade	un	día	

	76	 	*	más	(29-Feb-1900	que	en	realidad	no	existe)	y	a	partir	de	ahí	

	77	 	*	los	números	de	los	días	coinciden.	

	78	 	*	

	79	 	*	@author	David	Gilbert	

	80	 	*/	

	81	 	public	class	SpreadsheetDate	extends	DayDate	{	

	82	 	public	static	final	int	EARLIEST_DATE_ORDINAL	=	2;	//	1/1/1900	

	83	 	public	static	final	int	LATEST_DATE_ORDINAL	=	2958465;	//	12/31/9999	

	84	 	public	static	final	int	MINIMUM_YEAR_SUPPORTED	=	1900;	

	85	 	public	static	final	int	MAXIMUM_YEAR_SUPPORTED	=	9999;	

	86	 	static	final	int[]	AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH	=	

	87	 	{0,	0,	31,	59,	90,	120,	151,	181,	212,	243,	273,	304,	334,	365};	

	88	 	static	final	int[]	LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH	=	

	89	 	{0,	0,	31,	60,	91,	121,	152,	182,	213,	244,	274,	305,	335,	366};	

	90	

	91	 	private	int	ordinalDay;	

	92	 	private	int	day;	

	93	 	private	Month	month;	

	94	 	private	int	year;	

	95	

	96	 	public	SpreadsheetDate(int	day,	Month	month,	int	year)	{	

	97	 	if	(year	<	MINIMUM_YEAR_SUPPORTED	||	year	>	MAXIMUM_YEAR_SUPPORTED)	

	98	 	throw	new	IllegalArgumentException(

	99	 	“The	‘year’	argument	must	be	in	range	”	+	

	100	 	MINIMUM_YEAR_SUPPORTED	+	“	to	”	+	MAXIMUM_YEAR_SUPPORTED	+	“.”);	

	101	 	if	(day	<	1	||	day	>	DateUtil.lastDayOfMonth(month,	year))	

	102	 	throw	new	IllegalArgumentException(“Invalid	‘day’	argument.”);	

	103	

	104	 	this.year	=	year;	

	105	 	this.month	=	month;	

	106	 	this.day	=	day;	

	107	 	ordinalDay	=	calcOrdinal(day,	month,	year);	

	108	 	}	

	109	

	110	 	public	SpreadsheetDate(int	day,	int	month,	int	year)	{	

	111	 	this(day,	Month.fromInt(month),	year);	

	112	 	}	

	113	

	114	 	public	SpreadsheetDate(int	serial)	{	

	115	 	if	(serial	<	EARLIEST_DATE_ORDINAL	||	serial	>	LATEST_DATE_ORDINAL)	

	116	 	throw	new	IllegalArgumentException(

	117	 	“SpreadsheetDate:	Serial	must	be	in	range	2	to	2958465.”);	

	118	

	119	 	ordinalDay	=	serial;	

	120	 	calcDayMonthYear();	

	121	 	}	

	122	

	123	 	public	int	getOrdinalDay()	{	

	124	 	return	ordinalDay;	

	125	 	}	

	126	

	127	 	public	int	getYear()	{	

	128	 	return	year;	

	129	 	}	

	130	

	131	 	public	Month	getMonth()	{	

	132	 	return	month;	

	133	 	}	

	134	

	135	 	public	int	getDayOfMonth()	{	

	136	 	return	day;	

	137	 	}	

	138	

	139	 	protected	Day	getDayOfWeekForOrdinalZero()	{return	Day.SATURDAY;}	

	140	

	141	 	public	boolean	equals(Object	object)	{	

	142	 	if	(!(object	instanceof	DayDate))	

	143	 	return	false;	

	144	

	145	 	DayDate	date	=	(DayDate)	object;	

	146	 	return	date.getOrdinalDay()	==	getOrdinalDay();	

	147	 	}	

	148	

	149	 	public	int	hashCode()	{	

	150	 	return	getOrdinalDay();	

	151	 	}	

	152	

	153	 	public	int	compareTo(Object	other)	{	

	154	 	return	daysSince((DayDate)	other);	

	155	 	}	

	156	

	157	 	private	int	calcOrdinal(int	day,	Month	month,	int	year)	{	

	158	 	int	leapDaysForYear	=	DateUtil.leapYearCount(year	-	1);	

	159	 	int	daysUpToYear	=	(year	-	MINIMUM_YEAR_SUPPORTED)	*	365	+	leapDaysForYear;	

	160	 	int	daysUpToMonth	=	AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[month.toInt()];	

	161	 	if	(DateUtil.isLeapYear(year)	&&	month.toInt()	>	FEBRUARY.toInt())	

	162	 	daysUpToMonth++;	

	163	 	int	daysInMonth	=	day	-	1;	

	164	 	return	daysUpToYear	+	daysUpToMonth	+	daysInMonth	+	EARLIEST_DATE_ORDINAL;	

	165	 	}	

	166	

	167	 	private	void	calcDayMonthYear()	{	

	168	 	int	days	=	ordinalDay	-	EARLIEST_DATE_ORDINAL;	

	169	 	int	overestimatedYear	=	MINIMUM_YEAR_SUPPORTED	+	days	/	365;	

	170	 	int	nonleapdays	=	days	-	DateUtil.leapYearCount(overestimatedYear);	

	171	 	int	underestimatedYear	=	MINIMUM_YEAR_SUPPORTED	+	nonleapdays	/	365;	

	172	

	173	 	year	=	huntForYearContaining(ordinalDay,	underestimatedYear);	

	174	 	int	firstOrdinalOfYear	=	firstOrdinalOfYear(year);	

	175	 	month	=	huntForMonthContaining(ordinalDay,	firstOrdinalOfYear);	

	176	 	day	=	ordinalDay	-	firstOrdinalOfYear	-	daysBeforeThisMonth(month.toInt());	

	177	 	}	

	178	

	179	 	private	Month	huntForMonthContaining(int	anOrdinal,	int	firstOrdinalOfYear)	{	

	180	 	int	daysIntoThisYear	=	anOrdinal	-	firstOrdinalOfYear;	

	181	 	int	aMonth	=	1;	

	182	 	while	(daysBeforeThisMonth(aMonth)	<	daysIntoThisYear)	

	183	 	aMonth++;	

	184	

	185	 	return	Month.fromInt(aMonth	-	1);	

	186	 	}	

	187	

	188	 	private	int	daysBeforeThisMonth(int	aMonth)	{	

	189	 	if	(DateUtil.isLeapYear(year))	

	190	 	return	LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[aMonth]	-	1;	

	191	 	else	

	192	 	return	AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[aMonth]	-	1;	

	193	 	}	

	194	

	195	 	private	int	huntForYearContaining(int	anOrdinalDay,	int	startingYear)	{	

	196	 	int	aYear	=	startingYear;	

	197	 	while	(firstOrdinalOfYear(aYear)	<=	anOrdinalDay)	

	198	 	aYear++;	

	199	

	200	 	return	aYear	-	1;	

	201	 	}	

	202	

	203	 	private	int	firstOrdinalOfYear(int	year)	{	

	204	 	return	calcOrdinal(1,	Month.JANUARY,	year);	

	205	 	}	

	206	

	207	 	public	static	DayDate	createInstance(Date	date)	{	

	208	 	GregorianCalendar	calendar	=	new	GregorianCalendar();	

	209	 	calendar.setTime(date);	

	210	 	return	new	SpreadsheetDate(calendar.get(Calendar.DATE),	

	211	 	Month.fromInt(calendar.get(Calendar.MONTH)	+	1),	

	212	 	calendar.get(Calendar.YEAR));	

	213	

	214	 	}	

	215	 	}	

Epílogo

En	2005,	mientras	asistía	a	la	conferencia	Agile	en	Denver	(EE.UU.),	Elisabeth
Hedrickson[125]	 me	 dio	 una	 pulsera	 verde	 parecida	 a	 la	 que	 Lance	 Armstrong
popularizó	hace	unos	años.	En	ésta	se	 leía	Test	Obsessed	 (Obsesionado	por	 las
pruebas).	Me	la	puse	y	la	lucí	con	orgullo.	Desde	que	aprendí	el	TDD	de	Kent
Beck	en	1999,	sin	duda	el	desarrollo	controlado	por	pruebas	me	ha	obsesionado.

			

Pero	 sucedió	 algo	 extraño.	 No	me	 podía	 quitar	 la	 pulsera.	 No	 porque	 se
hubiera	quedado	físicamente	pegada,	sino	porque	estaba	moralmente	pegada.

La	pulsera	resumía	mi	ética	profesional.
Era	 un	 indicador	 visible	 de	 mi	 compromiso	 por	 crear	 el	 mejor	 código

posible.	 Si	 me	 la	 hubiera	 quitado	 habría	 traicionado	 a	 esa	 ética	 y	 a	 ese
compromiso.

Y	todavía	la	llevo	en	la	muñeca.
Cuando	 escribo	 código,	 la	 veo	 ahí.	 Es	 un	 recordatorio	 constante	 de	 la

promesa	que	me	hice	de	escribir	código	limpio.

Robert	Cecil	“Uncle	Bob”	Martin	(Palo	Alto	California,	Estados	Unidos,	1952).
Es	un	prestigioso	desarrollador	de	software	desde	1970	y	consultor	internacional
desde	 1990.	 Es	 fundador	 y	 presidente	 de	 Object	 Mentor,	 Inc.,	 un	 equipo	 de
experimentados	 consultores	 que	 ayudan	 a	 clientes	 de	 todo	 el	 mundo	 en
diferentes	campos	de	la	programación	como	C++,	Java,	C#,	Ruby,	Programación
orientada	 a	 objetos	 (POO),	 patrones	 de	 diseño,	 UML,	 metodologías	 ágiles	 y
programación	eXtreme.

Notas

[1]	[Beck07].	<<

[2]	Cuando	Ignaz	Semmelweis	recomendó	en	1847	que	los	médicos	se	lavaran	las
manos,	 su	 propuesta	 fue	 rechazada	 aludiendo	 que	 los	 doctores	 estaban
demasiado	ocupados	para	hacerlo	entre	paciente	y	paciente.	<<

[3]	http://www.pragmaticprogrammer.com/booksellers/2004-12.html.	<<

[4]	[Knuth92].	<<

[5]	 Es	 una	 adaptación	 del	 mensaje	 de	 despedida	 de	 Robert	 Stephenson	 Smyth
Baden-Powell	a	los	Scouts:	«Intentad	dejar	este	mundo	un	poco	mejor	de	como
os	lo	encontrasteis…».	<<

[6]	 Como	 veremos	 más	 adelante,	 aunque	 un	 contenedor	 sea	 una	 lista,	 no
conviene	codificar	el	tipo	de	contenedor	en	el	nombre.	<<

[7]	Imagine	que	se	crea	una	variable	con	el	nombre	klass	sólo	porque	el	nombre
class	se	ha	usado	en	otro	elemento.	<<

[8]	Uncle	Bob	solía	hacerlo	en	C++	pero	ha	abandonado	esta	práctica	ya	que	no	es
necesario	en	los	IDE	modernos.	<<

[9]	http://java.sun.com/products/javabeans/docs/spec.html.	<<

[10]	Una	herramienta	de	pruebas	de	código	abierto	(www.fitnese.org).	<<

[11]	 Una	 herramienta	 de	 código	 abierto	 para	 probar	 unidades	 para	 Java
(www.junit.org).	<<

[12]	 Le	 pregunté	 a	 Kent	 si	 todavía	 conservaba	 una	 copia,	 pero	 no	 la	 encontró.
Busqué	en	mis	viejos	ordenadores,	pero	nada.	Solamente	se	conserva	el	recuerdo
de	aquél	programa.	<<

[13]	 El	 lenguaje	 LOGO	 usaba	 la	 palabra	 clave	 TO	 al	 igual	 que	 Ruby	 y	 Python
usaban	def.	Por	 tanto,	 todas	 las	 funciones	comenzaban	por	TO,	 lo	que	 tenía	un
efecto	interesante	en	cómo	se	diseñaban.	<<

[14]	[KP78],	p.	37.	<<

[15]	Y,	por	supuesto,	se	incluyen	cadenas	if/else.	<<

[16]	a.	http://en.wikipedia.org/wiki/Single_responsibility_principle

b.	http://www.objectmentor.com/resources/articles/srp.pdf	<<

[17]	a.	http://en.wikipedia.org/wiki/Open/closed_principle

b.	http://www.objectmentor.com/resources/articles/ocp.pdf	<<

[18]	[GOF].	<<

[19]	 Terminé	 la	 refactorización	 de	 un	 módulo	 que	 usaba	 la	 forma	 dinámica.
Conseguí	 convertir	 el	 módulo	 outputStream	 en	 un	 campo	 de	 la	 clase	 y	 las
invocaciones	de	writeField	a	 formato	monódico.	El	 resultado	fue	mucho	más
limpio.	<<

[20]	Existen	algunos	que	creen	que	pueden	evitar	volver	a	compilar	e	implementar,
y	nos	hemos	encargado	de	ellos.	<<

[21]	Ejemplo	de	principio	abierto/cerrado	(OCP)	[PPP02].	<<

[22]	El	principio	DRY.	[PRAG].	<<

[23]	[SP72].	<<

[24]	[KP78],	p.	144.	<<

[25]	La	tendencia	actual	de	los	IDE	de	comprobar	la	ortografía	de	los	comentarios
será	un	bálsamo	para	los	que	tenemos	que	leer	gran	cantidad	de	código.	<<

[26]	El	 cuadro	muestra	 sigma/2	por	encima	y	debajo	de	 la	media.	Asumo	que	 la
distribución	 de	 la	 longitud	 de	 archivos	 no	 es	 normal,	 por	 lo	 que	 la	 desviación
estándar	no	es	matemáticamente	precisa.	Pero	aquí	el	objetivo	no	es	la	precisión,
sino	la	sensación.	<<

[27]	 Es	 lo	 contrario	 a	 lo	 que	 sucede	 en	 lenguajes	 como	 Pascal,	 C	 y	 C++	 que
obligan	a	definir,	o	al	menos	a	declarar,	las	funciones	antes	de	usarlas.	<<

[28]	 ¿A	 quien	 voy	 a	 engañar?	 Sigo	 siendo	 programador	 de	 lenguajes	 de
ensamblado.	En	este	caso,	el	hábito	sí	hace	al	monje.	<<

[29]	Siempre	existe	una	solución	conocida	por	los	diseñadores	orientados	a	objetos
con	 experiencia:	 VISITOR	 o	 entrega	 dual,	 por	 ejemplo.	 Pero	 son	 técnicas
costosas	y	suelen	devolver	la	estructura	de	un	programa	por	procedimientos.	<<

[30]	http://es.wikipedia.org/wiki/Ley_de_Demeter.	<<

[31]	De	la	estructura	Apache.	<<

[32]	 En	 ocasiones	 se	 denomina	 Feature	Envy	 (Envidia	 de	 las	 características),	 de
[Refactoring].	<<

[33]	[Martin].	<<

[34]	[BeckTDD],	pp.	136-137.	<<

[35]	Véase	el	patrón	del	adaptador	en	[GOF].	<<

[36]	Más	información	al	respecto	en	[WELC].	<<

[37]	 Professionalism	 and	 Test-Driven	 Development,	 Robert	 C.	 Martin,	 Object
Mentor,	 IEEE	 Software,	 Mayo/Junio	 2007	 (Vol.	 24,	 No.	 3)	 pp.	 32-36
http://doi.ieeecomputersociety.org/10.1109/MS.2007.85	<<

[38]	http://fitnesse.org/FitNesse.AcceptanceTestPatterns.	<<

[39]	Véase	el	apartado	sobre	asignaciones	mentales	del	capítulo	2.	<<

[40]	 Véase	 la	 entrada	 de	 Dave	 Astel:
http://www.artima.com/weblogs/viewpost.jsp?thread=35578	<<

[41]	[RSpec].	<<

[42]	[GOF].	<<

[43]	¡Cíñase	al	código!	<<

[44]	Materiales	de	formación	de	Object	Mentor.	<<

[45]	[RDD].	<<

[46]	Encontrará	más	Información	sobre	este	principio	en	[PPP].	<<

[47]	[Knuth92].	<<

[48]	[PPP].	<<

[49]	[PPP].	<<

[50]	[Mezzaros07].	<<

[51]	[GOF].	<<

[52]	Véase,	por	ejemplo,	[Fowler].	<<

[53]	Véase	[Spring],	También	existe	una	estructura	Spring.NET.	<<

[54]	 No	 olvide	 que	 la	 creación	 de	 instancias/evaluación	 tardía	 es	 sólo	 una
optimización,	puede	que	prematura.	<<

[55]	Sistema	de	administración	de	base	de	datos.	<<

[56]	Consulte	[AOSD]	si	necesita	información	general	sobre	aspectos	y	[AspectJ]	y
[Colyer]	para	Información	concreta	de	AspectJ.	<<

[57]	No	se	necesita	la	modificación	manual	del	código	fuente	de	destino.	<<

[58]	Véase	[CGLIB],	[ASM]	y	[Javassist].	<<

[59]	 Si	 necesita	 ejemplos	 más	 detallados	 de	 la	 API	 Proxy	 y	 ejemplos	 de	 uso,
consulte	[Goetz].	<<

[60]	AOP	se	suele	confundir	con	técnicas	empleadas	para	implementarlo,	como	la
intercepción	y	envoltorio	de	métodos	a	través	de	proxies.	El	verdadero	valor	de
un	sistema	AOP	es	la	capacidad	para	especificar	comportamientos	del	sistema	de
forma	concisa	y	modular.	<<

[61]	Véase	[Spring]	y	[JBoss].	Java	puro	significa	sin	AspectJ.	<<

[62]	 Adaptado	 de	 www.theserverside.com/tt/articles/article.tss?l=IntrotoSpring25.
<<

[63]	[GOF].	<<

[64]	El	ejemplo	se	puede	simplificar	mediante	mecanismos	que	usen	convenciones
y	anotaciones	de	Java	5	para	reducir	la	cantidad	necesaria	de	lógica	de	conexión
explícita.	<<

[65]	 Adaptado	 de	 http://www.onjava.com/pub/a/onjava/2006/05/17/standardizing-
with-ejb3-java-persistence-api.html.	<<

[66]	Véase	[AspectJ]	y	[Colyer].	<<

[67]	No	 confundir	 con	 la	 práctica	 de	 diseño	 anticipado.	BDUF	 es	 la	 práctica	 de
diseñar	todo	por	adelantado	antes	de	implementar	nada.	<<

[68]	Existe	una	cantidad	significativa	de	exploración	iterativa	y	detalles	de	análisis,
incluso	una	vez	iniciada	la	construcción.	<<

[69]	El	término	fue	empleado	por	primera	vez	por	[Kolence].	<<

[70]	El	 trabajo	de	 [Alexander]	ha	 sido	una	gran	 influencia	para	 la	 comunidad	de
software.	<<

[71]	Véase,	por	ejemplo,	[DSL].	[JMock]	es	un	buen	ejemplo	de	API	de	Java	que
crea	un	DSL.	<<

[72]	[XPE].	<<

[73]	[GOF].	<<

[74]	Correspondencia	privada.	<<

[75]	Rayos	cósmicos,	repeticiones,	etc.	<<

[76]	Véase	el	apéndice	A.	<<

[77]	Véase	el	apéndice	A.	<<

[78]	[PPP].	<<

[79]	Véase	el	apéndice	A.	<<

[80]	[PRAG].	<<

[81]	[Lea99].	<<

[82]	http://en.wikipedia.org/wiki/Producer-consumer.	<<

[83]	http://en.wikipedia.org/wiki/Readers-writers_problem.	<<

[84]	http://es.wikipedia.org/wiki/Problema_de_la_cena_de_los_filósofos.	<<

[85]	Véase	el	apéndice	A.	<<

[86]	 Una	 sección	 crítica	 es	 cualquier	 sección	 de	 código	 que	 debe	 protegerse	 de
usos	simultáneos	por	parte	del	programa	para	que	sea	correcta.	<<

[87]	Véase	el	apéndice	A.	<<

[88]	Véase	el	apéndice	A.	<<

[89]	 ¿Sabía	 que	 el	 modelo	 de	 procesos	 de	 Java	 no	 garantiza	 el	 procesamiento
preventivo?	 Los	 SO	modernos	 sí	 lo	 hacen,	 de	modo	 que	 lo	 obtiene	 de	 forma
gratuita.	No	obstante,	la	MVJ	no	lo	garantiza.	<<

[90]	 No	 es	 estrictamente	 el	 caso.	 Como	 la	 MVJ	 no	 garantiza	 los	 procesos
preventivos,	 un	 determinado	 algoritmo	 puede	 que	 siempre	 funcione	 en	 un	 SO
que	no	prevea	los	procesos.	Lo	contrario	también	es	posible,	pero	por	distintos
motivos.	<<

[91]

https://www.ibm.com/developerworks/community/groups/service/html/communityview?
lang=es&communityUuid=18d10b14-e2c8-4780-bace-9af1fc463cc0.	<<

[92]	 Hace	 poco	modifiqué	 este	módulo	 para	 Ruby.	 Tenía	 una	 séptima	 parte	 del
tamaño	original	y	una	mejor	estructura.	<<

[93]	 Para	 evitar	 este	 tipo	 de	 sorpresas,	 añadí	 una	 nueva	 prueba	 de	 unidad	 que
invocaba	todas	las	pruebas	de	FitNesse.	<<

[94]	JUnit	Pocket	Guide,	Kent	Beck,	O’Reilly.	2004.	p.	43.	<<

[95]	Véase	el	capítulo	1.	<<

[96]	Una	solución	mejor	sería	que	el	Javadoc	presentara	todos	los	comentarios	con
formato	 previo,	 para	 que	 tengan	 el	 mismo	 aspecto	 en	 el	 código	 y	 en	 el
documento.	<<

[97]	Algunos	revisores	de	este	texto	no	comparten	esta	decisión.	Sostienen	que	en
una	 estructura	 de	 código	 abierto	 es	más	 recomendable	 ejercer	 control	 manual
sobre	el	ID	de	serie	para	que	los	cambios	mínimos	del	software	no	invaliden	las
fechas	 señalizadas	 antiguas.	Me	 parece	 justo.	 Sin	 embargo,	 al	menos	 el	 fallo,
aunque	sea	inconveniente,	tiene	un	motivo	evidente.	Por	otra	parte,	si	el	autor	de
la	clase	se	olvida	de	actualizar	el	 ID,	el	modo	de	fallo	será	 indefinido	y	puede
que	silencioso.	Creo	que	la	moraleja	es	que	no	debe	esperar	a	deserializar	entre
versiones.	<<

[98]	[GOF].	<<

[99]	Ibid.	<<

[100]	Ibid.	<<

[101]	[Simmons04],	p.	73.	<<

[102]	[Refactoring].	<<

[103]	[Beck97].	<<

[104]	[Refactoring].	<<

[105]	http://es.wikipedia.org/wiki/Principio_de_la_Mínima_Sorpresa	<<

[106]	[PRAG].	<<

[107]	[GOF].	<<

[108]	[GOF].	<<

[109]	[Refactoring].	<<

[110]	 En	 concreto,	 el	 Principio	 de	 Responsabilidad	 Única,	 el	 Principio
Abierto/Cerrado	y	el	Principio	de	Cierre	Común.	Véase	[PPP].	<<

[111]	[Beck97],	p.	108.	<<

[112]	[Beck07].	<<

[113]	Es	distinto	saber	cómo	funciona	el	código	y	saber	si	el	algoritmo	se	encargará
de	 realizar	 la	 tarea	 para	 la	 que	 se	 necesita.	 Es	 habitual	 desconocer	 si	 un
algoritmo	es	el	adecuado.	Desconocer	lo	que	hace	el	código	es	indolencia.	<<

[114]	O	mejor	todavía,	una	clase	Money	que	use	enteros.	<<

[115]	[PRAG].	p.	138.	<<

[116]	Véase	la	cita	de	Ward	Cunningham	del	capítulo	1.	<<

[117]	[DDD].	<<

[118]	 Puede	 comprobar	 personalmente	 el	 código	 antes	 y	 después,	 y	 revisar	 las
versiones	con	y	sin	subprocesos,	que	veremos	en	un	apartado	posterior.	<<

[119]	Es	una	comparación	simplificada,	pero	para	los	objetivos	de	este	ejercicio	es
un	modelo	válido.	<<

[120]	 De	 hecho,	 la	 interfaz	 Iterator	 es	 incompatible	 con	 subprocesos	 por
naturaleza.	No	se	diseñó	para	usar	varios	subprocesos,	de	modo	que	no	debería
sorprenderle.	<<

[121]	 Por	 ejemplo,	 alguien	 añade	 un	 resultado	 de	 depuración	 y	 el	 problema
desaparece.	El	código	de	depuración	corrige	el	problema,	pero	permanece	en	el
sistema.	<<

[122]	Siglas	de	There	ain’t	no	such	thing	as	a	free	lunch	(Todo	tiene	un	precio).	<<

[123]	http://www.haifa.ibm.com/projects/verification/contest/index.html	<<

[124]	Véase	[Lea99]	p.	191.	<<

[125]	http://www.qualitytree.com/	<<

Table	of	Contents
Código	limpio
Agradecimientos
Prólogo
Introducción
Sobre	la	imagen	de	cubierta
1.	Código	Limpio

Hágase	el	código
Código	Incorrecto
El	coste	total	de	un	desastre

El	gran	cambio	de	diseño
Actitud
El	enigma
¿El	arte	del	código	limpio?
Concepto	de	código	limpio

Escuelas	de	pensamiento
Somos	autores
La	regla	del	Boy	Scout
Precuela	y	principios
Conclusión
Bibliografía

2.	Nombres	con	sentido
Introducción
Usar	nombres	que	revelen	las	intenciones
Evitar	la	desinformación
Realizar	distinciones	con	sentido
Usar	nombres	que	se	puedan	pronunciar
Usar	nombres	que	se	puedan	buscar
Evitar	codificaciones

Notación	húngara
Prefijos	de	miembros
Interfaces	e	Implementaciones

Evitar	asignaciones	mentales
Nombres	de	clases
Nombres	de	métodos
No	se	exceda	con	el	atractivo

Una	palabra	por	concepto
No	haga	juegos	de	palabras
Usar	nombres	de	dominios	de	soluciones
Usar	nombres	de	dominios	de	problemas
Añadir	contexto	con	sentido
No	añadir	contextos	innecesarios
Conclusión

3.	Funciones
Tamaño	reducido

Bloques	y	sangrado
Hacer	una	cosa

Secciones	en	funciones
Un	nivel	de	abstracción	por	función

Leer	código	de	arriba	a	abajo:	la	regla	descendente
Instrucciones	Switch
Usar	nombres	descriptivos
Argumentos	de	funciones

Formas	monádicas	habituales
Argumentos	de	indicador
Funciones	diádicas
Triadas
Objeto	de	argumento
Listas	de	argumentos
Verbos	y	palabras	clave

Sin	efectos	secundarios
Argumentos	de	salida

Separación	de	consultas	de	comando
Mejor	excepciones	que	devolver	códigos	de	error

Extraer	bloques	Try/Catch
El	procesamiento	de	errores	es	una	cosa
El	imán	de	dependencias	Error.java

No	repetirse[22]
Programación	estructurada
Cómo	crear	este	tipo	de	funciones
Conclusión
SetupTeardownIncluder
Bibliografía

4.	Comentarios
Los	comentarios	no	compensan	el	código	incorrecto

Explicarse	en	el	código
Comentarios	de	calidad

Comentarios	legales
Comentarios	informativos
Explicar	la	intención
Clarificación
Advertir	de	las	consecuencias
Comentarios	TODO
Amplificación
Javadoc	en	API	públicas

Comentarios	incorrectos
Balbucear
Comentarios	redundantes
Comentarios	confusos
Comentarios	obligatorios
Comentarios	periódicos
Comentarios	sobrantes
Comentarios	sobrantes	espeluznantes
No	usar	comentarios	si	se	puede	usar	una	función	o	una	variable
Marcadores	de	posición
Comentarios	de	llave	de	cierre
Asignaciones	y	menciones
Código	comentado
Comentarios	HTML
Información	no	local
Demasiada	información
Conexiones	no	evidentes
Encabezados	de	función
Javadocs	en	código	no	público
Ejemplo

Bibliografía
5.	Formato

La	función	del	formato
Formato	vertical

La	metáfora	del	periódico
Apertura	vertical	entre	conceptos
Densidad	vertical
Distancia	vertical

Declaraciones	de	variables

Variables	de	instancia
Funciones	dependientes
Afinidad	conceptual

Orden	vertical
Formato	horizontal

Apertura	y	densidad	horizontal
Alineación	horizontal
Sangrado

Romper	el	sangrado
Ámbitos	ficticios

Reglas	de	equipo
Reglas	de	formato	de	Uncle	Bob

6.	Objetos	y	estructuras	de	datos
Abstracción	de	datos
Antisimetría	de	datos	y	objetos
La	ley	de	Demeter

Choque	de	trenes
Híbridos
Ocultar	la	estructura

Objetos	de	transferencia	de	datos
Registro	activo

Conclusión
Bibliografía

7.	Procesar	errores
Usar	excepciones	en	lugar	de	códigos	devueltos
Crear	primero	la	instrucción	try-catch-finally
Usar	excepciones	sin	comprobar
Ofrecer	contexto	junto	a	las	excepciones
Definir	clases	de	excepción	de	acuerdo	a	las	necesidades	del	invocador
Definir	el	flujo	normal
No	devolver	Null
No	pasar	Null
Conclusión
Bibliografía

8.	Límites
Utilizar	código	de	terceros
Explorar	y	aprender	límites
Aprender	log4j
Las	pruebas	de	aprendizaje	son	algo	más	que	gratuitas

Usar	código	que	todavía	no	existe
Límites	limpios
Bibliografía

9.	Pruebas	de	unidad
Las	tres	leyes	del	DGP
Realizar	pruebas	limpias

Las	pruebas	propician	posibilidades
Pruebas	limpias

Lenguaje	de	pruebas	específico	del	dominio
Un	estándar	dual

Una	afirmación	por	prueba
Un	solo	concepto	por	prueba

F.I.R.S.T.[44]
Conclusión
Bibliografía

10.	Clases
Organización	de	clases

Encapsulación
Las	clases	deben	ser	de	tamaño	reducido

El	Principio	de	responsabilidad	única
Cohesión
Mantener	 resultados	 consistentes	 en	 muchas	 clases	 de	 tamaño
reducido

Organizar	los	cambios
Aislarnos	de	los	cambios

Bibliografía
11.	Sistemas

Cómo	construir	una	ciudad
Separar	la	construcción	de	un	sistema	de	su	uso

Separar	Main
Factorías
Inyectar	dependencias

Evolucionar
Aspectos	transversales

Proxies	de	Java
Estructuras	AOP	Java	puras

Aspectos	de	AspectJ
Pruebas	de	unidad	de	la	arquitectura	del	sistema
Optimizar	la	toma	de	decisiones

Usar	estándares	cuando	añadan	un	valor	demostrable
Los	sistemas	necesitan	lenguajes	específicos	del	dominio
Conclusión
Bibliografía

12.	Emergencia
Limpieza	a	través	de	diseños	emergentes
Primera	regla	del	diseño	sencillo:	Ejecutar	todas	las	pruebas
Reglas	2	a	4	del	diseño	sencillo:	Refactorizar
Eliminar	duplicados
Expresividad
Clases	y	métodos	mínimos
Conclusión
Bibliografía

13.	Concurrencia
¿Por	qué	concurrencia?

Mitos	e	imprecisiones
Desafíos
Principios	de	defensa	de	la	concurrencia

Principio	de	responsabilidad	única	(SRP)
Corolario:	Limitar	el	ámbito	de	los	datos
Corolario:	Usar	copias	de	datos
Corolario:	Los	procesos	deben	ser	independientes

Conocer	las	bibliotecas
Colecciones	compatibles	con	procesos

Conocer	los	modelos	de	ejecución
Productor-Consumidor[82]
Lectores-Escritores[83]
La	cena	de	los	filósofos[84]

Dependencias	entre	métodos	sincronizados
Reducir	el	tamaño	de	las	secciones	sincronizadas
Crear	código	de	cierre	correcto	es	complicado
Probar	código	con	procesos

Considerar	los	fallos	como	posibles	problemas	de	los	procesos
Conseguir	que	primero	funcione	el	código	sin	procesos
El	código	con	procesos	se	debe	poder	conectar	a	otros	elementos
El	código	con	procesos	debe	ser	modificable
Ejecutar	con	más	procesos	que	procesadores
Ejecutar	en	diferentes	plataformas
Diseñar	el	código	para	probar	y	forzar	fallos

Manual
Automática

Conclusión
Bibliografía

14.	Refinamiento	sucesivo
Implementación	de	Args

Cómo	se	ha	realizado
Args:	El	primer	borrador

Entonces	me	detuve
Sobre	el	incrementalismo

Argumentos	de	cadena
Conclusión

15.	Aspectos	internos	de	JUnit
La	estructura	JUnit
Conclusión

16.	Refactorización	de	SerialDate
Primero,	conseguir	que	funcione
Hacer	que	sea	correcta
Conclusión
Bibliografía

17.	Síntomas	y	heurística
Comentarios

C1:	Información	inapropiada
C2:	Comentario	obsoleto
C3:	Comentario	redundante
C4:	Comentario	mal	escrito
C5:	Código	comentado

Entorno
E1:	La	generación	requiere	más	de	un	paso
E2:	Las	pruebas	requieren	más	de	un	paso

Funciones
F1:	Demasiados	argumentos
F2:	Argumentos	de	salida
F3:	Argumentos	de	indicador
F4:	Función	muerta

General
G1:	Varios	lenguajes	en	un	archivo	de	código
G2:	Comportamiento	evidente	no	implementado
G3:	Comportamiento	incorrecto	en	los	límites

G4:	Medidas	de	seguridad	canceladas
G5:	Duplicación
G6:	Código	en	un	nivel	de	abstracción	incorrecto
G7:	Clases	base	que	dependen	de	sus	variantes
G8:	Exceso	de	información
G9:	Código	muerto
G10:	Separación	vertical
G11:	Incoherencia
G12:	Desorden
G13:	Conexiones	artificiales
G14:	Envidia	de	las	características
G15:	Argumentos	de	selector
G16:	Intención	desconocida
G17:	Responsabilidad	desubicada
G18:	Elementos	estáticos	incorrectos
G19:	Usar	variables	explicativas
G20:	Los	nombres	de	función	deben	indicar	lo	que	hacen
G21:	Comprender	el	algoritmo
G22:	Convertir	dependencias	lógicas	en	físicas
G23:	Polimorfismo	antes	que	If/Else	o	Switch/Case
G24:	Seguir	las	convenciones	estándar
G25:	Sustituir	números	mágicos	por	constantes	con	nombre
G26:	Precisión
G27:	Estructura	sobre	convención
G28:	Encapsular	condicionales
G29:	Evitar	condicionales	negativas
G30:	Las	funciones	sólo	deben	hacer	una	cosa
G31:	Conexiones	temporales	ocultas
G32:	Evitar	la	arbitrariedad
G33:	Encapsular	condiciones	de	límite
G34:	Las	funciones	sólo	deben	descender	un	nivel	de	abstracción
G35:	Mantener	los	datos	configurables	en	los	niveles	superiores
G36:	Evitar	desplazamientos	transitivos

Java
J1:	 Evitar	 extensas	 listas	 de	 importación	 mediante	 el	 uso	 de
comodines
J2:	No	heredar	constantes
J3:	Constantes	frente	a	enumeraciones

Nombres

N1:	Elegir	nombres	descriptivos
N2:	Elegir	nombres	en	el	nivel	correcto	de	abstracción
N3:	Usar	nomenclatura	estándar	siempre	que	sea	posible
N4:	Nombres	inequívocos
N5:	Usar	nombres	extensos	para	ámbitos	extensos
N6:	Evitar	codificaciones
N7:	Los	nombres	deben	describir	efectos	secundarios

Pruebas	(Test)
T1:	Pruebas	insuficientes
T2:	Usar	una	herramienta	de	cobertura
T3:	No	ignorar	pruebas	triviales
T4:	Una	prueba	ignorada	es	una	pregunta	sobre	una	ambigüedad
T5:	Probar	condiciones	de	límite
T6:	Probar	de	forma	exhaustiva	junto	a	los	errores
T7:	Los	patrones	de	fallo	son	reveladores
T8:	Los	patrones	de	cobertura	de	pruebas	pueden	ser	reveladores
T9:	Las	pruebas	deben	ser	rápidas

Conclusión
Bibliografía

Apéndice	A.	Concurrencia	II
Ejemplo	cliente/servidor

El	servidor
Añadir	subprocesos
Observaciones	del	servidor
Conclusión

Posibles	rutas	de	ejecución
Número	de	rutas
Un	examen	más	profundo
Conclusión

Conocer	su	biblioteca
La	estructura	Executor
Soluciones	no	bloqueantes
Clases	incompatibles	con	subprocesos

Las	dependencias	entre	métodos	pueden	afectar	al	código	concurrente
Tolerar	el	fallo
Bloqueo	basado	en	el	cliente
Bloqueo	basado	en	el	servidor

Aumentar	la	producción
Cálculo	de	producción	de	un	solo	subproceso

Cálculo	de	producción	con	varios	subprocesos
Bloqueo	mutuo

Exclusión	mutua
Bloqueo	y	espera
No	expropiación
Espera	circular
Evitar	la	exclusión	mutua
Evitar	bloqueo	y	espera
Evitar	la	expropiación
Evitar	la	espera	circular

Probar	código	con	múltiples	subprocesos
Herramientas	para	probar	código	basado	en	subprocesos
Conclusión
Ejemplos	de	código	completos

Cliente/Servidor	sin	subprocesos
Cliente/Servidor	con	subprocesos

Apéndice	B.	org.jfree.date.SerialDate
Epílogo
Autor
Notas

	Código limpio
	Agradecimientos
	Prólogo
	Introducción
	Sobre la imagen de cubierta
	1. Código Limpio
	Hágase el código
	Código Incorrecto
	El coste total de un desastre
	El gran cambio de diseño
	Actitud
	El enigma
	¿El arte del código limpio?
	Concepto de código limpio

	Escuelas de pensamiento
	Somos autores
	La regla del Boy Scout
	Precuela y principios
	Conclusión
	Bibliografía

	2. Nombres con sentido
	Introducción
	Usar nombres que revelen las intenciones
	Evitar la desinformación
	Realizar distinciones con sentido
	Usar nombres que se puedan pronunciar
	Usar nombres que se puedan buscar
	Evitar codificaciones
	Notación húngara
	Prefijos de miembros
	Interfaces e Implementaciones

	Evitar asignaciones mentales
	Nombres de clases
	Nombres de métodos
	No se exceda con el atractivo
	Una palabra por concepto
	No haga juegos de palabras
	Usar nombres de dominios de soluciones
	Usar nombres de dominios de problemas
	Añadir contexto con sentido
	No añadir contextos innecesarios
	Conclusión

	3. Funciones
	Tamaño reducido
	Bloques y sangrado

	Hacer una cosa
	Secciones en funciones

	Un nivel de abstracción por función
	Leer código de arriba a abajo: la regla descendente

	Instrucciones Switch
	Usar nombres descriptivos
	Argumentos de funciones
	Formas monádicas habituales
	Argumentos de indicador
	Funciones diádicas
	Triadas
	Objeto de argumento
	Listas de argumentos
	Verbos y palabras clave

	Sin efectos secundarios
	Argumentos de salida

	Separación de consultas de comando
	Mejor excepciones que devolver códigos de error
	Extraer bloques Try/Catch
	El procesamiento de errores es una cosa
	El imán de dependencias Error.java

	No repetirse[22]
	Programación estructurada
	Cómo crear este tipo de funciones
	Conclusión
	SetupTeardownIncluder
	Bibliografía

	4. Comentarios
	Los comentarios no compensan el código incorrecto
	Explicarse en el código
	Comentarios de calidad
	Comentarios legales
	Comentarios informativos
	Explicar la intención
	Clarificación
	Advertir de las consecuencias
	Comentarios TODO
	Amplificación
	Javadoc en API públicas

	Comentarios incorrectos
	Balbucear
	Comentarios redundantes
	Comentarios confusos
	Comentarios obligatorios
	Comentarios periódicos
	Comentarios sobrantes
	Comentarios sobrantes espeluznantes
	No usar comentarios si se puede usar una función o una variable
	Marcadores de posición
	Comentarios de llave de cierre
	Asignaciones y menciones
	Código comentado
	Comentarios HTML
	Información no local
	Demasiada información
	Conexiones no evidentes
	Encabezados de función
	Javadocs en código no público
	Ejemplo

	Bibliografía

	5. Formato
	La función del formato
	Formato vertical
	La metáfora del periódico
	Apertura vertical entre conceptos
	Densidad vertical
	Distancia vertical
	Declaraciones de variables
	Variables de instancia
	Funciones dependientes
	Afinidad conceptual

	Orden vertical

	Formato horizontal
	Apertura y densidad horizontal
	Alineación horizontal
	Sangrado
	Romper el sangrado

	Ámbitos ficticios

	Reglas de equipo
	Reglas de formato de Uncle Bob

	6. Objetos y estructuras de datos
	Abstracción de datos
	Antisimetría de datos y objetos
	La ley de Demeter
	Choque de trenes
	Híbridos
	Ocultar la estructura

	Objetos de transferencia de datos
	Registro activo

	Conclusión
	Bibliografía

	7. Procesar errores
	Usar excepciones en lugar de códigos devueltos
	Crear primero la instrucción try-catch-finally
	Usar excepciones sin comprobar
	Ofrecer contexto junto a las excepciones
	Definir clases de excepción de acuerdo a las necesidades del invocador
	Definir el flujo normal
	No devolver Null
	No pasar Null
	Conclusión
	Bibliografía

	8. Límites
	Utilizar código de terceros
	Explorar y aprender límites
	Aprender log4j
	Las pruebas de aprendizaje son algo más que gratuitas
	Usar código que todavía no existe
	Límites limpios
	Bibliografía

	9. Pruebas de unidad
	Las tres leyes del DGP
	Realizar pruebas limpias
	Las pruebas propician posibilidades

	Pruebas limpias
	Lenguaje de pruebas específico del dominio
	Un estándar dual

	Una afirmación por prueba
	Un solo concepto por prueba

	F.I.R.S.T.[44]
	Conclusión
	Bibliografía

	10. Clases
	Organización de clases
	Encapsulación

	Las clases deben ser de tamaño reducido
	El Principio de responsabilidad única
	Cohesión
	Mantener resultados consistentes en muchas clases de tamaño reducido

	Organizar los cambios
	Aislarnos de los cambios

	Bibliografía

	11. Sistemas
	Cómo construir una ciudad
	Separar la construcción de un sistema de su uso
	Separar Main
	Factorías
	Inyectar dependencias

	Evolucionar
	Aspectos transversales

	Proxies de Java
	Estructuras AOP Java puras
	Aspectos de AspectJ

	Pruebas de unidad de la arquitectura del sistema
	Optimizar la toma de decisiones
	Usar estándares cuando añadan un valor demostrable
	Los sistemas necesitan lenguajes específicos del dominio
	Conclusión
	Bibliografía

	12. Emergencia
	Limpieza a través de diseños emergentes
	Primera regla del diseño sencillo: Ejecutar todas las pruebas
	Reglas 2 a 4 del diseño sencillo: Refactorizar
	Eliminar duplicados
	Expresividad
	Clases y métodos mínimos
	Conclusión
	Bibliografía

	13. Concurrencia
	¿Por qué concurrencia?
	Mitos e imprecisiones

	Desafíos
	Principios de defensa de la concurrencia
	Principio de responsabilidad única (SRP)
	Corolario: Limitar el ámbito de los datos
	Corolario: Usar copias de datos
	Corolario: Los procesos deben ser independientes

	Conocer las bibliotecas
	Colecciones compatibles con procesos

	Conocer los modelos de ejecución
	Productor-Consumidor[82]
	Lectores-Escritores[83]
	La cena de los filósofos[84]

	Dependencias entre métodos sincronizados
	Reducir el tamaño de las secciones sincronizadas
	Crear código de cierre correcto es complicado
	Probar código con procesos
	Considerar los fallos como posibles problemas de los procesos
	Conseguir que primero funcione el código sin procesos
	El código con procesos se debe poder conectar a otros elementos
	El código con procesos debe ser modificable
	Ejecutar con más procesos que procesadores
	Ejecutar en diferentes plataformas
	Diseñar el código para probar y forzar fallos
	Manual
	Automática

	Conclusión
	Bibliografía

	14. Refinamiento sucesivo
	Implementación de Args
	Cómo se ha realizado

	Args: El primer borrador
	Entonces me detuve
	Sobre el incrementalismo

	Argumentos de cadena
	Conclusión

	15. Aspectos internos de JUnit
	La estructura JUnit
	Conclusión

	16. Refactorización de SerialDate
	Primero, conseguir que funcione
	Hacer que sea correcta
	Conclusión
	Bibliografía

	17. Síntomas y heurística
	Comentarios
	C1: Información inapropiada
	C2: Comentario obsoleto
	C3: Comentario redundante
	C4: Comentario mal escrito
	C5: Código comentado

	Entorno
	E1: La generación requiere más de un paso
	E2: Las pruebas requieren más de un paso

	Funciones
	F1: Demasiados argumentos
	F2: Argumentos de salida
	F3: Argumentos de indicador
	F4: Función muerta

	General
	G1: Varios lenguajes en un archivo de código
	G2: Comportamiento evidente no implementado
	G3: Comportamiento incorrecto en los límites
	G4: Medidas de seguridad canceladas
	G5: Duplicación
	G6: Código en un nivel de abstracción incorrecto
	G7: Clases base que dependen de sus variantes
	G8: Exceso de información
	G9: Código muerto
	G10: Separación vertical
	G11: Incoherencia
	G12: Desorden
	G13: Conexiones artificiales
	G14: Envidia de las características
	G15: Argumentos de selector
	G16: Intención desconocida
	G17: Responsabilidad desubicada
	G18: Elementos estáticos incorrectos
	G19: Usar variables explicativas
	G20: Los nombres de función deben indicar lo que hacen
	G21: Comprender el algoritmo
	G22: Convertir dependencias lógicas en físicas
	G23: Polimorfismo antes que If/Else o Switch/Case
	G24: Seguir las convenciones estándar
	G25: Sustituir números mágicos por constantes con nombre
	G26: Precisión
	G27: Estructura sobre convención
	G28: Encapsular condicionales
	G29: Evitar condicionales negativas
	G30: Las funciones sólo deben hacer una cosa
	G31: Conexiones temporales ocultas
	G32: Evitar la arbitrariedad
	G33: Encapsular condiciones de límite
	G34: Las funciones sólo deben descender un nivel de abstracción
	G35: Mantener los datos configurables en los niveles superiores
	G36: Evitar desplazamientos transitivos

	Java
	J1: Evitar extensas listas de importación mediante el uso de comodines
	J2: No heredar constantes
	J3: Constantes frente a enumeraciones

	Nombres
	N1: Elegir nombres descriptivos
	N2: Elegir nombres en el nivel correcto de abstracción
	N3: Usar nomenclatura estándar siempre que sea posible
	N4: Nombres inequívocos
	N5: Usar nombres extensos para ámbitos extensos
	N6: Evitar codificaciones
	N7: Los nombres deben describir efectos secundarios

	Pruebas (Test)
	T1: Pruebas insuficientes
	T2: Usar una herramienta de cobertura
	T3: No ignorar pruebas triviales
	T4: Una prueba ignorada es una pregunta sobre una ambigüedad
	T5: Probar condiciones de límite
	T6: Probar de forma exhaustiva junto a los errores
	T7: Los patrones de fallo son reveladores
	T8: Los patrones de cobertura de pruebas pueden ser reveladores
	T9: Las pruebas deben ser rápidas

	Conclusión
	Bibliografía

	Apéndice A. Concurrencia II
	Ejemplo cliente/servidor
	El servidor
	Añadir subprocesos
	Observaciones del servidor
	Conclusión

	Posibles rutas de ejecución
	Número de rutas
	Un examen más profundo
	Conclusión

	Conocer su biblioteca
	La estructura Executor
	Soluciones no bloqueantes
	Clases incompatibles con subprocesos

	Las dependencias entre métodos pueden afectar al código concurrente
	Tolerar el fallo
	Bloqueo basado en el cliente
	Bloqueo basado en el servidor

	Aumentar la producción
	Cálculo de producción de un solo subproceso
	Cálculo de producción con varios subprocesos

	Bloqueo mutuo
	Exclusión mutua
	Bloqueo y espera
	No expropiación
	Espera circular
	Evitar la exclusión mutua
	Evitar bloqueo y espera
	Evitar la expropiación
	Evitar la espera circular

	Probar código con múltiples subprocesos
	Herramientas para probar código basado en subprocesos
	Conclusión
	Ejemplos de código completos
	Cliente/Servidor sin subprocesos
	Cliente/Servidor con subprocesos

	Apéndice B. org.jfree.date.SerialDate
	Epílogo
	Autor
	Notas

