Robert C. Martin
Prologo de James O. Coplien Coautor del Manifiesto Agil

Codigo Limpio

Manual de estilo para el desarrollo agil de software

Cada afio, se invierten innumerables horas y se pierden numerosos recursos
debido a codigo mal escrito, ralentizando el desarrollo, disminuyendo la
productividad, generando graves fallos e incluso pudiendo acabar con Ila
organizacion o empresa.

El reconocido experto de software Robert C. Martin, junto con sus colegas de
Object Mentor, nos presentan sus Optimas técnicas y metodologias agiles para
limpiar el codigo sobre la marcha y crearlo de forma correcta, de este modo
mejorara como programador.

Esta obra se divide en tres partes. La primera describe los principios, patrones y
practicas para crear codigo limpio. La segunda incluye varios casos de estudio
cuya complejidad va aumentando. Cada ejemplo es un ejercicio de limpieza y
transformacion de codigo con problemas. La tercera parte del libro contiene una
lista de heuristica y sintomas de codigo erroneo (smells) confeccionada al crear
los casos practicos. El resultado es una base de conocimientos que describe
como pensamos cuando creamos, leemos y limpiamos cédigo.

Imprescindible para cualquier desarrollador, ingeniero de software, director de
proyectos, jefe de equipo o analista de sistemas interesado en crear codigo de
mejor calidad.

iEl libro que todo programador debe leer!

epublibre

Robert Cecil Martin
Codigo limpio
Manual de estilo para el desarrollo agil de software

ePub rl.1
XcUiDi 21.03.2018

Titulo original: Clean code: A handbook of agile software craftsmanship
Robert Cecil Martin, 2009

Traduccion: José Luis Gomez Celador

Tlustraciones: Jeniffer Kohnke & Angela Brooks

Editor digital: XcUiDi

Colaborador: Mario J. C. (PDF-Espaiiol)
ePub base r1.2

Este libro se ha maquetado siguiendo los estandares de calidad de www.epublibre.org. La pagina, y sus editores, no obtienen ningtn tipo de beneficio econdmico por ello. Si ha llegado a tu
poder desde otra web debes saber que seguramente sus propietarios si obtengan ingresos publicitarios mediante archivos como este

Para Ann Marie: El verdadero amor de mi vida.

Agradecimientos

Me gustaria dar las gracias a mis dos artistas, Jeniffer Kohnke y Angela Brooks.
Jennifer es la encargada de las impresionantes ilustraciones del inicio de cada
capitulo y también de los retratos de Kent Beck, Ward Cunningham, Bjarne
Stroustrup, Ron Jeffries, Grady Booch, Dave Thomas, Michael Feathers y el mio
propio.

Angela se encarga de las ilustraciones internas de los capitulos. Ha
realizado muchos dibujos para mi en los ultimos afios, incluidos muchos de los
del libro Agile Software Development: Principles, Patterns, and Practices.
También es mi primogénita.

Un agradecimiento especial a los revisores Bob Bogetti, George Bullock,
Jeffrey Overbey y especialmente Matt Heusser. Han sido increibles. Han sido
inmisericordes. Han sido minuciosos. Me han forzado al maximo para realizar
las mejoras necesarias.

Gracias a mi editor, Chris Guzikowski, por su apoyo, aliento y amistad.
Gracias a todo el personal de la editorial, incluida Raina Chrobak, que se
encargo de que fuera honesto y cumpliera los plazos.

Gracias a Micah Martin y a todos los de 8th Light (www.8thlight.com) por
sus criticas y su apoyo.

Gracias a todos los Object Mentor, pasados, presentes y futuros, incluidos
Bob Koss, Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy,
David Farber, Brett Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas,
James Grenning, Brian Button, Ron Jeffries, Lowell Lindstrom, Angelique
Martin, Cindy Sprague, Libby Ottinger, Joleen Craig, Janice Brown, Susan
Rosso y el resto.

Gracias Jim Newkirk, mi amigo y socio, que me ha ensefiado mas de lo que
cree. Mi agradecimiento a Kent Beck, Martin Fowler, Ward Cunningham,
Bjarne Stroustrup, Grady Booch y todos mis mentores, compatriotas y colegas.
Gracias a John Vlissides por estar ahi cuando lo necesitaba. Gracias a todos los
de Zebra por permitirme despotricar sobre la extension que debe tener una
funcion.

Y, por ultimo, darle las gracias por leer estos agradecimientos.

Prologo

Una de nuestras golosinas preferidas en Dinamarca es Ga-Jol, con un fuerte
sabor a regaliz, que constituye un complemento perfecto para nuestro humedo y
frio clima. Parte del encanto de Ga-Jol para los daneses es la frase que suele
incluir en el envoltorio. Esta mafiana compré un paquete de dos y me encontré
con este antiguo dicho danés:

Arlighed i smd ting er ikke nogen lille ting.

«La honestidad por las cosas pequefias no es algo menor». Perfecto para
que lo que pensaba escribir. Las cosas pequefias importan. Este libro trata sobre
humildes preocupaciones cuyo valor dista mucho de ser menor.

Dios esta en los detalles, afirmo el arquitecto Ludwig mies van der Rohe.
Esta cita recuerda argumentos contemporaneos sobre el papel de la arquitectura
en el desarrollo de software, en especial en el universo agil. Bob y yo hemos
tenido esta conversacion muchas veces. Y si, mies van der Rohe se fijaba en la
utilidad y la forma atemporal de la construccion que subyace a las grandes

creaciones arquitectonicas. Por otra parte, seleccionaba personalmente los pomos
de todas las puertas de todas las casas que disefiaba. ¢ Por qué? Porque las cosas
pequeias importan.

En nuestro interminable debate sobre TDD, Bob y yo coincidimos en que la
arquitectura del software desempefia una importante labor en el desarrollo,
aunque tenemos diferentes visiones de lo que esto significa. Estas diferencias
carecen de importancia, ya que podemos aceptar que los profesionales
responsables dedican parte de su tiempo a planificar un proyecto antes de
comenzarlo. Las nociones de disefio controlado unicamente por pruebas y el
codigo, propias de finales de la década de 1990, ya no son validas. Y la atencion
al detalle es un pilar fundamental de los profesionales, casi como cualquier
vision. Por un lado, la practica en los detalles otorga dominio a los profesionales,
y aumenta su confianza para la practica a mayor escala. Por otra parte, el mas
minimo fallo de construccion, una puerta que no cierre bien o un baldosin mal
colocado, acaba con el encanto del todo. De eso se trata el codigo limpio.

Pero la arquitectura es s6lo una metafora del desarrollo de software y en
concreto de la parte del software que ofrece el producto inicial, de la misma
forma que un arquitecto entrega un edificio inmaculado. Hoy en dia, el objetivo
es comercializar rapidamente los productos. Queremos que las fabricas
produzcan software a pleno rendimiento. Se trata de fabricas humanas,
programadores que piensan, que sienten y que trabajan para crear un producto.
La metafora de la manufacturacion es incluso mas evidente en este pensamiento.
Los aspectos productivos de las fabricas de automoviles japonesas fueron una
gran inspiracion para Serum.

Pero incluso en la industria automovilistica, gran parte del trabajo no radica
en la fabricacion sino en el mantenimiento, o mas bien en como evitarlo. En el
software, el 80 por 100 o mas de lo que hacemos se denomina cuantitativamente
mantenimiento, el acto de reparar. En lugar de optar por la tipica costumbre
occidental de crear software de calidad, debemos pensar como reparadores o
mecanicos. ;Qué piensan los directores japoneses de todo esto?

En 1951, un enfoque de calidad denominado TPM (Total Productive
Maintenance o Mantenimiento productivo total) apareci6é en escena. Se centraba
en el mantenimiento y no en la produccion. Uno de los pilares de TPM es el
conjunto de principios denominados 5S, una serie de disciplinas. Estos
principios 5S son en realidad la base Lean, otro conocido término en la escena
occidental, y cada vez mas presente en el mundo del software. Estos principios
no son opcionales. Como indica Uncle Bob, la practica del software correcto
requiere disciplina. No siempre se trata de hacer, de producir a la velocidad
optima.

La filosofia 5S incluye estos conceptos:

e Seiri u organizacion: Es fundamental saber donde estan las cosas,
mediante enfoques como el uso de nombres correctos. ¢Cree que los
nombres de los identificadores no son relevantes? Lea los siguientes
capitulos.

e Seiton o sistematizacion: Existe un antiguo dicho norteamericano: un sitio
para cada cosa y cada cosa en su sitio. Un fragmento de codigo debe estar
donde esperamos encontrarlo; en caso contrario, refactorice hasta
conseguirlo.

e Seiso o limpieza: Mantenga limpio el lugar de trabajo. ;Qué dicen los
autores sobre inundar el cddigo de comentarios y lineas que capturan
historias o deseos futuros? Eliminelos.

e Seiketsu o estandarizacion: El grupo decide como mantener limpio el
lugar de trabajo. ;Cree que este libro habla sobre tener un estilo de codigo
coherente y una serie de practicas dentro del grupo? ;De donde provienen
esos estandares? Siga leyendo.

e Shutsuke o disciplina: Significa ser disciplinado en la aplicacion de las
practicas y reflejarlas en el trabajo y aceptar los cambios.

Si acepta el reto, ha leido bien, el reto, de leer y llevar a la practica este
libro, podra comprender y apreciar el dltimo punto. Aqui nos acercamos a la raiz
de la profesionalidad responsable de una profesién que deberia preocuparse del
ciclo vital de un producto. Al igual que mantenemos coches y otras maquinas, el
mantenimiento divisible, esperar a que surjan los errores, es la excepcion. Por el
contrario, ascendemos un nivel: inspeccionamos diariamente las maquinas y
arreglamos los componentes gastados antes de que se rompan, o cambiamos el
aceite cada varios miles de kilometros para evitar problemas. En el codigo,
debemos refactorizar sin compasion. Puede ascender otro nivel mas, como hizo
el movimiento TPM hace 50 afios: crear maquinas que se pueden mantener
mejor. Crear codigo legible es tan importante como crear codigo ejecutable. La
practica definitiva, que aparecio en los circulos TPM en 1960, es la que se centra
en introducir nuevas maquinas o sustituir las antiguas. Como Fred Brooks nos
advirtio, deberiamos rehacer el software cada siete afios para eliminar los
problemas latentes. Tendriamos que actualizar este plazo por semanas, dias e
incluso horas en lugar de afios. Ahi es donde se encuentra el detalle.

El detalle tiene un gran poder, y es un enfoque vital humilde y profundo,
como es de esperar de cualquier enfoque de origen japonés. Pero no es sdlo la

vision oriental de la vida; también lo encontramos en el pueblo norteamericano.
La cita seiton anterior proviene de la pluma de un ministro de Ohio que,
literalmente, consideraba la limpieza como un remedio para todas las formas del
mal. ;Y seiso? La limpieza es la pureza. Aunque una casa sea bella, el
mobiliario inadecuado acaba con su encanto. ;Y la opinion de shutsuke al
respecto? El que confie en lo pequefio confiara en lo superior. ;Y la
predisposicion a refactorizar en el momento adecuado, reforzando nuestra
posicion para las posteriores grandes decisiones, en lugar de dejarlo pasar? Una
puntada a tiempo ahorra ciento. Al que madruga, Dios le ayuda. No dejes para
mariana lo que puedas hacer hoy (éste era el sentido original de la frase «en el
momento adecuado» de Lean hasta que caydé en manos de consultores de
software). ;Y sobre calibrar la importancia de los pequefios esfuerzos
individuales en un todo mayor? De pequenias semillas crecen grandes drboles.
¢Y la integracion de sencillas tareas preventivas en la vida diaria? Mads vale
prevenir que curar. El codigo limpio honra las raices de la sabiduria popular, de
antes o de ahora, y se puede aplicar con atencion al detalle.

Incluso en la literatura arquitectonica encontramos ejemplos de estos
detalles. Piense en los pomos de mies van der Rohe. Eso es seiri. Es la atencion
a todos los nombres de variables. Debe bautizar a una variable con el mismo
cuidado como si fuera su primogénito.

Y como todo sabemos, este cuidado no acaba nunca. El arquitecto
Christopher Alexander, padre de patrones y lenguajes de patrones, considera
todo acto de disefio como un pequefio acto local de reparacion, y considera la
maestria de la estructura como competencia unica del arquitecto; las formas
mayores se ceden a los patrones y su aplicacion a los habitantes. El disefio es
interminable no sélo al afiadir una nueva habitacion a una casa, sino al prestar
atencion a la pintura, a cambiar las alfombras o a instalar un nuevo fregadero en
la cocina. Otras artes muestran sentimientos analogos. En nuestra busqueda por
la importancia de los detalles, nos topamos con el autor francés del siglo xx
Gustav Flaubert. El poeta francés Paul Valery afirma que un poema no se acaba
nunca y que tiene que retocarse continuamente, y que dejar de trabajar en el
poema es sefial de abandono. Tal preocupacion por el detalle es comun en todas
las empresas de excelencia. Puede que esto no sea nada nuevo, pero al leer este
libro sentira la necesidad de adoptar disciplinas rechazadas en su momento por
apatia o por un deseo de espontaneidad o una simple respuesta al cambio.

Desafortunadamente, no solemos considerar estas preocupaciones la clave
del arte de la programacion. Renunciamos pronto a nuestro codigo, no porque lo
hayamos completado, sino porque nuestro sistema de valores se centra en el
futuro mas que en la sustancia de nuestros productos.

Esto tiene un precio final: hierba mala nunca muere. La investigacion, ni en
el mundo industrial ni en el académico, se reduce a mantener limpio el codigo.
Cuando trabajaba en la organizacion Bell Labs Software Production Research
(sin duda de produccion) comprobamos que un estilo de sangrado coherente era
uno de los mayores indicadores estadisticamente significativos de una baja
densidad de errores. Queremos que una arquitectura, un lenguaje de
programacion u otra nocion superior sea el motivo de la calidad; como seres
cuya supuesta profesionalidad se debe al dominio de herramientas y métodos de
disefio, nos sentimos insultados por el valor que los programadores afiaden con
tan so6lo aplicar un estilo de sangrado coherente. Para citar mi propio libro de
hace 17 afios, dicho estilo distingue la excelencia de la simple competencia. La
vision japonesa comprende el verdadero valor del trabajador cotidiano y, en
especial, de los sistemas de desarrollo que dependen de las sencillas acciones
diarias de tales trabajadores. La calidad es el resultado de un mill6n de acciones
cuidadosas, no de un método magnifico caido del cielo. Que dichas acciones
sean simples no significa que sean simplistas, y mucho menos que sean sencillas.
Son la base de la grandeza y, cada vez mas, de cualquier empresa humana.
Ignorarlas no es humano en absoluto.

Evidentemente, todavia defiendo el pensamiento global, en especial el valor
de los enfoques arquitectonicos cimentados en el conocimiento de los dominios
y la capacidad de uso del software. Este libro no versa sobre esto, al menos no de
forma evidente. Este libro transmite un mensaje mas sutil cuya profundidad no
debe menospreciarse. Coincide con la vision de gente como Peter Sommerlad,
Kevlin Henney y Giovanni Asproni, cuyos mantras son «El codigo es el disefio»
y «Cddigo simple». Aunque debemos recordar que la interfaz es el programa y
que sus estructuras dicen mucho sobre la propia estructura del programa, es
fundamental adoptar de forma continuada la humilde posicion de que el disefio
vive en el codigo. Y aunque los cambios y la metafora de la fabrica supongan
costes, los cambios de disefio suponen valor. Debemos considerar al codigo
como la articulacion de los esfuerzos de disefio, visto como un proceso, no como
algo estatico. Es en el codigo donde se desarrollan los conceptos arquitecténicos
de conexion y cohesion. Si escucha a Larry Constantine describir la conexion y
la cohesion, lo hace en términos del codigo, no desde conceptos abstractos
propios de UML. En su ensayo Abstraction Descant, Richard Gabriel afirma que
la abstraccion es el mal. El codigo es el remedio al mal y el codigo limpio puede
que sea divino.

Volviendo a mi caja de Ga-Jol, considero importante recordar que la
sabiduria danesa nos recomienda no sélo prestar atencion a las pequefias cosas,
sino también ser honestos con ellas. Esto significa ser honesto con el codigo, con

nuestros colegas sobre el estado del codigo y, en especial, con nosotros mismos.
¢Hemos hecho todo lo posible para dejar las cosas mejor que como las
encontramos? ;Hemos refactorizado el cddigo antes de terminarlo? No se trata
de preocupaciones periféricas, sino que se encuentran en la base misma de los
valores Agile. En Serum se recomienda que la refactorizacion sea parte del
concepto de Terminado. Ni la arquitectura ni el cédigo limpio insisten en la
perfeccion, sino en la honestidad y en hacerlo lo mejor posible. Errar es
humano; perdonar es divino. En Serum, todo lo hacemos de forma visible.
Aireamos los trapos sucios. Somos honestos sobre el estado de nuestro codigo ya
que nunca es perfecto. Nos hemos hecho mas humanos, mas merecedores de lo
divino y estamos mas proximos a la grandeza de los detalles.

En nuestra profesion, necesitamos desesperadamente toda la ayuda posible.
Si un suelo seco reduce el riesgo de resbalones y las herramientas bien
organizadas aumentan la productividad, es nuestra meta. Y en cuanto al libro, es
la mejor aplicacion pragmatica de los principios Lean de software que he visto
nunca en formato impreso. No esperaba menos de este grupo de individuos que
durante afios se han esforzado no sd6lo por mejorar sino en ofrecer sus
conocimientos a la industria mediante obras como la que ahora tiene entre
manos. Hace que el mundo sea un poco mejor que antes de que Uncle Bob me
enviara el manuscrito.

Y tras completar este ejercicio, me dispongo a limpiar mi escritorio.

James O. Coplien
Mgrdrup, Dinamarca

Introduccion

Tl’?e OMLY VAL M@ ASURe Men T
OF Cuhe QUACLITy: WEFs/niMWI‘d

&,
», =
TR

14
z &,
ﬁ% Sﬁsﬁ :thq%

- wrp
o

-

w+ E

Reproducido con permiso de Thom Holwerda.
http://www.osnews.com/story/19266/WTFs_m. © 2008 Focus Shift.

¢Qué puerta representa su codigo? ;Qué puerta representa a su equipo 0 a su
empresa? ;Por qué estamos en esa habitacion? ¢Es una sencilla revision del
codigo o hemos detectado un sinfin de problemas terribles? ;Depuramos presas
del panico el codigo que pensabamos que funcionaba? ¢Los clientes huyen
despavoridos y los directores nos pisan los talones? ;Como asegurarnos de que
abrimos la puerta correcta cuando las cosas se ponen feas? La respuesta: la
maestria.

La maestria se consigue de dos formas: conocimientos y trabajo. Debe

adquirir el conocimiento de los principios, patrones, practicas y heuristica
propios de un maestro, y dominar dichos conocimientos a través de la practica.

Puedo ensefiarle la teoria de montar en bicicleta. De hecho, los conceptos
matematicos clasicos son muy sencillos. Gravedad, friccion, velocidad angular,
centro de masa, etc., se pueden demostrar en menos de una pagina repleta de
ecuaciones. Con esas formulas, puedo demostrar que montar en bicicleta es
practico y proporcionarle los conocimientos necesarios para conseguirlo. Pero la
primera vez que se monte en una bici se caera al suelo.

El disefio de cddigo no es diferente. Podriamos enumerar todos los
principios del cédigo limpio y confiar en que se encargue del resto (es decir,
dejar que se cayera de la bici) pero entonces la pregunta seria qué clase de
profesores somos y qué clase de alumno seria.

No. Asi no funciona este libro.

Aprender a crear codigo limpio es complicado. Requiere algo mas que
conocer principios y patrones. Tiene que sudar. Debe practicarlo y fallar. Debe
ver como otros practican y fallan. Debe observar como se caen y recuperan el
paso. Debe ver como agonizan en cada decision y el precio que pagan por tomar
decisiones equivocadas.

Para leer este libro, preparese a trabajar duro. No es un libro que se pueda
leer en un avién y terminarlo antes de aterrizar. Este libro le hara trabajar, y
mucho. ;Y qué tipo de trabajo? Tendra que leer codigo, en abundancia. Y se le
pedira que piense en qué acierta el codigo y en qué falla. Se le pedira que siga
nuestras descripciones mientras despedazamos modulos y los volvemos a
ensamblar. Para ello necesitara tiempo y esfuerzo, pero creemos que merece la
pena.

Hemos dividido el libro en tres partes. Los primeros capitulos describen los
principios, patrones y practicas para crear codigo limpio. Incluyen abundante
codigo y resultan dificiles de leer. Sirven como preparacion a la segunda parte.
Si abandona tras leer la primera seccion, que tenga buena suerte.

La segunda parte del libro es la mas dificil. Incluye varios casos de estudio
cuya complejidad va aumentando. Cada ejemplo es un ejercicio de limpieza de
codigo, transformar codigo con problemas para que tenga menos problemas. El
detalle de esta parte es abundante. Tendra que alternar entre el texto y los
listados de codigo. Tendra que analizar y entender el codigo, y comprender el
razonamiento de cada cambio realizado. Piense en que esta parte le llevard
varios dias.

La tercera parte del libro es un unico capitulo que contiene una lista de
heuristica y sintomas de cédigo erroneo (smells) confeccionada al crear los casos
practicos. Al analizar y limpiar el cédigo de los ejemplos, documentamos el

motivo de todas nuestras acciones como heuristica o sintoma. Intentamos
comprender nuestras reacciones al codigo que lelamos y modificabamos, y nos
esforzamos por capturar las sensaciones que tuvimos y las decisiones que
adoptamos. El resultado es una base de conocimientos que describe como
pensamos cuando creamos, leemos y limpiamos cédigo.

Esta base de conocimientos no le servira de mucho si no lee atentamente los
casos de la segunda parte del libro. En esos capitulos hemos anotado con
precision todos los cambios realizados con referencias a la heuristica. Estas
referencias se muestran entre corchetes, como [H22]. De este modo puede ver el
contexto en el que se ha aplicado y creado dicha heuristica. No importa tanto el
propio valor de las heuristicas sino la relacion entre ellas y las decisiones
adoptadas al limpiar el cédigo en los ejemplos.

Si lee la primera y la tercera parte y se salta los casos practicos, habra leido
otro libro distinto sobre como crear codigo correcto, pero si dedica tiempo a
analizar los casos, sigue todos y cada uno de los pasos, cada una de las
decisiones, si se pone en nuestro lugar y se obliga a pensar tal y como lo hicimos
nosotros, entonces comprendera mucho mejor todos los principios, patrones,
practicas y heuristica. Ya no sera un conocimiento superficial. Se convertira en
algo profundo. Lo integrara de la misma forma que una bicicleta se convierte en
una extension propia una vez dominada la forma de montar.

Sobre la imagen de cubierta

La imagen de la portada es M104: la Galaxia del Sombrero. M104 se encuentra
en Virgo, a unos 30 millones de afios luz, y su nucleo es un super agujero negro
que pesa aproximadamente mil millones de masas solares.

¢La imagen le recuerda la explosion de la luna Praxis de Klingon?
Recuerdo la escena de Star Trek VI en la que se mostraba un anillo de restos
flotando tras la explosion. Tras esa escena, el anillo se ha convertido en un
elemento habitual de las explosiones de ciencia ficcion. Incluso se afiadi6 a la
explosion de Alderaan en ediciones posteriores de la primera pelicula de La
Guerra de las Galaxias.

¢Qué provocé la formacion de este anillo alrededor de M104? ;Por qué
tiene un centro de tales dimensiones y un nucleo tan brillante y diminuto? Parece
como si el agujero negro central hubiera provocado un orificio de 30 000 afios
luz en el centro de la galaxia. La desgracia caeria sobre las civilizaciones que se
encontraran en el camino de este desastre cosmico.

Los super agujeros negros desayunan estrellas y convierten parte de su
masa en energia. E=MC’ puede bastar, pero cuando M es una masa estelar hay
que tener cuidado. ¢Cuantas estrellas habra engullido este monstruo antes de
saciar su apetito? El tamafio del vacio central podria ser una pista.

Imagen de portada: © Spitzet Space Telescope.

La imagen de M104 de la portada es una combinacion de la famosa
fotografia del Hubble (imagen superior) y la reciente imagen de infrarrojos del
observatorio orbital Spitzer (inferior).

Esta dltima muestra claramente la forma de anillo de la galaxia.

A la luz, s6lo vemos el borde frontal de la silueta del anillo.

La masa central oculta el resto.

Pero en la imagen de infrarrojos, las particulas calientes del anillo brillan a
través de la masa central. Las dos imagenes combinadas nos ofrecen una vista
desconocida hasta ahora e implican que hace tiempo era un auténtico infierno
activo.

1
Codigo Limpio

Esta leyendo este libro por dos motivos. Por un lado, es programador. Por otro,
quiere ser mejor programador. Perfecto. Necesitamos mejores programadores.
Este libro trata sobre programacion correcta. Esta repleto de codigo. Lo
analizaremos desde todas las direcciones. Desde arriba, desde abajo y desde
dentro. Cuando terminemos, sabremos mucho sobre cédigo y, en especial
sabremos distinguir entre codigo correcto e incorrecto. Sabremos como escribir
codigo correcto y como transformar codigo incorrecto en codigo correcto.

Hagase el codigo

Se podria afirmar que un libro sobre codigo es algo obsoleto, que el codigo ya no
es el problema y que deberiamos centrarnos en modelos y requisitos. Hay
quienes sugieren que el final del codigo esta préximo. Que los programadores ya
no seran necesarios porque los empresarios generaran programas a partir de
especificaciones.

No es cierto. El codigo nunca desaparecerd, ya que representa los detalles
de los requisitos. En algun nivel, dichos detalles no se pueden ignorar ni
abstraer; deben especificarse, y para especificar requisitos de forma que un
equipo pueda ejecutarlos se necesita la programacion. Dicha especificacién es el
codigo.

Espero que el nivel de abstraccion de nuestros lenguajes siga aumentando.
También espero que aumente el nimero de lenguajes especificos de dominios.
Sera algo positivo, pero no eliminara el codigo. De hecho, todas las
especificaciones creadas en estos lenguajes de nivel superior y especificos de los
dominios seran codigo, y tendra que ser riguroso, preciso, formal y detallado
para que un equipo pueda entenderlo y ejecutarlo.

El que piense que el codigo va a desaparecer es como el matematico que
espera que un dia las matematicas no sean formales. Esperan descubrir una
forma de crear maquinas que hagan lo que queramos en lugar de lo que digamos.
Esas maquinas tendrian que entendernos de tal forma que puedan traducir
necesidades ambiguas en programas perfectamente ejecutados que satisfagan
dichas necesidades a la perfeccion.

Esto nunca sucedera. Ni siquiera los humanos, con toda su intuicion y
creatividad, han sido capaces de crear sistemas satisfactorios a partir de las
sensaciones de sus clientes. En realidad, si la disciplina de la especificacion de
requisitos nos ha ensefiado algo es que los requisitos bien especificados son tan
formales como el cédigo y que pueden actuar como pruebas ejecutables de dicho
codigo.

Recuerde que el cédigo es basicamente el lenguaje en el que expresamos
los requisitos en ultima instancia. Podemos crear lenguajes que se asemejen a
dichos requisitos. Podemos crear herramientas que nos permitan analizar y
combinar dichos requisitos en estructuras formales, pero nunca eliminaremos la
precision necesaria; por ello, siempre habra cédigo.

Codigo Incorrecto

Recientemente lei el prologo del libro Implementation Pattern™ de Kent Beck,
donde afirmaba que «...este libro se basa en una fragil premisa: que el codigo
correcto es relevante...». ;Una frdgil premisa? En absoluto. Considero que es
una de las mas robustas, admitidas e importantes de nuestro sector (y creo que
Kent lo sabe). Sabemos que el cédigo correcto es relevante porque durante
mucho tiempo hemos tenido que sufrir su ausencia.

Sé de una empresa que, a finales de la década de 1980, cre6 una magnifica
aplicacion, muy popular y que muchos profesionales compraron y utilizaron.
Pero los ciclos de publicacién empezaron a distanciarse. No se corrigieron los
errores entre una version y la siguiente. Crecieron los tiempos de carga y
aumentaron los fallos. Todavia recuerdo el dia en que apagué el producto y
nunca mas lo volvi a usar.

Poco después, la empresa desaparecio.

Dos décadas después conoci a uno de los empleados de la empresa y le
pregunté sobre lo que habia pasado. La respuesta confirmo6 mis temores. Habian
comercializado el producto antes de tiempo con graves fallos en el cédigo. Al
afladir nuevas funciones, el cddigo empeor6 hasta que ya no pudieron
controlarlo. El cédigo incorrecto fue el motivo del fin de la empresa.

¢En alguna ocasion el codigo incorrecto le ha supuesto un obstaculo? Si es
programador seguramente si. De hecho, tenemos una palabra que lo describe:
sortear. Tenemos que sortear el cédigo incorrecto. Nos arrastramos por una

marafia de zarzas y trampas ocultas. Intentamos buscar el camino, una pista de lo
que esta pasando, pero lo Uinico que vemos es mas y mas codigo sin sentido.

Sin duda el codigo incorrecto le ha supuesto un obstaculo. Entonces, ¢por
qué lo escribig?

¢Tenia prisa? ;Plazos de entrega? Seguramente. Puede que pensara que no
tenia tiempo para hacer un buen trabajo; que su jefe se enfadaria si necesitaba
tiempo para limpiar su cédigo. O puede que estuviera cansado de trabajar en ese
programa y quisiera acabar cuanto antes. O que viera el trabajo pendiente y
tuviera que acabar con un modulo para pasar al siguiente. A todos nos ha pasado.

Todos hemos visto el lio en el que estabamos y hemos optado por dejarlo
para otro dia. Todos hemos sentido el alivio de ver como un programa incorrecto
funcionaba y hemos decidido que un mal programa que funciona es mejor que
nada. Todos hemos dicho que lo solucionariamos después. Evidentemente, por
aquel entonces, no conociamos la ley de LeBlanc: Después es igual a nunca.

El coste total de un desastre

Si es programador desde hace dos o tres afios, probablemente haya sufrido los
desastres cometidos por otros en el codigo. Si tiene mas experiencia, lo habra
sufrido en mayor medida. El grado de sufrimiento puede ser significativo. En un
periodo de un afio o dos, los equipos que avancen rapidamente al inicio de un
proyecto pueden acabar a paso de tortuga. Cada cambio en el codigo afecta a dos
o tres partes del mismo. Ningin cambio es trivial. Para ampliar o modificar el
sistema es necesario comprender todos los detalles, efectos y consecuencias,
para de ese modo poder afiadir nuevos detalles, efectos y consecuencias. Con el
tiempo, el desastre aumenta de tal modo que no se puede remediar. Es imposible.

Al aumentar este desastre, la productividad del equipo disminuye y acaba
por desaparecer. Al reducirse la productividad, el director hace lo tnico que
puede: ampliar la plantilla del proyecto con la esperanza de aumentar la
productividad. Pero esa nueva plantilla no conoce el disefio del sistema. No
conocen la diferencia entre un cambio adecuado al objetivo de disefio y otro que
lo destroce. Por tanto, todos se encuentran sometidos a una gran presion para
aumentar la productividad. Por ello, cometen mas errores, aumenta el desastre y
la productividad se acerca a cero cada vez mas (véase la figura 1.1).

Productividad
o383 8888

Tiempo

Figura 1.1. Productividad frente a tiempo.

El gran cambio de disefio

En ultima instancia, el equipo se rebela. Informan al director que no pueden
seguir trabajando con ese codigo. Exigen un cambio de disefio. La direccion no
requiere invertir en un cambio de disefio del proyecto, pero no puede ignorar el
bajo nivel de productividad.

Acaba por ceder a las exigencias de los programadores y autoriza el gran
cambio de disefio. Se selecciona un nuevo equipo. Todos quieren formar parte
del nuevo equipo por ser un lienzo en blanco. Pueden empezar de cero y crear
algo realmente bello, pero sdlo los mejores seran elegidos para el nuevo equipo.
Los demas deben continuar con el mantenimiento del sistema actual.

Ahora los dos equipos compiten. El nuevo debe crear un sistema que haga
lo que el antiguo no puede. Ademas, deben asumir los cambios que
continuamente se aplican al sistema antiguo. La direccién no sustituira el sistema
antiguo hasta que el nuevo sea capaz de hacer todo lo que hace el antiguo.

Esta competicion puede durar mucho tiempo. Conozco casos de casi 10
afios. Y cuando acaba, los miembros originales del equipo nuevo han
desaparecido y los miembros actuales exigen un cambio de disefio del nuevo
sistema porque es un desastre.

Si ha experimentado alguna fase de esta historia, ya sabra que dedicar
tiempo a que el codigo sea correcto no s6lo es rentable, es una cuestion de
supervivencia profesional.

Actitud

¢Alguna vez ha tenido que superar un desastre tan grave que ha tardado semanas
en lo que normalmente hubiera tardado horas? ;Ha visto un cambio que deberia
haberse realizado en una linea, aplicado en cientos de moddulos distintos? Son
sintomas demasiado habituales.

¢Por qué sucede en el codigo? ;Por qué el codigo de calidad se transforma
tan rapidamente en codigo incorrecto? Hay muchas explicaciones. Nos quejamos
de que los requisitos cambian de forma que comprometen el disefio original, de
que los plazos de entrega son demasiado exigentes para hacer las cosas bien.
Culpamos a directores incompetentes, a usuarios intolerantes y a comerciales sin
sentido. Pero la culpa, querido Dilbert, es nuestra. No somos profesionales.

Puede que resulte duro escucharlo. ;Como es posible que seamos
responsables de tales desastres? ;Qué pasa con los requisitos? ;Y los plazos de
entrega? ;Y los directores incompetentes y los comerciales sin sentido? ;No es
también culpa suya?

No. Los directores y los comerciales nos exigen la informacién que
necesitan para realizar sus promesas y compromisos, e incluso cuando no
recurren a nosotros, no debemos tener miedo a decirles lo que pensamos. Los
usuarios acuden a nosotros para validar la forma de encajar los requisitos en el
sistema. Los directores de proyectos acuden a nosotros para determinar los
objetivos. Somos complices en la programacion del proyecto y compartimos
gran parte de la responsabilidad de los fallos, en especial si tienen que ver con
codigo incorrecto.

Seguramente piense que, si no hace lo que su jefe le dice, le despediran. Es
improbable. Muchos jefes sélo quieren la verdad, aunque lo disimulen. Muchos
quieren codigo correcto, aunque estén obsesionados con los objetivos. Pueden
defender apasionadamente los objetivos y los requisitos, pero es su trabajo. El
nuestro es defender el codigo con la misma intensidad.

Para resumir, imagine que es médico y un paciente le exige que no se lave
las manos antes de una operacion porque se pierde demasiado tiempo®. En este
caso, el paciente es el jefe, pero el médico debe negarse a lo que pide. ¢Por qué?
Porque el médico sabe mas que el paciente sobre los riesgos de infecciones. No
seria profesional (incluso seria ilegal) que el médico cediera a las exigencias del
paciente.

Tampoco seria profesional que los programadores cedieran a la voluntad de
los jefes que no entienden los riesgos de un posible desastre.

El enigma

Los programadores se enfrentan a un enigma de valores basicos. Los que tienen
afios de experiencia saben que un desastre ralentiza su trabajo, y aun asi todos
los programadores sienten la presion de cometer errores para poder cumplir los
plazos de entrega. En definitiva, no toman el tiempo necesario para avanzar.

Los verdaderos profesionales saben que la segunda parte del enigma no es
cierta. No se cumple un plazo de entrega cometiendo un error. De hecho, el error
nos ralentiza de forma inmediata y hace que no lleguemos al plazo de entrega.
La tnica forma de cumplirlo, la Unica forma de avanzar, es intentar que el
codigo siempre sea limpio.

¢El arte del codigo limpio?

Imagine que cree que el codigo incorrecto es un obstaculo significativo. Imagine
que acepta que la unica forma de avanzar es mantener el codigo limpio.
Entonces se preguntara como crear codigo limpio. No tiene sentido intentar
crearlo si no sabe lo que es.

La mala noticia es que crear cddigo limpio es como pintar un cuadro.
Muchos sabemos si un cuadro se ha pintado bien o no, pero poder reconocer la
calidad de una obra no significa que sepamos pintar. Por ello, reconocer codigo
limpio no significa que sepamos como crearlo.

Para crearlo se requiere el uso disciplinado de miles de técnicas aplicadas
mediante un detallado sentido de la «correccion». Este sentido del codigo es la
clave.

Algunos nacen con este sentido. Otros han de luchar para conseguirlo. No
solo permite distinguir entre codigo correcto e incorrecto, sino que también
muestra la estrategia para aplicar nuestra disciplina y transformar codigo
incorrecto en codigo correcto.

Un programador sin este sentido puede reconocer el desastre cometido en
un modulo, pero no saber como solucionarlo. Un programador con este sentido
vera las posibles opciones y elegira la variante 6ptima para definir una secuencia
de cambios.

En definitiva, un programador que cree codigo limpio es un artista que
puede transformar un lienzo en blanco en un sistema de codigo elegante.

Concepto de codigo limpio

Existen tantas definiciones como programadores. Por ello, he consultado la
opinion de conocidos y experimentados programadores.

Bjarne Stroustrup, inventor de C++ y autor de The C++ Programming
Language

Me gusta que mi codigo sea elegante y eficaz. La logica debe ser directa
para evitar errores ocultos, las dependencias deben ser minimas para
facilitar el mantenimiento, el procesamiento de errores completo y sujeto a
una estrategia articulada, y el rendimiento debe ser optimo para que los
usuarios no tiendan a estropear el codigo con optimizaciones sin sentido.
El codigo limpio hace bien una cosa.

Bjarne usa la palabra «elegante». Menuda palabra.

Segun el diccionario, «elegante» significa «dotado de gracia, nobleza y
sencillez». Aparentemente Bjarne piensa que el codigo limpio es un placer a la
hora de leerlo. Su lectura debe hacernos sonreir, como una caja de musica o un
coche bien disefiado.

Bjarne también menciona la eficacia, en dos ocasiones. No deberia
sorprendemos viniendo del inventor de C++; pero considero que hay algo mas
que el mero deseo de velocidad. Los ciclos malgastados no son elegantes, no son
un placer. Y fijese en la palabra empleada por Bjarne para describir la
consecuencia de esta falta de elegancia. Usa tiendan. Una gran verdad. El codigo
incorrecto tiende a aumentar el desastre. Cuando otros cambian cddigo
incorrecto, tienden a empeorarlo.

Dave Thomas y Andy Hunt lo expresan de forma diferente. Usan la
metafora de las ventanas rotas®. Un edificio con ventanas rotas parece

abandonado. Y hace que otros lo abandonen. Dejan que se rompan otras
ventanas. E incluso las rompen a propdsito. La fachada se ensucia con pintadas y
se acumula la basura. Una ventana rota inicia el proceso de la decadencia.

Bjarne también menciona que el procesamiento de errores debe ser
completo, lo que se relaciona con la disciplina de prestar atencion a los detalles.
El procesamiento de errores abreviado es una forma de ignorar los detalles.
Otras son las fugas de memoria, las condiciones de carrera o el uso incoherente
de los nombres. En definitiva, el codigo limpio muestra gran atencion al detalle.

Bjarne termina afirmando que el codigo limpio hace una cosa bien. No es
accidental que existan tantos principios de disefio de software que se puedan
reducir a esta sencilla maxima. Muchos escritores han tratado de comunicar este
pensamiento. El codigo incorrecto intenta hacer demasiadas cosas y su cometido
es ambiguo y enrevesado. El codigo limpio es concreto. Cada funcion, cada
clase y cada modulo muestran una unica actitud que se mantiene invariable y no
se contamina por los detalles circundantes.

Grady Booch, autor de Object Oriented Analysis and Design with
Applications

El codigo limpio es simple y directo. El codigo limpio se lee como un texto
bien escrito. El codigo limpio no oculta la intencion del disefiador, sino que
muestra nitidas abstracciones y lineas directas de control.

Grady mantiene las mismas ideas que Bjarne, pero adopta una perspectiva
de legibilidad. Me gusta especialmente que el codigo limpio se pueda leer como
un texto bien escrito. Piense en un buen libro. Recordara que las palabras

desaparecen y se sustituyen por imagenes, como ver una pelicula.

Mejor todavia. Es ver los caracteres, escuchar los sonidos, experimentar las
sensaciones.

Leer codigo limpio nunca sera como leer El Sefior de los Anillos. Pero esta
metafora literaria no es incorrecta. Como una buena novela, el codigo limpio
debe mostrar de forma clara el suspense del problema que hay que resolver.
Debe llevar ese suspense hasta un punto algido para después demostrar al lector
que los problemas y el suspense se han solucionado de forma evidente.

La frase «nitida abstraccion» de Grady es un oximoron fascinante. Nitido es
casi un sinonimo de concreto, con un potente mensaje. El codigo debe ser
especifico y no especulativo. Sélo debe incluir lo necesario. Nuestros lectores
deben percibir que hemos tomado decisiones.

«Big» Dave Thomas, fundador de OTI, el padrino de la estrategia Eclipse

El coédigo limpio se puede leer y mejorar por parte de un programador que
no sea su autor original. Tiene pruebas de unidad y de aceptacion. Tiene
nombres con sentido. Ofrece una y no varias formas de hacer algo. Sus
dependencias son minimas, se definen de forma explicita y ofrece una API
clara y minima. El codigo debe ser culto en funcion del lenguaje, ya que no
toda la informacion necesaria se puede expresar de forma clara en el
codigo.

Big Dave comparte el deseo de Grady de la legibilidad, pero con una
importante variante. Dave afirma que el cédigo limpio facilita las labores de
mejora de otros. Puede parecer evidente pero no debemos excedernos. Después
de todo, existe una diferencia entre el codigo facil de leer y el codigo facil de
cambiar.

Dave vincula la limpieza a las pruebas. Hace 10 afios esto hubiera
provocado cierta controversia. Pero la disciplina del Desarrollo controlado por
pruebas ha tenido un gran impacto en nuestro sector y se ha convertido en uno
de sus pilares. Dave tiene razéon. El codigo, sin pruebas, no es limpio.
Independientemente de su elegancia, legibilidad y accesibilidad, si no tiene
pruebas, no sera limpio.

Dave usa dos veces la palabra minimo. Valora el cédigo de tamafio
reducido, una opinion habitual en la literatura de software desde su concepcion.
Cuanto mas pequefio, mejor.

También afirma que el codigo debe ser culto, una referencia indirecta a la
programacion de Knuth* y que en definitiva indica que el cddigo debe redactarse
de una forma legible para los humanos.

Michael Feathers, autor de Working Effectively with Legacy Code

B Y

Podria enumerar todas las cualidades del cédigo limpio, pero hay una
principal que engloba a todas ellas. El codigo limpio siempre parece que
ha sido escrito por alguien a quien le importa. No hay nada evidente que

hacer para mejorarlo. El autor del codigo penso en todos los aspectos
posibles y si intentamos imaginar alguna mejora, volvemos al punto de
partida y solo nos queda disfrutar del codigo que alguien a quien le
importa realmente nos ha proporcionado.

Una palabra; dar importancia. Es el verdadero tema de este libro, que
incluso podria usar el subtitulo «Como dar importancia al codigo».

Michael ha acertado de pleno. El cédigo limpio es aquél al que se le ha
dado importancia. Alguien ha dedicado su tiempo para que sea sencillo y ha
prestado atencion a los detalles. Se ha preocupado.

Ron Jeffries, autor de Extreme Programming Installed y Extreme
Programming Adventures in C#

Ron comenzo su carrera como programador con Fortran en Strategic Air
Command y ha escrito codigo para la practica totalidad de lenguajes y equipos.
Merece la pena fijarse en sus palabras:

En los ultimos afios, comencé y practicamente terminé con las reglas de
codigo simple de Beck.
En orden de prioridad, el codigo simple:

¢ Ejecuta todas las pruebas.
¢ No contiene duplicados.

e Expresa todos los conceptos de disefio del sistema.
e Minimiza el numero de entidades como clases, métodos, funciones y
similares.

De todos ellos, me quedo con la duplicacion. Cuando algo se repite una y
otra vez, es una seflal de que tenemos una idea que no acabamos de
representar correctamente en el codigo. Intento determinar cual es Yy,
después, expresar esa idea con mayor claridad. Para mi, la expresividad
debe incluir nombres con sentido y estoy dispuesto a cambiar los nombres
de las cosas varias veces. Con las modernas herramientas de creacion de
codigo como Eclipse, el cambio de nombres es muy sencillo, por lo que no
me supone problema alguno.

La expresividad va mas alla de los nombres. También me fijo si un objeto o
un método hacen mas de una cosa. Si se trata de un objeto, probablemente
tenga que dividirse en dos o mas. Si se trata de un método, siempre recurro
a la refactorizacion de extraccion de métodos para generar un método que
exprese con mayor claridad su cometido y varios métodos secundarios que
expliquen como lo hace.

La duplicacion y la expresividad son dos factores que permiten mejorar
considerablemente cddigo que no sea limpio. Sin embargo, existe otra cosa
que también hago conscientemente, aunque sea mas dificil de explicar.

Tras afios en este trabajo, creo que todos los programas estan formados de
elementos muy similares. Un ejemplo es la busqueda de elementos en una
coleccion. Independientemente de que sea una base de datos de registros de
empleados o un mapa de claves y valores, o una matriz de elementos, por lo
general tenemos que buscar un elemento concreto de esa coleccion. Cuando
esto sucede, suelo incluir esa implementacion concreta en un método o una
clase mas abstractos. De ese modo disfruto de una serie de interesantes
ventajas.

Puedo implementar la funcionalidad con algo sencillo, como un mapa hash,
por ejemplo, pero como ahora todas las referencias a la busqueda se ocultan
en mi pequefia abstraccion, puedo modificar la implementacién siempre que
desee. Puedo avanzar rapidamente al tiempo que conservo la posibilidad de
realizar cambios posteriores.

Ademas, la abstraccion de la coleccién suele captar mi atencion en lo que
realmente sucede e impide que implemente comportamientos de
colecciones arbitrarias si lo que realmente necesito es una forma sencilla de
localizar un elemento.

Reducir los duplicados, maximizar la expresividad y disefiar sencillas

abstracciones en las fases iniciales. Para mi, es lo que hace que el cddigo
sea limpio.

En estos breves parrafos, Ron resume el contenido de este libro. Nada de
duplicados, un objetivo, expresividad y pequefias abstracciones. Todo esta ahi.

Ward Cunningham, inventor de Wiki, Fit, y uno de los inventores de la
programacion eXtreme. Uno de los impulsores de los patrones de disefio.
Una de las mentes tras Smalltalk y la programacion orientada a objetos. El
padrino de todos a los que les importa el codigo.

Sabemos que estamos trabajando con codigo limpio cuando cada rutina
que leemos resulta ser lo que esperabamos. Se puede denominar codigo
atractivo cuando el codigo hace que parezca que el lenguaje se ha creado
para el problema en cuestion.

Este tipo de afirmaciones son caracteristicas de Ward. Las leemos,
asentimos y pasamos a la siguiente. Es tan razonable y evidente que apenas
parece profundo. Incluso podemos pensar que es lo que esperabamos. Pero
preste atencion.

«... resulta ser lo que esperabamos». ¢Cuando fue la ultima vez que vio un
modulo que fuera mas o menos lo que esperaba? ¢L.o habitual no es ver modulos
complicados y enrevesados? ;No es esta falta de concrecién lo habitual? ;No

esta acostumbrado a intentar extraer el razonamiento de un sistema para llegar al
modulo que esta leyendo? ;Cuando fue la dltima vez que leyé un cddigo y
asintio como seguramente haya hecho al leer la afirmacion de Ward?

Ward espera que al leer cédigo limpio no le sorprenda. De hecho, ni
siquiera tendra que esforzarse. Lo leera y sera practicamente lo que esperaba.
Sera evidente, sencillo y atractivo. Cada médulo prepara el camino del siguiente.
Cada uno indica como se escribira el siguiente. Los programas limpios estan tan
bien escritos que ni siquiera se dara cuenta. El disefiador consigue simplificarlo
todo enormemente, como sucede con todos los disefios excepcionales.

¢Y la nocion de atractivo de Ward? Todos hemos criticado que nuestros
lenguajes no se hayan disefiado para nuestros problemas. Pero la afirmacion de
Ward hace que ahora la responsabilidad sea nuestra. Afirma que el cddigo
atractivo hace que el lenguaje parezca creado para el problema. Por tanto,
somos responsables de que el lenguaje parezca sencillo. No es el lenguaje el que
hace que los programas parezcan sencillos, sino el programador que consigue
que el lenguaje lo parezca.

Escuelas de pensamiento

¢Y yo (Uncle Bob)? ¢Qué es para mi el codigo limpio? En este libro le
contaremos, con todo detalle, lo que yo y mis colegas pensamos del codigo
limpio. Le contaremos lo que pensamos que hace que un nombre de variable,
una funcion o una clase sean limpias.

Presentaremos estas opiniones de forma absoluta, sin disculparnos. En este

punto de nuestra carrera, ya son absolutas. Son nuestra escuela de pensamiento
del cédigo limpio.

Los especialistas de las artes marciales no se ponen de acuerdo sobre cual
es la mejor de todas, ni siquiera sobre cual es la mejor técnica de un arte marcial.
Es habitual que los maestros de las artes marciales creen sus propias escuelas de
pensamiento y los alumnos aprendan de ellos. De esta forma naci6 Gracie Jiu
Jitsu, creada e impartida por la familia Gracie en Brasil; Hakkoryu Jiu Jitsu,
fundada e impartida por Okuyama Ryuho en Tokio o Jeet Kune Do, fundada e
impartida por Bruce Lee en Estados Unidos.

Los alumnos de estas disciplinas se sumergen en las ensefianzas del
fundador. Se dedican a aprender lo que su maestro les ensefia y suelen excluir las
enseflanzas de otros maestros. Después, cuando han mejorado su arte, pueden
convertirse en alumnos de otro maestro diferente para ampliar sus conocimientos
y su experiencia. Algunos seguiran mejorando sus habilidades, descubriendo
nuevas técnicas y fundando sus propias escuelas.

Ninguna de estas escuelas tiene la razon absoluta pero dentro de cada una
actuamos como si las ensefianzas y las técnicas fueran correctas. Después de
todo, existe una forma correcta de practicar Hakkoryu Jiu Jitsu o Jeet Kune Do,
pero esta correccion dentro de una escuela determinada no anula las ensefianzas
de otra diferente.

Imagine que este libro es una descripcion de la Escuela de mentores del
codigo limpio. Las técnicas y ensefianzas impartidas son la forma en la que
practicamos nuestro arte. Podemos afirmar que, si sigue nuestras ensefianzas,
disfrutara de lo que hemos disfrutado nosotros, y aprendera a crear codigo
limpio y profesional. Pero no cometa el error de pensar que somos los unicos
que tenemos razon. Existen otras escuelas y otros maestros tan profesionales
como nosotros, y su labor es aprender de ellos también.

De hecho, muchas de las recomendaciones del libro son controvertidas,
seguramente no esté de acuerdo con muchas de ellas y puede que rechace
algunas de forma definitiva. Es correcto. No somos la autoridad final. Pero, por
otra parte, las recomendaciones del libro son algo en lo que hemos pensado
mucho. Las hemos aprendido tras décadas de experiencia y ensayo y error. Por
lo tanto, esté o no de acuerdo, seria una lastima que no apreciara, y respetara,
nuestro punto de vista.

Somos autores

El campo @author de un Javadoc indica quiénes somos. Somos autores. Y los

autores tienen lectores. De hecho, los autores son responsables de comunicarse
correctamente con sus lectores. La proxima vez que escriba una linea de codigo,
recuerde que es un autor y que escribe para que sus lectores juzguen su esfuerzo.

Seguramente se pregunte qué cantidad de codigo se lee realmente y si la
mayor parte del esfuerzo no se concentra en crearlo.

¢Alguna vez ha reproducido una sesion de edicion? En las décadas de 1980
y 1990 teniamos editores como Emacs que controlaban cada pulsacion de tecla.
Se podia trabajar durante una hora y después reproducir la sesion de edicion
completa como una pelicula a alta velocidad. Cuando lo hice, los resultados
fueron fascinantes.

La mayor parte de la reproduccion eran desplazamientos entre modulos.

Bob accede al modulo.

Se desplaza hasta la funcion que tiene que cambiar.

Se detiene y piensa en las posibles opciones.

Oh, vuelve al inicio del modulo para comprobar la inicializacion de una
variable.

Ahora vuelve a bajar y comienza a escribir.

Vaya, borra lo que habia escrito.

Vuelve a escribirlo.

Lo vuelve a borrar.

Escribe algo diferente pero también lo borra.

Se desplaza a otra funcion que invoca la funcion que esta modificando para
comprobar como se invoca.

Vuelve a subir y escribe el mismo codigo que acaba de borrar.

Se detiene.

Vuelve a borrar el codigo.

Abre otra ventana y examina las subclases. ;Se ha reemplazado esa
funcion?

Se hace una idea. En realidad, la proporcion entre tiempo dedicado a leer
frente a tiempo dedicado a escribir es de mas de 10:1. Constantemente tenemos
que leer codigo antiguo como parte del esfuerzo de crear codigo nuevo.

Al ser una proporcion tan elevada, queremos que la lectura del codigo sea
sencilla, aunque eso complique su creacion. Evidentemente, no se puede escribir
codigo sin leerlo, de modo que si es mds facil de leer sera mas facil de escribir.

Es una logica sin escapatoria. No se puede escribir codigo si no se puede
leer el cédigo circundante. El codigo que intente escribir hoy sera facil o dificil
de escribir en funcion de lo facil o dificil de leer que sea el codigo circundante.
Si quiere avanzar rapidamente, terminar cuanto antes y que su codigo sea facil
de escribir, haga que sea facil de leer.

La regla del Boy Scout

No basta con escribir codigo correctamente. El cédigo debe limpiarse con el
tiempo. Todos hemos visto que el cédigo se corrompe con el tiempo, de modo
que debemos adoptar un papel activo para evitarlo.

Los Boy Scouts norteamericanos tienen una sencilla regla que podemos
aplicar a nuestra profesion:

Dejar el campamento mas limpio de lo que se ha encontrado®.

Si todos entregamos el codigo mas limpio de lo que lo hemos recibido, no
se corrompera. No hace falta que la limpieza sea masiva. Cambie el nombre de
una variable, divida una funcién demasiado extensa, elimine elementos
duplicados, simplifique una instruccién if compuesta.

;Se imagina trabajar en un proyecto en el que el codigo mejorara con el
tiempo? ;Cree que hay otras opciones que puedan considerarse profesionales?
De hecho, ¢;la mejora continuada no es una parte intrinseca de la
profesionalidad?

Precuela y principios

En muchos aspectos, este libro es una «precuela» de otro que escribi en 2002
titulado Agile Software Development: Principles, Patterns, and Practices (PPP).
El libro PPP trata sobre los principios del disefio orientado a objetos y muchas de
las técnicas empleadas por desarrolladores profesionales. Si no ha leido PPP,
comprobara que continia la historia contada en este libro. Si lo ha leido,
encontrara muchas de las sensaciones de ese libro reproducidas en éste a nivel
del codigo.

En este libro encontrara referencias esporadicas a distintos principios de

disefio como SRP (Single Responsibility Principle o Principio de responsabilidad
unica), OCP (Open Closed Principle o Principio Abierto/Cerrado) y DIP
(Dependency Inversion Principle o Principio de inversion de dependencias)
entre otros. Todos estos principios se describen detalladamente en PPP.

Conclusion

Los libros sobre arte no le prometen que se convertira en artista. Solamente
pueden mostrarle herramientas, técnicas y procesos de pensamiento que otros
artistas hayan utilizado. Del mismo modo, este libro no puede prometer que se
convierta en un buen programador, que tenga sentido del cédigo. Sélo puede
mostrarle los procesos de pensamiento de buenos programadores y los trucos,
técnicas y herramientas que emplean.

Al igual que un libro sobre arte, este libro esta repleto de detalles.
Encontrara mucho coédigo. Vera codigo correcto y codigo incorrecto. Vera
codigo incorrecto transformado en codigo correcto. Vera listas de heuristica,
disciplinas y técnicas. Vera un ejemplo tras otro. Y después de todo, sera
responsabilidad suya.

;Recuerda el chiste sobre el violinista que se pierde camino de un
concierto? Se cruza con un anciano y le pregunta como llegar al Teatro Real. El
anciano mira al violinista y al violin que lleva bajo el brazo y le responde:
«Practique joven, practique».

Bibliografia

e [Beck07]: Implementation Patterns, Kent Beck, Addison-Wesley, 2007.
e [Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study
of Language and Information, Leland Stanford Junior University, 1992.

2
Nombres con sentido

por Tim Ottinger

Introduccion

En el software, los nombres son omnipresentes. Aparecen en variables,
funciones, argumentos, clases y paquetes. Asignamos nombres a archivos y a
directorios, a archivos jar, war y ear. Usamos nombres constantemente. Por ello,
debemos hacerlo bien. A continuacion, veremos algunas reglas basicas para
crear nombres COITectos.

Usar nombres que revelen las intenciones

Es facil afirmar que los nombres deben revelar nuestras intenciones. Lo que
queremos recalcar es la importancia de hacerlo. Elegir nombres correctos lleva
tiempo, pero también ahorra trabajo. Por ello, preste atencién a los nombres y
cambielos cuando encuentre otros mejores. Todo el que lea su cddigo se lo
agradecera.

El nombre de una variable, funcion o clase debe responder una serie de
cuestiones basicas. Debe indicar por qué existe, qué hace y como se usa. Si un
nombre requiere un comentario, significa que no revela su cometido.

int d; // tiempo transcurrido en dias

El nombre d no revela nada. No evoca una sensacion de tiempo
transcurrido, ni de dias. Debe elegir un nombre que especifique lo que se mide y
la unidad de dicha medida:

int elapsedTimeInDays;
int daysSinceCreation;
int daysSinceModification;
int fileAgeInDays;

La eleccion de nombres que revelen intenciones facilita considerablemente
la comprension y la modificacion del codigo. ;Para qué sirve el siguiente
codigo?

public List<int[]> getThem() {
List<int[]> listl = new ArraylList<int[]>();
for (int[] x : thelList)
if (x[0] == 4)
listi.add(x);
return list1;

}

¢Por qué es complicado saber la funcion de este codigo? No hay
expresiones complejas. L.os espacios y el sangrado son razonables. SAlo hay tres
variables y dos constantes. Ni siquiera contiene clases complejas o métodos
polimorficos, sélo una lista de matrices (o eso parece).

El problema no es la simplicidad del codigo sino su caracter implicito: el
grado en el que el contexto no es explicito en el propio cédigo. Implicitamente,
el codigo requiere que sepamos las respuestas a las siguientes preguntas:

:Qué contiene theList?

¢Qué significado tiene el subindice cero de un elemento de theList?
¢Qué importancia tiene el valor 4?

;Como se usa la lista devuelta?

Las respuestas a estas preguntas no se encuentran en el codigo, pero se
podrian haber incluido. Imagine que trabaja en un juego de buscar minas. El
tablero es una lista de celdas llamada theList. Cambiemos el nombre por
gameBoard.

Cada celda del teclado se representa por medio de una matriz. El subindice

cero es la ubicacion de un valor de estado que, cuando es 4, significa que se ha
detectado. Al asignar nombres a estos conceptos mejoramos considerablemente
(31 (:(3(1i§;(): public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)
if (cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

La simplicidad del cédigo no ha cambiado. Sigue teniendo los mismos
operadores y constantes y el mismo nimero de niveles anidados, pero ahora es
mucho mas explicito. Podemos crear una sencilla clase para celdas en lugar de
usar una matriz de elementos int. Puede incluir una funcién que revele el
objetivo (con el nombre isFlagged) para ocultar los numeros. El resultado es
Una I'lllEVa VEFSiéH de la fl,lIlCiéI’lI public List<Cell> getFlaggedCells() {

List<Cell> flaggedCells = new ArraylList<Cell>();

for (Cell cell : gameBoard)

if (cell.isFlagged())
flaggedCells.add(cell);

return flaggedCells;
}

Con estos sencillos cambios de nombre, es facil saber qué sucede. Es la
ventaja de seleccionar nombres adecuados.

Evitar la desinformacion

Los programadores deben evitar dejar pistas falsas que dificulten el significado
del codigo. Debemos evitar palabras cuyo significado se aleje del que
pretendemos. Por ejemplo, hp, aix y sco son nombres de variables pobres ya que
son los nombres de plataformas o variantes de Unix. Aunque se trate del codigo
de una hipotenusa y hp parezca la abreviatura correcta, puede no serlo.

No haga referencia a un grupo de cuentas como accountList a menos que
realmente sea una lista (List). La palabra lista tiene un significado concreto para
los programadores. Si el contenedor de las cuentas no es realmente una lista,
puede provocar falsas conclusiones®. Por tanto, resulta mas adecuado usar
accountGroup, bunchOfAccounts o simplemente accounts.

Evite usar nombres con variaciones minimas. ;Cuanto se tarda en apreciar
la sutil diferencia entre XyzControllerForEfficientHandlingOfStrings ¥y
XYZControllerForEfficientStorage0OfStrings en un modulo? Ambas
palabras tienen una forma similar.

La ortografia similar de conceptos parecidos es informacion; el uso de
ortografia incoherente es desinformacion. En los entornos modernos de Java, el
codigo se completa de forma automatica. Escribimos varios caracteres de un
nombre y pulsamos varias teclas para obtener una lista de posibles opciones de

un nombre. Es muy util si los nombres de elementos similares se ordenan
alfabéticamente de forma conjunta y si las diferencias son muy evidentes, ya que
es probable que el programador elija un objeto por nombre sin fijarse en los
comentarios o la lista de métodos proporcionados por una clase.

Un ejemplo de nombre desinformativo seria el uso de la L mintscula o la 0
mayuscula como nombres de variables, sobre todo combinados. El problema,
evidentemente, es que se parecen a las constantes 1 y 0 respectivamente: i a - 1;

if (0==1)
a = 01;

else
1 =01

El lector puede pensar que es una invencién, pero hemos visto codigo con
abundancia de estos elementos. En un caso, el autor del codigo, sugirié usar una
fuente distinta para que las diferencias fueran mas evidentes, una solucion que se
hubiera transmitido a todos los futuros programadores como tradicion oral o en
un documento escrito. El problema se resolvié con caracter definitivo y sin
necesidad de crear nuevos productos, con tan s6lo cambiar los nombres.

Realizar distinciones con sentido

T
g
Los programadores se crean un problema al crear codigo unicamente dirigido a
un compilador o intérprete. Por ejemplo, como se puede usar el mismo nombre
para hacer referencia a dos elementos distintos en el mismo ambito, puede verse
tentado a cambiar un nombre de forma arbitraria. En ocasiones se hace
escribiéndolo incorrectamente, lo que provoca que los errores ortograficos
impidan la compilacion®.

No basta con afiadir series de nimeros o palabras adicionales, aunque eso
satisfaga al compilador. Si los nombres tienen que ser distintos, también deben
tener un significado diferente.

Los nombres de series numéricas (a1, a2... aN) son lo contrario a los

nombres intencionados. No desinforman, simplemente no ofrecen informacion;
son una pista sobre la intencion del autor. Fijese en lo siguiente:

public static void copyChars(char ail[], char a2[]) {
for (int i = 0; i < ail.length; i++) {
az2[i] = ai[i];
}
}

Esta funcién se lee mejor cuando se usa source y destination como
nombres de argumentos.

Las palabras adicionales son otra distincion sin sentido. Imagine que tiene
la clase Product. Si tiene otra clase con el nombre ProductInfo o ProductData,
habra creado nombres distintos, pero con el mismo significado. Info y Data son
palabras adicionales, como a, an y the.

No es incorrecto usar prefijos como a y the mientras la distincion tenga
sentido. Imagine que usa a para variables locales y for para argumentos de
funciones®. El problema aparece cuando decide invocar la variable thezork
porque ya tiene otra variable con el nombre zork.

Las palabras adicionales son redundantes. La palabra variable no debe
incluirse nunca en el nombre de una variable. La palabra table no debe incluirse
nunca en el nombre de una tabla. ;Es mejor NameString que Name? ;Podria ser
Name un nimero de coma flotante? En caso afirmativo, incumple la regla anterior
sobre desinformacion. Imagine que encuentra una clase con el nombre Customer
y otra con el nombre CustomeroObject. ;Cual seria la distincion? ¢Cual
representa mejor el historial de pagos de un cliente?

Existe una aplicacién que lo ilustra. Hemos cambiado los nombres para
proteger al culpable. Veamos el error exacto:

getActiveAccount();
getActiveAccounts();
getActiveAccountInfo();

¢Cémo saben los programadores de este proyecto qué funcion deben
invocar?

En ausencia de convenciones concretas, la variable moneyAmount no se
distingue de money, customerInfo no se distingue de customer, accountData no
se distingue de account y theMessage no se distingue de message. Debe
diferenciar los nombres de forma que el lector aprecie las diferencias.

Usar nombres que se puedan pronunciar

A los humanos se nos dan bien las palabras. Gran parte de nuestro cerebro se
dedica al concepto de palabras. Y, por definicion, las palabras son
pronunciables. Seria una pena malgastar esa parte de nuestro cerebro dedicada al
lenguaje hablado. Por tanto, cree nombres pronunciables. Si no lo puede
pronunciar, no podra explicarlo sin parecer tonto. Es un factor importante, ya

que la programacion es una actividad social.

Conozco una empresa que usa genymdhms (fecha de generacion, afio, mes,
dia, hora, minuto y segundo) y lo pronuncian tal cual. Yo tengo la costumbre de
pronunciar todo tal y como lo veo escrito, de forma que muchos analistas y
disefiadores acabaron por llamarme algo como «genimedemes». Era un chiste y
nos parecia divertido, pero en realidad estabamos tolerando el uso de nombres
pobres. Teniamos que explicar las variables a los nuevos programadores y
cuando las pronunciaban, usaban palabras inventadas en lugar de nombres
correctos. Compare: ciass otaroraioz ¢

brivate bate modyndhme)

private final String pszqint = “102";
VA

con:

class Customer {
private Date generationTimestamp;
private Date modificationTimestamp;
private final String recordId = “102”;
VA
Ahora se puede mantener una conversacion inteligente: «Eh, Mikey, fijate
en este registro. La marca de tiempo de generacion es para mafiana. ;Coémo es

posible?»

Usar nombres que se puedan buscar

Los nombres de una letra y las constantes numeéricas tienen un problema: no son
faciles de localizar en el texto. Se puede detectar MAX_CLASSES_PER_STUDENT,
pero el nimero 7 resulta mas complicado. Las busquedas pueden devolver el
digito como parte de nombres de archivo, otras definiciones de constantes o
expresiones en las que se use con otra intencion. Mucho peor si la constante es
un numero extenso y alguien ha intercambiado los digitos, lo que genera un error
inmediato y no aparece en la bisqueda.

Del mismo modo, el nombre e es una opcion muy pobre para variables que
el programador tenga que buscar. Es la letra mas usada en inglés y aparece en la
practica totalidad de los textos de un programa. A este respecto, los nombres
extensos superan a los breves y cualquier nombre que se pueda buscar supera a
una constante en el codigo.

Personalmente prefiero nombres de una letra que s6lo se puedan usar como
variables locales dentro de métodos breves. La longitud de un nombre debe
corresponderse al tamafio de su dmbito [N5]. Si una variable o constante se usa
en varios puntos del cédigo, debe asignarle un nombre que se pueda buscar.

Compare: for (int j=0; j<34; j++) {
s += (t[j]1*4)/5;
}

con:

int realDaysPerIdealDay = 4;

const int WORK_DAYS_PER_WEEK = 5;

int sum = 0;

for (int j = ©; j < NUMBER_OF_TASKS; j++) {
int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
int realTaskWeeks = (realdays / WORK_DAYS_PER_WEEK)
sum += realTaskWeeks;

En este ejemplo, sum no es un nombre especialmente util, pero al menos se
puede buscar. Se usa una funcion mas extensa, pero comprobara que resulta
mucho mas facil buscar WORK_DAYS_PER_WEEK que todas las instancias de 5 y
filtrar la lista a los casos con el significado adecuado.

Evitar codificaciones

Ya tenemos suficientes codificaciones como para tener que afiadir otras nuevas.
Al codificar informacion de tipos o ambitos en un nombre se dificulta la
descodificacion. No parece razonable que todos los nuevos empleados tengan
que aprender otro lenguaje de codificacion ademas del codigo con el que van a
trabajar. Es una carga mental innecesaria a la hora de intentar solucionar un
problema. Los nombres codificados resultan impronunciables y suelen escribirse
de forma incorrecta.

Notacion hungara

Antiguamente, cuando trabajabamos con lenguajes en los que la longitud de los
nombres era un reto, incumpliamos esta regla a nuestro pesar. Fortran forzaba las
codificaciones convirtiendo la primera letra de un tipo en codigo. En sus
primeras versiones, BASIC so6lo se permitia una letra y un digito. La notacion
hingara (HN) lo llevé a un nuevo nivel.

HN se consideraba muy importante en el API C de Windows, donde todo
era un control entero, un puntero long, un puntero void o una de varias
implementaciones de string (con diferentes usos y atributos). Por aquel
entonces, el compilador no comprobaba los tipos, de modo que los
programadores tenian que recordarlos.

En los lenguajes modernos disponemos de sistemas de tipos mas completos
y los compiladores recuerdan los tipos y los aplican. Es mas, existe una
tendencia a usar clases y funciones mas breves para que los usuarios aprecien la

declaracion de las variables que usan.

Los programadores de Java no tienen que codificar tipos. Los objetos son
de tipos fuertes y los entornos de edicién han avanzado tanto que detectan un
error de tipo antes de ejecutar la compilacion. Por ello, en la actualidad HN y
otras formas de codificacion de tipos no son mas que un impedimento. Hacen
que sea mas complicado cambiar el nombre o el tipo de una variable o clase.
Dificultan la legibilidad del codigo y pueden hacer que el sistema de
codificacion confunda al lector: enonenumer pronestring;

// el nombre no cambia cuando cambia el tipo

Prefijos de miembros

Tampoco es necesario afiadir m_ como prefijo a los nombres de variables. Las
clases y funciones tienen el tamafio necesario para no tener que hacerlo, y debe
usar un entorno de edicion que resalte o coloree los miembros para distinguirlos.

public class Part {
private String m_dsc; // La descripcién textual
void setName(String name) {
m_dsc = name;
}
}

public class Part {
String description;
void setDescription(String description) {
this.description = description;

}

Ademas, los usuarios aprenden rapidamente a ignorar el prefijo (o sufijo) y
fijarse en la parte con sentido del nombre. Cuanto mas codigo leemos, menos
nos fijamos en los prefijos. En ultima instancia, los prefijos son un indicio de
codigo antiguo.

Interfaces e Implementaciones

Existe un caso especial para usar codificaciones. Imagine por ejemplo que crea
una factoria abstracta para crear formas. Esta factoria sera una interfaz y se
implementara por medio de una clase concreta. ;Qué nombres debe asignar?
iIShapeFactory y ShapeFactory? Prefiero las interfaces sin adornos. La I
inicial, tan habitual en los archivos de legado actuales es, en el mejor de los
casos, una distraccion, y en el peor, un exceso de informacion. No quiero que
mis usuarios sepan que se trata de una interfaz, solamente que se trata de
ShapeFactory. Si tengo que codificar la interfaz o la implementacion, opto por
ésta ultima. Es mejor usar ShapeFactoryImp o incluso CShapeFactory, que

codificar la interfaz.

Evitar asignaciones mentales

Los lectores no tienen que traducir mentalmente sus nombres en otros que ya
conocen. Este problema suele aparecer al elegir entre no usar términos de
dominio de problemas o de soluciones.

Es un problema de los nombres de variables de una sola letra. Un contador
de bucles se podria bautizar como i, j o k (pero nunca 1) si su ambito es muy
reducido y no hay conflictos con otros nombres, ya que los nombres de una letra
son tradicionales en contadores de bucles. Sin embargo, en otros contextos, un
nombre de una letra es una opciéon muy pobre: es como un marcador de posicion
que el lector debe asignar mentalmente a un concepto real. No hay peor motivo
para usar el nombre ¢ que a y b ya estén seleccionados.

Por lo general, los programadores son gente inteligente. A la gente
inteligente le gusta presumir de sus habilidades mentales. Si puede recordar que
r es la version en minuscula de una URL sin el host y el sistema, debe ser muy
listo.

Una diferencia entre un programador inteligente y un programador
profesional es que este ultimo sabe que la claridad es lo que importa. Los
profesionales usan sus poderes para hacer el bien y crean codigo que otros
puedan entender.

Nombres de clases

Las clases y los objetos deben tener nombres o frases de nombre como
Customer, WikiPage, Account y AddressParser. Evite palabras como Manager,
Processor, Data, o Info en el nombre de una clase. El nombre de una clase no
debe ser un verbo.

Nombres de métodos

Los métodos deben tener nombres de verbo como postPayment, deletePage 0
save. Los métodos de acceso, de modificacion y los predicados deben tener
como nombre su valor y usar como prefijo get, set e is de acuerdo al estandar
de javabean®.

string name = employee.getName();
customer.setName(“mike”);
if (paycheck.isPosted())..

Al sobrecargar constructores, use métodos de factoria estaticos con
nombres que describan los argumentos. Por ejemplo:

Complex fulcrumPoint = Complex.FromRealNumber(23.0);

es mejor que:

Complex fulcrumPoint = new Complex(23.0);

Refuerce su wuso convirtiendo en privados sus constructores
correspondientes.

No se exceda con el atractivo

Si los nombres son demasiado inteligentes, solo los recordaran los que
compartan el sentido del humor de su autor, y s6lo mientras se acuerden del
chiste. ¢ Sabran qué significa la funcion HolyHandGrenade? Sin duda es atractiva,
pero en este caso puede que DeleteItems fuera mas indicado. Opte por la
claridad antes que por el entretenimiento. En el cédigo, el atractivo suele
aparecer como formas coloquiales o jergas. Por ejemplo, no use whack() en
lugar de kill(). No recurra a bromas culturales como eatMyShorts() si quiere
decir abort().
Diga lo que piense. Piense lo que diga.

Una palabra por concepto

Elija una palabra por cada concepto abstracto y manténgala. Por ejemplo, resulta
confuso usar fetch, retrieve y get como métodos equivalentes de clases
distintas. ;Como va a recordar qué método se corresponde a cada clase?
Desafortunadamente, tendra que recordar qué empresa, grupo o individuo ha
creado la biblioteca o clase en cuestion para recordar qué término se ha
empleado. En caso contrario, perdera mucho tiempo buscando en encabezados y

fragmentos de codigo.

Los entornos de edicion modernos como Eclipse e IntelliJ ofrecen pistas
sensibles al contexto, como la lista de métodos que puede invocar en un
determinado objeto. Pero esta lista no suele incluir los comentarios de nombres
de funciones y listas de parametros. Tendra suerte si muestra los nombres de
parametros de las declaraciones de funciones. Los nombres de funciones deben
ser independientes y coherentes para que pueda elegir el método correcto sin
necesidad de busquedas adicionales.

Del mismo modo, resulta confuso tener un controlador, un administrador y
un control en la misma base de codigo. ;Cual es la diferencia entre
DeviceManager y ProtocolController? ;Por qué no son los dos controladores o
administradores? ;Son controladores? El nombre hace que espere que dos
objetos tengan un tipo diferente y clases diferentes.

Un léxico coherente es una gran ventaja para los programadores que tengan
que usar su codigo.

No haga juegos de palabras

Evite usar la misma palabra con dos fines distintos. Suele hacerse en juegos de
palabras. Si aplica la regla de una palabra por conceptos, acabara con muchas
clases que por ejemplo tengan un método add. Mientras las listas de parametros
y los valores devueltos de los distintos métodos add sean semanticamente
equivalentes, no hay problema.

Sin embargo, alguien puede decidir usar la palabra add por motivos de
coherencia, aunque no sea en el mismo sentido. Imagine que hay varias clases en
las que add crea un nuevo valor sumando o concatenando dos valores existentes.
Imagine ahora que crea una nueva clase con un método que afiada su parametro
a una coleccion. ¢Este método debe tener el método add? Parece coherente ya
que hay otros muchos métodos add, pero en este caso hay una diferencia
semantica, de modo que debemos usar un nombre como insert o append.
Llamar add al nuevo método seria un juego de palabras.

Nuestro objetivo, como autores, es facilitar la comprension del cédigo.
Queremos que el cédigo sea algo rapido, no un estudio exhaustivo. Queremos
usar un modelo en el que el autor sea el responsable de transmitir el significado,
no un modelo académico que exija investigar el significado mostrado.

Usar nombres de dominios de soluciones

Recuerde que los lectores de su cédigo seran programadores. Por ello, use
términos informaticos, algoritmos, nombres de patrones, términos matematicos y
demas. No conviene extraer todos los nombres del dominio de problemas ya que
no queremos que nuestros colegas tengan que preguntar el significado de cada
nombre en especial cuando ya conocen el concepto bajo otro nombre diferente.
El nombre AccountVvisitor tiene mucho significado para un programador
familiarizado con el patron VISITOR. ;Qué programador no sabe lo que es
JobQueue? Hay cientos de cosas técnicas que los programadores tienen que
hacer y elegir nombres técnicos para dichas cosas suele ser 1o mas adecuado.

Usar nombres de dominios de problemas

Cuando no exista un término de programacién para lo que esté haciendo, use el
nombre del dominio de problemas. Al menos el programador que mantenga su
codigo podra preguntar el significado a un experto en dominios.

Separar los conceptos de dominio de soluciones y de problemas es parte del
trabajo de un buen programador y disefiador. El codigo que tenga mas relacion
con los conceptos del dominio de problemas tendra nombres extraidos de dicho
dominio.

Anadir contexto con sentido

Algunos nombres tienen significado por si mismos, pero la mayoria no. Por ello,
debe incluirlos en un contexto, en clases, funciones y espacios de nombres con
nombres adecuados. Cuando todo lo demas falle, pueden usarse prefijos como
ultimo recurso.

Imagine que tiene las variables firstName, lastName, street,
houseNumber, city, state y zipcode. Si las combina, es evidente que forman
una direccion. Pero si la variable state se usa de forma aislada en un método,
isabria que forma parte de una direccion? Puede afiadir contexto por medio de
prefijos: addrFirstName, addrLastName, addrState, etc. Al menos los lectores
comprenderan que estas variables forman parte de una estructura mayor.
Evidentemente, es mejor crear la clase Address. De ese modo, incluso el
compilador sabra que las variables pertenecen a un concepto mas amplio.

Fijese en el método del Listado 2-1. ;Las variables necesitan un contexto
con mas sentido? El nombre de la funcién sélo ofrece parte del contexto, el resto
se obtiene del algoritmo. Tras leer la funcién, vera que las tres variables number,
verb y pluralModifier forman parte del mensaje guess statistics.
Desafortunadamente, es necesario inferir el contexto. Al leer el método, el
significado de las variables no es evidente.

Listado 2-1
Variables en un contexto ambiguo.

private void printGuessStatistics(char candidate, int count) {
String number;
String verb;
String pluralModifier;
if (count == 0) {
number = “no”;
verb = “are”;
pluralModifier = “s”;
} else if (count == 1) {
number = “1”;
verb = “is”;
pluralModifier = “”
} else {
number = Integer.toString(count);
verb = “are”;
pluralModifier = “s”;
}
String guessMessage = String.format(
“There %s %s %s%s”, verb, number, candidate, pluralModifier
);

7
print(guessMessage);

La funcion es demasiado extensa y las variables aparecen por todas partes.
Para dividir la funcion en fragmentos mas reducidos necesitamos crear una clase
GuessStatisticsMessage y convertir a las tres variables en campos de la
misma. De este modo contamos con un contexto mas obvio para las tres
variables. Forman parte sin duda de GuessStatisticsMessage. La mejora del
contexto también permite que el algoritmo sea mas limpio y se divida en
funciones mas reducidas (véase el Listado 2-2).

Listado 2-2
Variables con un contexto.

public class GuessStatisticsMessage (
private String number;
private String verb;
private String pluralModifier;

public String make(char candidate, int count) {
createPluralDependentMessageParts(count);
return String.format(

“There %s %s %s%s,

verb, number, candidate, pluralModifier);

}

private void createPluralDependentMessageParts(int count) {
if (count == 0) {
thereAreNoLetters();
} else if (cout == 1) {
thereIsOneLetter();

} else {
thereAreManyLetters(count);
}
}

private void thereAreManyLetters(int count) {
number = “1”;
verb = “is”;
pluralModifier = “”

}

private void thereIsOnelLetter() {
number = “1”;
verb = “is”;
pluralModifier = “”

}

private void thereAreNoLetters() {
number = “no”;
verb = “are”;
pluralModifier = “s”;
}
}

No anadir contextos innecesarios

En la aplicacion imaginaria Gas Station Deluxe, no es aconsejable usar el prefijo
GSD en todas las clases. Es trabajar contra las herramientas proporcionadas.
Introduzca G y pulse la tecla de finalizacion para acceder a una lista interminable
de todas las clases del sistema. ¢Es lo correcto? ;Por qué dificultar la ayuda del
IDE?

Del mismo modo, imagine que ha creado la clase MailingAddress en un
modulo de contabilidad de GsD, con el nombre GSDAccountAddress. Después,
necesita una direccion de correo para la aplicacion de contacto con el cliente.
¢Usara GSDAccountAddress? ;Le parece el nombre correcto? 10 de los 17
caracteres son redundantes o irrelevantes.

Los nombres breves suelen ser mas adecuados que los extensos, siempre
que sean claros. No afiada mas contexto del necesario a un nombre. L.os nombres
accountAddress y customerAddress son perfectos para instancias de la clase
Address pero no sirven como nombres de clase. Address sirve como nombre de
clase. Para distinguir entre direcciones MAC, direcciones de puertos y
direcciones Web, podria usar PostalAddress, MAC y URI. Los nombres
resultantes son mas precisos, el objetivo de cualquier nombre.

Conclusion

Lo mas complicado a la hora de elegir un buen nombre es que requiere habilidad
descriptiva y acervo cultural. Es un problema de formacion mas que técnico,
empresarial o administrativo. Como resultado, mucha gente del sector no

aprende a hacerlo bien.

La gente teme que al cambiar los nombres otros programadores se quejen.
Nosotros no compartimos ese temor y agradecemos los cambios de nombre
(siempre que sean a mejor). En muchos casos no memorizamos los nombres de
clases y métodos. Usamos herramientas modernas para estos detalles y asi poder
centrarnos en si el codigo se lee como frases o parrafos, o al menos como tablas
y estructuras de datos (una frase no siempre es la mejor forma de mostrar datos).
Seguramente acabara sorprendiendo a alguien cuando cambie los nombres, como
puede suceder con cualquier otra mejora del codigo. No deje que le detenga.

Aplique estas reglas y compruebe si mejora o no la legibilidad de su cédigo.
Si es el encargado de mantener codigo de terceros, use herramientas para
solucionar estos problemas. Obtendra recompensas a corto y largo plazo.

3
Funciones

En los inicios de la programacion, creaAbamos sistemas a partir de rutinas y
subrutinas. Después, en la época de Fortran y PL/1, creabamos nuestros sistemas

con programas, subprogramas y funciones. En la actualidad, so6lo las funciones
han sobrevivido. Son la primera linea organizativa en cualquier programa. En
este capitulo veremos como crearlas.

Fijese en el codigo del Listado 3-1. Es complicado encontrar una funcion
extensa en FitNesse™, pero acabé encontrando ésta. No so0lo es extensa, sino que
también contiene codigo duplicado, muchas cadenas y tipos de datos extrafios,
ademas de API poco habituales y nada evidentes. Intente comprenderlo en los
proximos tres minutos.

Listado 3-1
HtmlUtil.java (FitNesse 20070619).

public static String testableHtml {
PageData pageData
boolean includeSuiteSetup
} throws Exception {
wikiPage wikiPage = pageData.getWikiPage();
StringBuffer buffer = new StringBuffer();
if (pageData.hasAttribute(“Test”)) {
if (includeSuiteSetup) {
wikiPage suiteSetup =
PageCrawlerImpl.getInheritedPage(
SuiteResponder.SUITE_SETUP_NAME, wikiPage

)i
if (suiteSetup != null) {
wikiPagePath pagePath =
suiteSetup.getPageCrawler().getFullPath (suiteSetup);
String pagePathName = PathParser.render(pagePath);
buffer.append(“!include -setup .”)
.append(pagePathName)
.append(“\n”);
}
}
wikiPage setup =
PageCrawlerImpl.getInheritedPage(“SetUp”, wikiPage);
if (setup != null) {
wikiPagePath setupPath =
wikiPage.getPageCrawler().getFullPath(setup);
String setupPathName = PathParser.render(setupPath);
buffer.append(“!include -setup .”)
.append(setupPathName)
.append(“\n”);
}
}
buffer.append(pageData.getContent());
if (pageData.hasAttribute(“Test”)) {
wikiPage teardown =
PageCrawlerImpl.getInheritedPage(“TearDown”, wikiPage);
if (teardown != null) {
wikiPagePath tearDownPath =
wikiPage.getPageCrawler().getFullPath(teardown);
String tearDownPathName = PathParser.render(tearDownPath);
buffer.append(“\n”)
.append(“!include -teardown .”)
.append(tearDownPathName)
.append(“\n”);

}
if (includeSuiteSetup) {
wWikiPage suiteTeardown =
PageCrawlerImpl.getInheritedPage(
SuiteResponder .SUITE_TEARDOWN_NAME,
wikiPage

7

if (suiteTeardown != null) {
wikiPagePath pagePath =
suiteTeardown.getPageCrawler().getFullPath (suiteTeardown);
String pagePathName = PathParser.render(pagePath);
buffer.append(“!include -teardown .”)
.append(pagePathName)
.append(“\n”);

}
}
pageData.setContent(buffer.toString());

return pageData.getHtml();
}

¢ Tras tres minutos entiende la funcién? Seguramente no. Pasan demasiadas
cosas y hay demasiados niveles de abstraccion diferentes. Hay cadenas extrafias
e invocaciones de funciones mezcladas en instrucciones if doblemente anidadas
controladas por indicadores. Sin embargo, con sencillas extracciones de codigo,
algiin cambio de nombres y cierta reestructuracion, pude capturar la intencion de
la funcién en las nueve lineas del Listado 3-2. Compruebe si ahora la entiende.

Listado 3-2
HtmlUtil.java (refactorizacion).

public static String renderPageWithSetupsAndTeardowns(
PageData pageData, boolean isSuite
) throws Exception {
boolean isTestPage = pageData.hasAttribute(“Test”);
if (isTestPage) {
wikiPage testPage = pageData.getWikiPage();
StringBuffer newPageContent = new StringBuffer();
includeSetupPages (testPage, newPageContent, isSuite);
newPageContent.append(pageData.getContent());
includeTeardownPages(testPage, newPageContent, isSuite);
pageData.setContent(newPageContent.toString());
}

return pageData.getHtml();
}

A menos que sea un alumno de FitNesse, seguramente no entienda los
detalles. Entendera que la funcion se encarga de afiadir paginas de configuracion
y detalles en una pagina de prueba, que después muestra en HTML. Si esta
familiarizado con JUnit", vera que esta funcién pertenece a algun tipo de
estructura de pruebas basada en la Web y, evidentemente, es correcto. Resulta
sencillo adivinar esta informacion del Listado 3-2 pero no del Listado 3-1. ;Qué
tiene la funcion del Listado 3-2 para que resulte sencilla de leer y entender?
¢Qué hay que hacer para que una funcion transmita su intencién? ;Qué atributos
podemos asignar a nuestras funciones para que el lector pueda intuir el tipo de
programa al que pertenecen?

Tamano reducido

La primera regla de las funciones es que deben ser de tamafio reducido. La
segunda es que deben ser todavia mds reducidas. No es una afirmacién que
pueda justificar. No puedo mostrar referencias a estudios que demuestren que las
funciones muy reducidas sean mejores. Lo que si puedo afirmar es que durante
casi cuatro décadas he creado funciones de diferentes tamafios. He creado
monstruos de casi 3000 lineas y otras muchas funciones de entre 100 y 300

lineas. También he creado funciones de 20 a 30 lineas de longitud. Esta
experiencia me ha demostrado, mediante ensayo y error, que las funciones deben
ser muy reducidas.

En la década de 1980 se decia que una funcion no debia superar el tamafio
de una pantalla. Por aquel entonces, las pantallas VT100 tenian 24 lineas por 80
columnas, y nuestros editores usaban 4 lineas para tareas administrativas. En la
actualidad, con una fuente minima y un monitor de gran tamafio, se pueden
encajar 150 caracteres por linea y 100 lineas o mas en una pantalla. Las lineas no
deben tener 150 caracteres. Las funciones no deben tener 100 lineas de longitud.
Las funciones deben tener una longitud aproximada de 20 lineas.

¢Qué tamafio minimo debe tener una funcién? En 1999 visité a Kent Beck
en su casa de Oregon. Nos sentamos y comenzamos a programar. Me ensefié un
atractivo programa de Java/Swing que habia llamado Sparkle. Generaba un
efecto visual en pantalla, similar a la varita magica del hada de Cenicienta. Al
mover el raton, salian estrellitas del cursor, y descendian a la parte inferior de la
pantalla en un campo gravitatorio simulado. Cuando Kent me ensefi6 el codigo,
me sorprendid la brevedad de las funciones. Estaba acostumbrado a ver
programas de Swing con funciones que ocupaban kilémetros de espacio vertical.
En este programa, las funciones tenian dos, tres o cuatro lineas de longitud.
Todas eran obvias. Todas contaban una historia y cada una llevaba a la siguiente
en un orden atractivo. jAsi de breves deberian ser todas las funciones!"*

¢Qué tamafio minimo deben tener sus funciones? Deberian ser mas breves
que las del Listado 3-2. De hecho, el Listado 3-2 deberia reducirse como el
Listado 3-3.

Listado 3-3
HtmlUtil.java (nueva refactorizacion).

public static String renderPageWithSetupsAndTeardowns(
PageData pageData, boolean isSuite) throws Exception {
if (isTestPage(pageData))
includeSetupAndTeardownPages(pageData, isSuite);
return pageData.getHtml();
}

Bloques y sangrado

Esto implica que los bloques en instrucciones if, else, while y similares deben
tener una linea de longitud que, seguramente, sea la invocacion de una funcion.
De esta forma, no sélo se reduce el tamafio de la funcién, sino que también se
afiade valor documental ya que la funcion invocada desde el bloque puede tener
un nombre descriptivo. También implica que las funciones no deben tener un

tamafio excesivo que albergue estructuras anidadas. Por tanto, el nivel de
sangrado de una funcion no debe ser mayor de uno o dos. Evidentemente, de esta
forma las funciones son mas faciles de leer y entender.

Hacer una cosa

Es evidente que el Listado 3-1 hace mas de una cosa. Crea buferes, obtiene
paginas, busca paginas heredadas, afiade cadenas antiguas y genera HTML. El
Listado 3-1 esta muy ocupado realizando varias tareas. Por su parte, el
Listado 3-3 s6lo hace una cosa: incluye configuraciones y detalles en paginas de
prueba.

El siguiente consejo lleva vigente, de una u otra forma, durante mas de 30
afios:

LAS FUNCIONES SOLO DEBEN HACER UNA COSA. DEBEN
HACERLO BIEN Y DEBE SER LO UNICO QUE HAGAN.

El problema de esta afirmacion es saber qué es una cosa. ¢El Listado 3-3
hace una cosa? Se podria pensar que hace tres:

1. Determinar si la pagina es una pagina de prueba.
2. En caso afirmativo, incluir configuraciones y detalles.
3. Representar la pagina en HTML.

¢Cual sera de las tres? ¢La funcion hace una o tres cosas? Los tres pasos de
la funcion se encuentran un nivel de abstraccion por debajo del nombre de la
funcion. Podemos describir la funciéon como un breve parrafo TO (PARA)™:

Para renderPageWithSetupsAndTeardowns, comprobamos si la pagina es
de prueba y, en caso dafirmativo, incluimos las configuraciones y los
detalles. En ambos casos, la representamos en HTML.

Si una funcién solo realiza los pasos situados un nivel por debajo del
nombre de la funcién, entonces hace una cosa. En definitiva, creamos funciones
para descomponer conceptos mas amplios (es decir, el nombre de la funcion) en
un conjunto de pasos en el siguiente nivel de abstraccion. Es evidente que el
Listado 3-1 contiene pasos en distintos niveles de abstraccion, por lo que es
obvio que hace mas de una cosa. Incluso el Listado 3-2 tiene tres niveles de
abstraccion, como ha demostrado la capacidad de reducirlo, pero seria
complicado reducir con sentido el Listado 3-3. Podriamos extraer la instruccion
if en la funcion includeSetupsAndTeardownsIfTestPage, pero soélo
reduciriamos el cédigo sin cambiar el nivel de abstraccion.

Por ello, otra forma de saber que una funcion hace mas de una cosa es
extraer otra funcion de la misma con un nombre que no sea una reduccion de su
implementacion [G34].

Secciones en funciones

Fijese en el Listado 4-7. Vera que la funcion generatePrimes se divide en
secciones como declaraciones, inicializaciones y filtros. Es un sintoma evidente
de que hace mas de una cosa. Las funciones que hacen una sola cosa no se
pueden dividir en secciones.

Un nivel de abstraccion por funcion

Para que las funciones realicen «una cosa», asegtirese de que las instrucciones de
la funcién se encuentran en el mismo nivel de abstraccion. El Listado 3-1
incumple esta regla. Incluye conceptos a un elevado nivel de abstraccion, como
getHtml(); otros se encuentran en un nivel intermedio, como
StringpagePathName = PathParser.render(pagePath) y hay otros en un nivel
especialmente bajo, como .append(“\n”).

La mezcla de niveles de abstraccién en una funcién siempre resulta
confusa. Los lectores no sabran si una determinada expresién es un concepto
esencial o un detalle. Peor todavia, si se mezclan detalles con conceptos

esenciales, aumentaran los detalles dentro de la funcion.

Leer codigo de arriba a abajo: la regla descendente

El objetivo es que el codigo se lea como un texto de arriba a abajo"*. Queremos
que tras todas las funciones aparezcan las del siguiente nivel de abstraccion para
poder leer el programa, descendiendo un nivel de abstraccién por vez mientras
leemos la lista de funciones. Es lo que denomino la regla descendente.

Para decirlo de otra forma, queremos leer el programa como si fuera un
conjunto de parrafos TO, en el que cada uno describe el nivel actual de
abstraccion y hace referencia a los parrafos To posteriores en el siguiente nivel.

Para incluir configuraciones y detalles, incluimos configuraciones, después
del contenido de la pdgina de prueba, y por ultimo los detalles.

Para incluir las configuraciones, incluimos la configuracion de suite si se
trata de una suite, y después la configuracion convencional.

Para incluir la configuracion de suite; buscamos la jerarquia principal de
la pagina SuiteSetUp y afiadimos una instruccion include con la ruta de
dicha pdgina.

Para buscar la jerarquia principal...

A los programadores les resulta complicado aprender esta regla y crear
funciones en un unico nivel de abstraccion, pero es un truco importante. Es la
clave para reducir la longitud de las funciones y garantizar que s6lo hagan una
cosa. Al conseguir que el coédigo se lea de arriba a abajo, se mantiene la
coherencia de los niveles de abstraccion.

Fijese en el Listado 3-7 del final del capitulo. Muestra la funcion
testableHtml modificada de acuerdo a estos principios. Cada funcién presenta a
la siguiente y se mantiene en un nivel de abstraccion coherente.

Instrucciones Switch

Es complicado usar una instruccion switch de tamafio reducido™. Aunque solo
tenga dos casos, es mayor de lo que un bloque o funcion deberia ser. También es
complicado crear una instrucciéon switch que haga una sola cosa. Por su
naturaleza, las instrucciones switch siempre hacen N cosas.

Desafortunadamente, no siempre podemos evitar las instrucciones switch pero
podemos asegurarnos de incluirlas en una clase de nivel inferior y de no
repetirlas. Para ello, evidentemente, recurrimos al polimorfismo.

Fijese en el Listado 3-4. Muestra una de las operaciones que pueden
depender del tipo de empleado.

Listado 3-4
Payroll.java.

public Money calculatePay(Employee e)
throws InvalidEmployeeType (
switch (e.type) {
case COMMISSIONED:
return calculateCommissionedPay(e);
case HOURLY:
return calculateHourlyPay(e);
case SALARIED:
return calculateSalariedPay(e);
default:
throw new InvalidEmployeeType(e.type);
}

Esta funcion tiene varios problemas. Por un lado, es de gran tamafio y
cuando se afiadan nuevos tipos de empleado, aumentara mas. Por otra parte, hace
mas de una cosa. También incumple el Principio de responsabilidad tnica
(Single Responsibility Principie o SRP)* ya que hay mas de un motivo para
cambiarla. Ademas, incumple el Principio de abierto/cerrado (Open Closed
Principle u OCP)"%, ya que debe cambiar cuando se afiadan nuevos tipos, pero
posiblemente el peor de los problemas es que hay un numero ilimitado de
funciones que tienen la misma estructura.

Por ejemplo, podriamos tener:

isPayday(Employee e, Date date),

(0)

deliverPay(Employee e, Date date),

o muchas otras, todas con la misma estructura.

La soluciéon al problema (véase el Listado 3-5) consiste en ocultar la
instruccion switch en una factoria abstracta™ e impedir que nadie la vea. La
factoria usa la instrucciéon switch para crear las instancias adecuadas de los
derivados de Employee y las distintas funciones, como calculatePay, isPayday
y deliverPay, se entregaran de forma polimérfica a través de la interfaz
Employee.

Listado 3-5
Employee y Factory.

public abstract class Employee {

public abstract boolean isPayday();
public abstract Money calculatePay();
public abstract void deliverPay(Money pay);

}

public interface EmployeeFactory {
public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType;
}

public class EmployeeFactoryImpl implements EmployeeFactory {
public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType {
switch (r.type) {
case COMMISSIONED:
return new CommissionedEmployee(r);
case HOURLY:
return new HourlyEmployee(r);
case SALARIED:
return new SalariedEmployee(r);
default:
throw new InvalidEmployeeType(r.type);
}
}
}

Mi regla general para las instrucciones switch es que se pueden tolerar si
sOlo aparecen una vez, se usan para crear objetos polimorficos y se ocultan tras
una relacion de herencia para que el resto del sistema no las pueda ver [G23].
Evidentemente, cada caso es diferente y en ocasiones se puede incumplir una o
varias partes de esta regla.

Usar nombres descriptivos

En el Listado 3-7, hemos cambiado el nombre de la funciéon de ejemplo de
testableHtml a SetupTeardownIncluder.render. Es un nombre mas apropiado
ya que describe mejor el cometido de la funcion. También hemos asignado a los
métodos privados un nombre descriptivo como isTestable O
includeSetupAndTeardownPages. No hay que olvidar el valor de los nombres
correctos. Recuerde el principio de Ward: «Sabemos que trabajamos con codigo
limpio cuando cada rutina es mas o menos lo que esperabamos». Para alcanzar
este principio, gran parte del esfuerzo se basa en seleccionar nombres adecuados
para pequefias funciones que hacen una cosa. Cuanto mas reducida y concreta
sea una funcién, mas sencillo sera elegir un nombre descriptivo. No tema los
nombres extensos. Un nombre descriptivo extenso es mucho mejor que uno
breve pero enigmatico. Use una convencion de nombres que permita leer varias
palabras en los nombres de las funciones y use esas palabras para asignar a la
funcion un nombre que describa su cometido.

No tema dedicar tiempo a elegir un buen nombre. De hecho, deberia probar
con varios nombres y leer el cddigo con todos ellos. Los IDE modernos como
Eclipse o IntelliJ facilitan el cambio de nombres. Use uno de estos IDE y
experimente con diferentes nombres hasta que encuentre uno que sea lo bastante

descriptivo.

La eleccion de nombres descriptivos clarifica el disefio de los mddulos y le
permite mejorarlos. No es extrafio que la busqueda de nombres adecuados
genere una reestructuracion favorable del cddigo. Sea coherente con los
nombres. Use las mismas frases, sustantivos y verbos en los nombres de funcion
que elija para los modulos. Pruebe, por ejemplo, con
includeSetupAndTeardownPages, includeSetupPages,
includeSuiteSetupPage e includeSetupPage. La estructura similar de estos
nombres permite que la secuencia cuente una historia. En realidad, si ve la
secuencia anterior, seguramente se pregunte qué ha pasado con
includeTeardownPages, includeSuiteTeardownPage e includeTeardownPage.

Argumentos de funciones

El numero ideal de argumentos para una funcién es cero. Después uno
(monadico) y dos (diadico). Siempre que sea posible, evite la presencia de tres
argumentos (triadico). Mas de tres argumentos (poliadico) requiere una
justificacion especial y no es muy habitual.

Los argumentos son complejos ya que requieren un gran poder conceptual.
Por ello suelo evitarlos en los ejemplos. Fijese en StringBuffer. Podriamos
haberlo pasado como argumento en lugar de como variable de instancia, pero los
lectores habrian tenido que interpretarlo cada vez que lo vieran. Al leer la

historia que cuenta el moédulo, includeSetupPage() es mas sencillo de
interpretar que includeSetupPageInto(newPageContent). El argumento se
encuentra en un nivel de abstraccion diferente que el nombre de la funcion y nos
obliga a conocer un detalle (StringBuffer) que no es especialmente importante
en ese momento.

Los argumentos son todavia mas complicados desde un punto de vista de
pruebas. Imagine la dificultad de crear todos los casos de prueba para garantizar
el funcionamiento de las distintas combinaciones de argumentos. Si no hay
argumentos, todo es mas sencillo. Si hay uno, no es demasiado dificil. Con dos
argumentos el problema es mas complejo. Con mas de dos argumentos, probar
cada combinacién de valores adecuados es todo un reto. Los argumentos de
salida son mas dificiles de entender que los de entrada. Al leer una funcion,
estamos acostumbrados al concepto de informacion afiadida a la funcién a través
de argumentos y extraida a través de un valor devuelto. No esperamos que la
informacion se devuelva a través de los argumentos. Por ello, los argumentos de
salida suelen obligamos a realizar una comprobacion doble.

Un argumento de salida es la mejor opcion, después de la ausencia de
argumentos. SetupTeardownIncluder.render(pageData) se entiende bien.
Evidentemente, vamos a representar los datos en el objeto pageData.

Formas monadicas habituales

Hay dos motivos principales para pasar un solo argumento a una funcion. Puede
que realice una pregunta sobre el argumento, como en boolean
fileExists(“MyFile”), o que procese el argumento, lo transforme en otra cosa
y lo devuelva. Por ejemplo, InputStream fileOpen(“MyFile”) transforma un
nombre de archivo String en un valor devuelto InputStream. Los usuarios
esperan estos dos usos cuando ven una funcién. Debe elegir nombres que
realicen la distincién con claridad y usar siempre ambas formas en un contexto
coherente (consulte el apartado sobre separacion de consultas de comandos).
Una forma menos habitual pero muy util para un argumento es un evento.
En esta forma, hay argumento de entrada pero no de salida. El programa debe
interpretar la invocacién de la funcion como evento y usar el argumento para
alterar el estado del sistema, por ejemplo, void
passwordAttemptFailedNtimes(int attempts). Use esta forma con
precaucion. Debe ser claro para el lector que se trata de un evento. Elija nombres
y contextos con atencion. Intente evitar funciones monadicas que no tengan estas
formas, por ejemplo, void includeSetupPageInto(StringBuffer pageText).

El uso de un argumento de salida en lugar de un valor devuelto para realizar
transformaciones resulta confuso. Si una funcion va a transformar su argumento
de entrada, la transformacién debe aparecer como valor devuelto. Sin duda
StringBuffertransform(StringBuffer in) es mejor que void
transform(StringBuffer out), aunque la implementacion del primer caso
devuelva solamente el argumento de entrada. Al menos se ajusta a la forma de la
transformacion.

Argumentos de indicador

Los argumentos de indicador son horribles. Pasar un valor Booleano a una
funcion es una practica totalmente desaconsejable. Complica inmediatamente la
firma del método e indica que la funcion hace mas de una cosa. Hace algo si el
indicador es true y otra cosa diferente si es false. En el Listado 3-7 no se puede
evitar, porque los invocadores ya pasan el indicador y el objetivo era limitar el
ambito a la funcién y después, pero la invocacion de render (true) es confusa
para el lector. Si se desplaza el raton sobre la invocacién vemos que render
(boolean isSuite) puede ayudar, pero no demasiado. Tendremos que dividir la
funcion en dos: renderForSuite() y renderForSingleTest().

Funciones diadicas

Una funcion con dos argumentos es mas dificil de entender que una funcion
monadica. Por ejemplo writeField(name) es mas facil de entender que
writeField (outputStream, name)X2, Aunque en ambos casos el significado
es evidente, la primera se capta mejor visualmente. La segunda requiere una
breve pausa hasta que ignoramos el segundo parametro, lo que en ultima
instancia genera problemas ya que no debemos ignorar esa parte del codigo. Las
partes que ignoramos son las que esconden los errores. Pero en ocasiones se
necesitan dos argumentos. Por ejemplo. Point p = new Point(0,0); es
totalmente razonable. Los puntos cartesianos suelen adoptar dos argumentos. De
hecho, seria muy sorprendente ver Point(0). Sin embargo, en este caso ambos
argumentos son componentes ordenados de un mismo valor, mientras que
outputStream y name carecen de una cohesiéon o un orden natural.

Incluso funciones diadicas evidentes como assertEquals(expected,
actual) resultan problematicas. ;Cuantas veces ha incluido el valor real en su
posicion esperada? Los dos argumentos carecen de un orden natural. El orden
real y esperado es una convencion que se adquiere gracias a la practica.

Las combinaciones diadicas no son el mal en persona y tendra que usarlas.
Sin embargo, recuerde que tienen un precio y que debe aprovechar los
mecanismos disponibles para convertirlas en unitarias. Por ejemplo, puede hacer
que el método writeField sea un miembro de outputStream para poder usar
outputStream.writeField(name), o podria convertir outputStream en una
variable miembro de la clase actual para no tener que pasarla. Incluso podria
extraer una nueva clase como Fieldwriter que usara outputStream en su
constructor y tuviera un método write.

Triadas

Las funciones que aceptan tres argumentos son sin duda mucho mas dificiles de
entender que las de dos. Los problemas a la hora de ordenar, ignorar o detenerse
en los argumentos se duplican. Piense atentamente antes de crear una triada.

Por ejemplo, fijese en la sobrecarga de assertEquals que acepta tres
argumentos: assertEquals(message, expected, actual). ;Cuantas veces lee
el mensaje y piensa que es lo esperado? He visto esta triada en concreto muchas
veces. De hecho, siempre que la veo, tengo que repasarla antes de ignorar el
mensaje.

Por otra parte, hay otra triada que no es tan negativa: assertEquals(1.0,
amount, .001). Aunque también exija doble atencion, merece la pena. Conviene
recordar siempre que la igualdad de los valores de coma flotante es algo relativo.

Objeto de argumento

Cuando una funcion parece necesitar dos o mas argumentos, es probable que
alguno de ellos se incluya en una clase propia. Fijese en la diferencia entre las
dos siguientes declaraciones:

Circle makeCircle (double x, double y, double radius);
Circle makeCircle(Point center, double radius);

La reduccion del nimero de argumentos mediante la creacion de objetos
puede parecer una trampa pero no lo es. Cuando se pasan grupos de variables de
forma conjunta, como x e y en el ejemplo anterior, es probable que formen parte
de un concepto que se merece un nombre propio.

Listas de argumentos

En ocasiones tendremos que pasar un numero variable de argumentos a una

funcion. Fijese en el método String.format:

String.format (“%s worked %.2f hours.”, name, hours);

Si los argumentos variables se procesan de la misma forma, como en el
ejemplo anterior, seran equivalentes a un unico argumento de tipo List. Por
tanto, String.format es en realidad diadico. De hecho, la siguiente declaracion
de String.format es claramente diadica.

public String format(String format, Object.. args)

Asi pues, se aplican las mismas reglas. Las funciones que aceptan
argumentos variables pueden ser monadicas, diadicas o incluso triadicas, pero
seria un error asignar mas argumentos.

void monad(Integer.. args);
void dyad(String name, Integer.. args);
void triad(String name, int count, Integer.. args);

Verbos y palabras clave

La seleccion de nombres correctos para una funcién mejora la explicacion de su
cometido, asi como el orden y el cometido de los argumentos. En formato
monadico, la funcion y el argumento deben formar un par de verbo y sustantivo.
Por ejemplo, write(name) resulta muy evocador. Sea lo que sea name, sin duda
se escribe (write).

Un nombre mas acertado podria ser writeField(name), que nos dice que
name es un campo (field). Este es un ejemplo de palabra clave como nombre
de funcion. Con este formato codificamos los nombres de los argumentos en el
nombre de la funcion. Por ejemplo, assertEquals se podria haber escrito como
assertExpectedEqualsActual (expected, actual), lo que mitiga el problema
de tener que recordar el orden de los argumentos.

Sin efectos secundarios

Los efectos secundarios son mentiras. Su funcién promete hacer una cosa, pero
también hace otras cosas ocultas. En ocasiones realiza cambios inesperados en
las variables de su propia clase. En ocasiones las convierte en las variables
pasadas a la funcion o a elementos globales del sistema. En cualquier caso, se
comete un engafio que suele provocar extrafias combinaciones temporales y
dependencias de orden.

Fijese en la funcion del Listado 3-6, aparentemente inofensiva. Usa un
algoritmo estdndar para comparar userName con password. Devuelve true si

coinciden y false si hay algin problema, pero también hay un efecto
secundario. ;.o detecta?

Listado 3-6
UserValidator.java.

public class UserValidator {
private Cryptographer cryptographer;

public boolean checkPassword(String userName, String password) {
User user = UserGateway.findByName(userName);
if (user != User.NULL) {
String codedPhrase = user.getPhraseEncodedByPassword();
String phrase = cryptographer.decrypt(codedPhrase, password);
if (“valid Password”.equals(phrase)){
Session.initialize();
return true;
}
}

return false;
}
}

El efecto secundario es la invocacion de Session.initialize(). La
funcion checkPassword, por su nombre, afirma comprobar la contrasefia. El
nombre no implica que inicialice la sesion. Por tanto, un invocador que se crea lo
que dice el nombre de la funcion se arriesga a borrar los datos de sesion actuales
cuando decida comprobar la validez del usuario. Este efecto secundario genera
una combinacién temporal. Es decir, s6lo se puede invocar checkPassword en
determinados momentos (cuando se pueda inicializar la sesion). Si no se invoca
en orden, se pueden perder los datos de la sesion. Las combinaciones temporales
son confusas, en especial cuando se ocultan como efecto secundario. Si tiene que
realizar una combinacion temporal, hagalo de forma clara en el nombre de la
funcion. En este caso, podriamos cambiar el nombre de la funcion por
checkPasswordAndInitializeSession, pero incumpliria la norma de hacer una
sola cosa.

Argumentos de salida

Los argumentos suelen interpretarse como entradas de una funcién. Si lleva
varios afios programando, estoy seguro de que habra visto un argumento que en
vez de ser de entrada era de salida. Por ejemplo;
appendFooter(s);
¢Esta funcion afiade s al final de algo? ;O afiade el final de algo a s? ¢s es
una entrada o una salida? Lo sabemos al ver la firma de la funcién:

public void appendFooter(StringBuffer report)

Esto lo aclara todo, pero para ello hay que comprobar la declaracién de la

funcion. Todo lo que le obligue a comprobar la firma de la funcién es un
esfuerzo doble. Es una pausa cognitiva y debe evitarse.

Antes de la programacion orientada a objetos, era necesario tener
argumentos de salida. Sin embargo, gran parte de su necesidad desaparece en los
lenguajes orientados a objetos, pensados para actuar como argumento de salida.

Es decir, serla mas indicado invocar appendFooter como
report.appendFooter();.

Por lo general, los argumentos de salida deben evitarse. Si su funcion tiene
que cambiar el estado de un elemento, haga que cambie el estado de su objeto
contenedor.

Separacion de consultas de comando

Las funciones deben hacer algo o responder a algo, pero no ambas cosas. Su
funcion debe cambiar el estado de un objeto o devolver informacién sobre el
mismo, pero ambas operaciones causan confusion. Fijese en la siguiente funcion:

public boolean set(String attribute, String value);

Esta funcion establece el valor de un atributo y devuelve true en caso de
éxito o false si el atributo no existe. Esto provoca la presencia de una extrafia
instruccion como la siguiente:

if (set(“username”, “unclebob”))..

Imaginelo desde el punto de vista del lector. ;Qué significa? ;Pregunta si el
atributo «username» se ha establecido antes en «unclebob», o si el atributo
«username» se ha establecido correctamente en «unclebob»? Es complicado
saberlo por la invocacién ya que no es evidente si set es un verbo o un adjetivo.

El autor pretendia que set fuera un verbo, pero el contexto de la instruccion
if parece un adjetivo. La instruccion se lee como «si el atributo username se ha
establecido previamente en unclebob», no como «establecer el atributo
username en unclebob y si funciona, entonces...». Podriamos solucionarlo si
cambiamos el nombre de la funcion set por setAndCheckIfExists, pero no
mejoraria la legibilidad de la instruccion if. La verdadera solucion es separar el
comando de la consulta para evitar la ambigiiedad.

if (attributeExists(“username”)) {
setAttribute(“username”, “unclebob”);

}

Mejor excepciones que devolver cadigos de error

Devolver codigos de error de funciones de comando es un sutil incumplimiento
de la separacion de comandos de consulta. Hace que los comandos usados
asciendan a expresiones en los predicados de las instrucciones if.

if (deletePage(page) == E_OK)

No padece la confusion entre verbo y adjetivo, pero genera estructuras
anidadas. Al devolver un codigo de error se crea un problema: el invocador debe
procesar el error de forma inmediata.

if (deletePage(page) == E_OK) {
if (registry.deleteReference(page.name) == E_OK) {
if (configKeys.deleteKey(page.name.makeKey()) == E_OK) {
logger.log(“page deleted”);
} else {
logger.log(“configKey not deleted”);
}
} else {
logger.log(“deleteReference from registry failed”);
}
} else {
logger.log(“delete failed”);
return E_ERROR;
}

Por otra parte, si usa excepciones en lugar de codigos de error, el codigo de
procesamiento del error se puede separar del codigo de ruta y se puede
simplificar:

try {
deletePage(page);
registry.deleteReference(page.name);
configKeys.deleteKey(page.name.makeKey());
}

catch (Exception e) {
logger.log(e.getMessage());

}

Extraer bloques Try/Catch

Los bloques try/catch no son atractivos por naturaleza. Confunden la estructura
del cédigo y mezclan el procesamiento de errores con el normal. Por ello,
conviene extraer el cuerpo de los bloques try y catch en funciones individuales.

public void delete(Page page) {
try {
deletePageAndAllReferences(page);
}
catch (Exception e) {
logError(e);
}
}

private void deletePageAndAllReferences(Page page) throws Exception {
deletePage(page);
registry.deleteReference(page.name);
configKeys.deleteKey(page.name.makeKey());

}

private void logError(Exception e) {
logger.log(e.getMessage());
}

En este caso, la funcion delete es de procesamiento de errores. Es facil de
entender e ignorar. La funcion deletePageAndAllReferences es para los

procesos de borrar una pagina. El procesamiento de errores se puede ignorar. De
este modo, la separacion facilita la comprension y la modificacion del codigo.

El procesamiento de errores es una cosa

Las funciones s6lo deben hacer una cosa y el procesamiento de errores es un
ejemplo. Por tanto, una funcion que procese errores no debe hacer nada mas.
Esto implica (como en el ejemplo anterior) que, si una funcién incluye la palabra
clave try, debe ser la primera de la funcién y que no debe haber nada mas
después de los bloques catch/finally.

El iman de dependencias Error.java

La devolucion de cédigos de error suele implicar que existe una clase o
enumeracion en la que se definen los cédigos de error.

public enum Error {
0K,
INVALID,
NO_SUCH,
LOCKED,
OUT_OF_RESOURCES,
WAITING_FOR_EVENT;

Clases como ésta son un imdn para las dependencias; otras muchas clases
deben importarlas y usarlas. Por ello, cuando cambia la enumeracion Error, es
necesario volver a compilar e implementar dichas clases®. Esto afiade presion a
la clase Error. Los programadores no quieren afiadir nuevos errores porque
tendran que volver a generar e implementarlo todo. Por ello, reutilizan codigos
de error antiguos en lugar de afiadir otros nuevos.

Al usar excepciones en lugar de codigos de error, las nuevas excepciones
son derivaciones de la clase de la excepcion. Se pueden afiadir sin necesidad de
volver a compilar o implementar®".

No repetirse®

Fijese de nuevo en el Listado 3-1; vera que hay un algoritmo que se repite cuatro
veces, en los casos SetUp, SuiteSetUp, TearDown y SuiteTearDown. No es facil
detectar esta repeticion ya que las cuatro instancias se mezclan con otro codigo,
pero la duplicacion es un problema ya que aumenta el tamafio del cédigo y
requerira una modificacion cuadruple si alguna vez cambia el algoritmo.

También se cuadriplica el riesgo de errores.

Esta duplicacion se remedia gracias al método include del Listado 3-7.
Vuelva a leer el codigo y fijese en como se ha mejorado la legibilidad del codigo
reduciendo la duplicacion.

La duplicaciéon puede ser la raiz de todos los problemas del software.
Existen numerosos principios y practicas para controlarla o eliminarla. Imagine
que todas las formas normales de la base de datos de Codd sirvieran para
eliminar la duplicacion de datos. Imagine también como la programacion
orientada a objetos concentra el codigo en clases base que en otros casos serian
redundantes. La programacioén estructurada, la programacién orientada a aspecto
y la orientada a componentes son, en parte, estrategias para eliminar duplicados.
Parece que, desde la aparicion de las subrutinas, las innovaciones en desarrollo
de software han sido un intento continuado por eliminar la duplicacién de
nuestro cédigo fuente.

Programacion estructurada

Algunos programadores siguen las reglas de programacion estructurada de
Edsger Dijkstra®. Dijkstra afirma que todas las funciones y todos los bloques de
una funcién deben tener una entrada y una salida. Estas reglas implican que sélo
debe haber una instrucciéon return en una funcién, que no debe haber
instrucciones break o continue en un bucle y nunca, bajo ningin concepto,
debe haber instrucciones goto.

Aunque apreciemos los objetivos y disciplinas de la programacion
estructurada, no sirven de mucho cuando las funciones son de reducido tamafio.
Su verdadero beneficio se aprecia en funciones de gran tamafio.

Por tanto, si sus funciones son de tamafo reducido, una instruccién return,
break o continue no hara dafio alguno y en ocasiones puede resultar mas
expresiva que la regla de una entrada y una salida. Por otra parte, goto solo tiene
sentido en funciones de gran tamafio y debe evitarse.

Como crear este tipo de funciones

La creacion de software es como cualquier otro proceso creativo. Al escribir un
informe o un articulo, primero se estructuran las ideas y después el mensaje
hasta que se lea bien. El primer borrador puede estar desorganizado, de modo
que lo retoca y mejora hasta que se lea de la forma adecuada.

Cuando creo funciones, suelen ser extensas y complicadas, con abundancia
de sangrados y bucles anidados. Con extensas listas de argumentos, nombres
arbitrarios y codigo duplicado, pero también cuento con una serie de pruebas de
unidad que abarcan todas y cada una de las lineas de codigo.

Por tanto, retoco el codigo, divido las funciones, cambio los nombres y
elimino los duplicados. Reduzco los métodos y los reordeno. En ocasiones,
elimino clases enteras, mientras mantengo las pruebas.

Al final, consigo funciones que cumplen las reglas detalladas en este
capitulo. No las escribo al comenzar y dudo que nadie pueda hacerlo.

Conclusion

Todo sistema se crea a partir de un lenguaje especifico del dominio disefiado por
los programadores para describir dicho sistema. Las funciones son los verbos del
lenguaje y las clases los sustantivos. No es volver a la nocion de que los
sustantivos y verbos de un documento de requisitos son las clases y funciones de
un sistema. Es una verdad mucho mas antigua. El arte de la programacion es, y
ha sido siempre, el arte del disefio del lenguaje.

Los programadores experimentados piensan en los sistemas como en
historias que contar, no como en programas que escribir. Recurren a las
prestaciones del lenguaje de programacion seleccionado para crear un lenguaje
expresivo mejor y mas completo que poder usar para contar esa historia. Parte de
ese lenguaje es la jerarquia de funciones que describen las acciones que se

pueden realizar en el sistema. Dichas acciones se crean para usar el lenguaje de
dominio concreto que definen para contar su pequefia parte de la historia.

En este capitulo hemos visto la mecanica de la creacion de funciones
correctas. Si aplica estas reglas, sus funciones seran breves, con nombres
correctos, y bien organizadas, pero no olvide que su verdadero objetivo es contar
la historia del sistema y que las funciones que escriba deben encajar en un
lenguaje claro y preciso que le sirva para contar esa historia.

SetupTeardownIncluder

Listado 3-7
SetupTeardownlIncluder.java.

package fitnesse.html;

import fitnesse.responders.run.SuiteResponder;
import fitnesse.wiki.*;

public class SetupTeardownIncluder {
private PageData pageData;
private boolean isSuite;
private WikiPage testPage;
private StringBuffer newPageContent;
private PageCrawler pageCrawler;

public static String render(PageData pageData) throws Exception {
return render(pageData, false);

}

public static String render(PageData pageData, boolean isSuite)
throws Exception {
return new SetupTeardownIncluder(pageData).render(isSuite);

}

private SetupTeardownIncluder(PageData pageData) {
this.pageData = pageData;
testPage = pageData.getWikiPage();
pageCrawler = testPage.getPageCrawler();
newPageContent = new StringBuffer();

}

private String render(boolean isSuite) throws Exception {
this.isSuite = isSuite;
if (isTestPage())
includeSetupAndTeardownPages();
return pageData.getHtml();
}

private boolean isTestPage() throws Exception {
return pageData.hasAttribute(“Test”);
}

private void includeSetupAndTeardownPages() throws Exception {
includeSetupPages();
includePageContent();
includeTeardownPages();
updatePageContent();
}

private void includeSetupPages() throws Exception {
if (isSuite)
includeSuiteSetupPage();

includeSetupPage();

private void includeSuiteSetupPage() throws Exception {
include(SuiteResponder.SUITE_SETUP_NAME, “-setup”);
}

private void includeSetupPage() throws Exception {
include(“setup”, “-setup”);
}

private void includePageContent() throws Exception {
newPageContent.append(pageData.getContent());
}

private void includeTeardownPages() throws Exception {
includeTeardownPage();
if (isSuite)
includeSuiteTeardownPage();

private void includeTeardownPage() throws Exception {
include(“TearDown”, “-teardown”);

}

private void includeSuiteTeardownPage() throws Exception {
include(SuiteResponder.SUITE_TEARDOWN_NAME, “-teardown”);
}

private void updatePageContent() throws Exception {
pageData.setContent(newPageContent.toString());
}

private void include(String pageName, String arg) throws Exception (
wikiPage inheritedPage = findInheritedPage(pageName);
if (inheritedPage != null) {
String pagePathName = getPathNameForPage(inheritedPage);
buildIncludeDirective(pagePathName, arg);

private WikiPage findInheritedPage(String pageName) throws Exception {
return PageCrawlerImpl.getInheritedPage(pageName, testPage);

}

private String getPathNameForPage(WikiPage page) throws Exception {
wikiPagePath pagePath = pageCrawler.getFullPath(page);
return PathParser.render(pagePath);

private void buildIncludeDirective(String pagePathName, String arg) {
newPageContent
.append(“\n!include ")
.append(arg)
.append(” .”)
.append(pagePathName)
.append(“\n”);

Bibliografia

e [KP78]: Kernighan and Plaugher, The Elements of Programming Style, 2d.
ed., McGraw-Hill, 1978.

e [PPP02]: Robert C. Martin, Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall, 2002.

¢ [GOF]: Design Patterns: Elements of Reusable Object Oriented Software,
Gamma et al., Addison Wesley, 1996.

e [PRAG]: The Pragmatic Programmer, Andrew Hunt, Dave Thomas,
Addison-Wesley, 2000.

e [SP72]: Structured Programming, O. J. Dahl, E. W. Dijkstra, C. A. R.
Hoare, Academic Press, London, 1972.

4
Comentarios

«No comente el codigo incorrecto, reescribalo».
Brian W. Kernighan y P. J. Plaugher*"

No hay nada mas util que un comentario bien colocado. No hay nada que
colapse mas un médulo que comentarios dogmaticos innecesarios. No hay nada
mas dafiino que un comentario antiguo que propague mentiras y desinformacion.

Los comentarios no son como la Lista de Schindler. No son pura bondad.
De hecho, en el mejor de los casos, son un mal necesario. Si los lenguajes de
programacion fueran mas expresivos o si pudiéramos dominarlos para expresar
nuestras intenciones, no necesitariamos demasiados comentarios, puede que
incluso ninguno.

El uso correcto de los comentarios permite compensar nuestra incapacidad
para expresarnos en el cédigo. He usado la palabra incapacidad, a proposito. Los
comentarios siempre son fallos. Debemos usarlos porque no siempre sabemos
como expresarnos sin ellos pero su uso no es motivo de celebracion.

Cuando tenga que escribir un comentario, piense si no existe otra forma de
expresarse en el codigo. Siempre que se exprese en el codigo, debe felicitarse.
Siempre que escriba un comentario, debe hacer un gesto de desaprobacion y
sentir su incapacidad para expresarse.

;Por qué estoy en contra de los comentarios? Porque mienten. No siempre y
no siempre intencionadamente, pero lo hacen. Cuando mas antiguo es un
comentario y mas se aleja del codigo que describe, mayor es la probabilidad de
que sea equivocado. El motivo es sencillo. Los programadores no los pueden
mantener.

El codigo cambia y evoluciona. Los fragmentos cambian de lugar, se
bifurcan, se reproducen y se vuelven a combinar para crear quimeras.
Desafortunadamente, los comentarios no siempre siguen el ritmo, no siempre
pueden hacerlo y suelen separarse del codigo que describen y se convierten en
huérfanos sin precision alguna. Por ejemplo, fijese en lo que sucede con este
comentario y la linea que pretendia describir: wockrequest request;

private final String HTTP_DATE_REGEXP =

“[SMTWF][a-z]{2}\\, \\s[0-9]{2}\\s[JFMASOND] [a-z]{2}\\s” +

“[0-91{43\\s[0-9]1{23\\: [0-9]{2}\\: [0-9]{2}\\sGMT";

private Response response;
private FitNesseContext context;
private FileResponder responder;

private Locale savelocale;
// Ejemplo: «Tue, 02 Apr 2003 22:18:49 GMT»

Seguramente se afiadieron después otras variables de instancia entre la
constante HTTP_DATE_REGEXP y su comentario explicativo.

Se podria afirmar que los programadores deben ser lo bastante disciplinados
como para mantener los comentarios actualizados, relevantes y precisos. De
acuerdo, deberia, pero esa energia deberia invertirse en crear codigo claro y
expresivo que no necesite comentario alguno.

Los comentarios imprecisos son mucho peor que la ausencia de
comentarios. Suelen confundir al usuario. Generan expectativas que nunca se
cumplen. Definen reglas que no deben seguirse en absoluto.

La verdad solo se encuentra en un punto: el codigo. Sdlo el codigo puede
contar lo que hace. Es la tinica fuente de informacién precisa. Por tanto, aunque
los comentarios sean necesarios en ocasiones, dedicaremos nuestra energia a
minimizarlos.

Los comentarios no compensan el codigo incorrecto

Una de las principales motivaciones para crear comentarios es el codigo
incorrecto. Creamos un modulo y sabemos que es confuso y esta desorganizado.
Sabemos que es un desastre y entonces decidimos comentarlo. Error. Mejor

limpielo.

El cddigo claro y expresivo sin apenas comentarios es muy superior al
codigo enrevesado y complejo con multitud de comentarios. En lugar de perder
tiempo escribiendo comentarios que expliquen el desastre cometido, dediquelo a
solucionarlo.

Explicarse en el cadigo

En ocasiones, el codigo es un pobre vehiculo de expresion. Desafortunadamente,
muchos programadores lo entienden como que el c6digo no es un buen medio de
expresion. Esto es falso. ;Qué prefiere ver? Esto:

// Comprobar si el empleado tiene derecho a todos los beneficios
if ((employee.flags & HOURLY_FLAG) &&
(employee.age > 65))

0 esto otro:

if (employee.isEligibleForFullBenefits())

Apenas se tardan unos segundos en explicar nuestras intenciones en el
codigo. En muchos casos, basta con crear una funcion que diga lo mismo que el
comentario que pensaba escribir.

Comentarios de calidad

Algunos comentarios son necesarios o beneficiosos. Veremos algunos de los que
considero validos. No obstante, recuerde que el Unico comentario realmente
bueno es el que no tiene que escribir.

Comentarios legales

En ocasiones, nuestros estandares corporativos de creacion de coédigo nos
obligan a crear determinados comentarios por motivos legales. Por ejemplo, los
comentarios de derechos de autor son necesarios y deben incluirse al inicio de
cada archivo.

El siguiente encabezado de comentario se incluye de forma estandar al
inicio de todos los archivos fuente de FitNesse. Nuestro IDE evita que este
comentario parezca sobrante replegandolo de forma automatica.

// Copyright (C) 2003,2004,2005 de Object Mentor, Inc. Todos los derechos reservados.
// Publicado bajo las condiciones de la Licencia publica general GNU versién 2 o posterior.

Este tipo de comentarios no deben ser contratos ni tomos legales. Siempre
que sea posible, haga referencia a una licencia estandar o a otro documento
externo en lugar de incluir todos los términos y condiciones en el comentario.

Comentarios informativos

En ocasiones es util proporcionar informacion basica con un comentario. Por
ejemplo, el siguiente comentario explica el valor devuelto por un método
abstracto:

// Devuelve una instancia del elemento Responder probado.
protected abstract Responder responderInstance();

Estos comentarios pueden ser ttiles, pero es mejor usar el nombre de la
funcion para transmitir la informacién siempre que sea posible. Por ejemplo, en
este caso el comentario seria redundante si cambiamos el nombre de la funcion
por responderBeingTested. Veamos un ejemplo mejor: // e1 rormato cotncide con kiemm:ss eee,
MMM dd, yyyy

Pattern timeMatcher = Pattern.compile(
NNAF AN NN \\w*, \\w* \\d*, \\d*");

En este caso, el comentario nos indica que la expresién regular debe
coincidir con una fecha y una hora con el formato aplicado por la funcion
SimpleDateFormat.format con la cadena de formato especificada.

Hubiera resultado mejor y mas claro si el cddigo se hubiera cambiado a una
clase especial que convirtiera los formatos de fechas y horas. De ese modo el
comentario habria sido superfluo.

Explicar la intencion

En ocasiones, un comentario es algo mas que informacién util sobre la
implementacion y proporciona la intencion de una decision. En el siguiente caso,
vemos una interesante decision documentada por un comentario. Al comparar
dos objetos, el autor decidié ordenar los objetos de su clase por encima de los
objetos de otra.

public int compareTo(Object o)

{

if (o instanceof WikiPagePath)
{
wikiPagePath p = (wWikiPagePath) o;
String compressedName = StringUtil.join(names, “”);
String compressedArgumentName = StringUtil.join(p.names, “");
return compressedName.compareTo(compressedArgumentName);
}

return 1; //somos mayores porque somos el tipo correcto.

Veamos otro ejemplo mejor. Puede que no esté de acuerdo con la solucion
del programador, pero al menos sabe lo que intentaba hacer.

public void testConcurrentAddwidgets() throws Exception {

widgetBuilder widgetBuilder =

new WidgetBuilder(new Class[](Boldwidget.class));
String text = “‘‘‘bold text’’’”;
Parentwidget parent =

new Boldwidget(new MockwidgetRoot(), “‘‘‘bold text’’’”);
AtomicBoolean failFlag = new AtomicBoolean();
failFlag.set(false);

//Nuestro mejor intento de obtener una condicién de carrera
//creando un gran numero de procesos.
for (int 1 = 0; i < 25000; i++) {
widgetBuilderThread widgetBuiIderThread =
new WidgetBuilderThread(WidgetBuilder, text, parent, failFlag);
Thread thread = new Thread(WidgetBuilderThread);
thread.start();

;ssertEquals(false, failFlag.get());
}
Clarificacion

En ocasiones, basta con traducir el significado de un argumento o valor devuelto
en algo mas legible. Por lo general, conviene buscar la forma de que el
argumento o el valor devuelto sean claros por si mismos; pero cuando forma
parte de una biblioteca estandar o de codigo que no se puede alterar, un
comentario aclarativo puede ser muy util.

public void testCompareTo() throws Exception

{
wikiPagePath a = PathParser.parse(“PageA”);
wikiPagePath ab = PathParser.parse(“PageA.PageB”);
wikiPagePath b = PathParser.parse(“PageB”);
wikiPagePath aa = PathParser.parse(“PageA.PageA”);
wikiPagePath bb = PathParser.parse(“PageB.PageB”);
wikiPagePath ba = PathParser.parse(“PageB.PageA”);

assertTrue(a.compareTo(a) == 0); // a == a
assertTrue(a.compareTo(b) != 0); // a != b
assertTrue(ab.compareTo(ab) == 0); // ab == ab
assertTrue(a.compareTo(b) == -1); // a < b
assertTrue(aa.compareTo(ab) == -1); // aa < ab
assertTrue(ba.compareTo(bb) == -1); // ba < bb
assertTrue(b.compareTo(a) == 1); // b > a
assertTrue(ab.compareTo (aa) == 1); // ab > aa
assertTrue(bb.compareTo(ba) == 1); // bb > ba

Pero también existe el riesgo de que un comentario aclarativo sea
incorrecto. En el ejemplo anterior, compruebe lo dificil que resulta comprobar si
los comentarios son correctos. Esto explica por qué la clarificacion es necesaria
y también arriesgada. Por ello, antes de escribir estos comentarios, asegurese de
que no hay una solucién mejor y también de que sean precisos.

Advertir de las consecuencias

8

En ocasiones es muy util advertir a otros programadores de determinadas
consecuencias. Por ejemplo, el siguiente comentario explica por qué un
determinado caso de prueba esta desactivado:

// No ejecutar a menos
// que le sobre tiempo.
public void _testwithReallyBigFile()

{
writeLinesToFile(10000000);

response.setBody(testFile);

response.readyToSend(this);

String responseString = output.toString();
assertSubString(“Content-Length: 1000000000”, responseString);
assertTrue(bytesSent > 1000000000);

En la actualidad, evidentemente, desactivariamos la prueba por medio del
atributo @Ignore con la correspondiente cadena explicativa: @Ignore(“Takes
too long to run”), pero antes de la aparicion de JUnit 4, era habitual afiadir un
guion bajo delante del nombre del método. El comentario realizaba su cometido.
Veamos otro Ej emplo: public static SimpleDateFormat makeStandardHttpDateFormat()

{

//SimpleDataFormat no es compatible con procesos,

//por lo que debe crear cada instancia de forma independiente.

SimpleDateFormat df = new SimpleDateFormat(“EEE, dd MMM yyyy HH:mm:ss z”);
df.setTimeZone (TimeZone.getTimeZone (“GMT”));

return df;

}

Seguramente conozca soluciones mejores para este problema. Estoy de
acuerdo, pero el comentario es perfectamente razonable. Evita que un
programador use un inicializador estatico por motivos de eficacia.

Comentarios TODO

En ocasiones conviene usar notas con forma de comentarios //T0D0. En el
siguiente caso, el comentario TODO explica por qué la funcion tiene una
implementacion incorrecta y cual debe ser su futuro.

// TODO-MdM no son necesarios
// Esperamos que desaparezca en el modelo definitivo

protected VersionInfo makeVersion() throws Exception

{
}

return null;

TODO son tareas que el programador piensa que deberia haber hecho pero
que no es asi. Pueden ser un recordatorio para eliminar una funcion obsoleta o
una peticion para resolver un problema.

Pueden ser una solicitud para buscar un nombre mas adecuado o para
realizar un cambio que dependa de un evento planeado. Sea lo que sea, no es
excusa para mantener codigo incorrecto en el sistema.

En la actualidad, muchos IDE cuentan con funciones especiales para
localizar comentarios TODO, por lo que seguramente no se pierda. Sin embargo,
no colapse el codigo con estos comentarios. Examinelos y elimine todos los que
pueda.

Amplificacion

Se puede usar un comentario para amplificar la importancia de algo que, en caso
contrario, pareceria irrelevante.

String listItemContent = match.group(3).trim();

// el recorte es importante. Elimina los espacios iniciales

// que harian que el elemento se reconociera como

// otra lista.

new ListItemwidget(this, listItemContent, this.level + 1);
return buildList(text.substring(match.end()));

Javadoc en API publicas

No hay nada mas util y satisfactorio que una API publica bien descrita. Los
javadoc de la biblioteca estandar de Java son un ejemplo. Seria muy complicado
crear programas de Java sin ellos.

Si usa una API publica, debe crear javadoc de calidad para la misma, pero
recuerde el siguiente consejo a lo largo del capitulo: los javadoc pueden ser tan
ambiguos, amplios y descorteses como cualquier otro tipo de documento.

Comentarios incorrectos

Muchos comentarios pertenecen a esta categoria. Suelen ser excusas de codigo
pobre o justificaciones de decisiones insuficientes, algo asi como si el
programador se hablara a si mismo.

Balbucear

Afadir un comentario sin razén o porque el proceso lo requiere es un error. Si
decide escribir un comentario, tomese el tiempo necesario para asegurarse de
que sea el mejor que puede redactar.

El siguiente ejemplo es de FitNesse, donde un comentario sin duda seria de
utilidad, pero el autor tenia prisa o no prestd6 demasiada atencién. Su balbuceo
genero un enigma:

public void loadProperties()

{
try

{
String propertiesPath = propertiesLocation + “/” + PROPERTIES_FILE;
FileInputStream propertiesStream = new FileInputStream(propertiesPath);
loadedProperties.load(propertiesStream);

catch(IOException e)

{

// Si no hay archives de propiedades significan que cargan las predeterminadas

¢Qué significa el comentario del bloque catch? Seguro que algo para el
autor, pero el significado no esta claro. Aparentemente, si se genera
IOException, significa que no hay archivo de propiedades y, en ese caso, se
cargan los valores predeterminados. ;Pero quién carga los valores
predeterminados? ;Se cargan antes de la invocacion de loadProperties.load 0
loadProperties.load captura la excepcion, carga los valores predeterminados y
después nos pasa la excepcion para que la ignoremos? ;O sera que
loadProperties.load carga todos los valores predeterminados antes de intentar
abrir el archivo? ;Intentaba el autor consolarse por dejar el bloque catch vacio?
Fsta es la posibilidad mas temida, ¢se estaba diciendo que volviera més tarde
para crear el cddigo para cargar los valores predeterminados?

Nuestro unico recurso es examinar el cddigo en otras partes del sistema
para determinar qué sucede. Cualquier comentario que le obligue a buscar su
significado en otro moddulo ha fallado en su intento de comunicacion y no
merece los bits que consume.

Comentarios redundantes

El Listado 4-1 muestra una sencilla funcién con un comentario de encabezado
totalmente redundante. Seguramente se tarde mas en leer que el propio codigo.

Listado 4-1
waitForClose.

// Método de utilidad devuelto cuando this.closed es true. Genera una excepcion

// si se alcanza el tiempo de espera.
public synchronized void waitForClose(final long timeoutMillis)
throws Exception

{

}

if (!closed)

{
wait(timeoutMillis);
if(!closed)
throw new Exception (“MockResponseSender could not be closed”);
}

¢Para qué sirve este comentario? No es mas informativo que el codigo. No
lo justifica ni transmite la intencién ni la l6gica. No es mas facil de leer que el
codigo. De hecho, es menos preciso y obliga al lector a aceptar la falta de
precision en lugar de a entenderlo. Es como un vendedor de coches de segunda
menos que le asegura que no hace falta revisar el motor.

Fijese ahora en la legion de javadoc indtiles y redundantes del Listado 4-2,
obtenido de Tomcat. Estos comentarios tnicamente ensucian y oscurecen el
codigo. No tienen ninguna funcion documental. Para empeorar las cosas, solo le
mostramos algunos. El mddulo tiene muchos mas.

Listado 4-2
ContainerBase.java (Tomcat).

public abstract class ContainerBase

implements Container, Lifecycle, Pipeline,
MBeanRegistration, Serializable {

Jrx
* Retardo del procesador para este componente.
*/

protected int backgroundProcessorDelay = -1;

VAL

* Compatibilidad con eventos de ciclo vital de este componente.

*

/

protected LifecycleSupport lifecycle =
new LifecycleSupport(this);

Jrx
* Escuchadores de eventos de contenedor de este contenedor.
*/

protected ArraylList listeners = new ArrayList();

Jrx
* Implementacién Loader a la que se asocia este contenedor.
*/

protected Loader loader = null;

Jrx
* Implementacién Logger a la que se asocia este contenedor.
*/

protected Log logger = null;

Jrx
* Nombre de registrador asociado.
*/

protected String logName = null;

Jrx
* Implementacién Manager a la que se asocia este contenedor.
*/

protected Manager manager = null;

Jrx
* Cluster al que se asocia este contenedor.
*/

protected Cluster cluster = null;

Jrx
* Nombre legible de este contenedor.
*/

protected String name = null;

Jrx
* Contenedor principal de este contenedor.
*/

protected Container parent = null;

Jrx
* Cargador de clase principal que configurar al instalar un elemento
* Loader.

*/

protected ClassLoader parentClassLoader = null;

Jrx
* Objeto Pipeline al que se asocia este contenedor.

*/

protected Pipeline pipeline = new StandardPipeline(this);

Jrx
* Objeto Realm al que se asocia este contenedor.
*/

protected Realm realm = null;

Jrx
* Objeto DirContext de recursos al que se asocia este contenedor.
*/

protected DirContext resources = null;

Comentarios confusos

En ocasiones, a pesar de las buenas intenciones, un programador realiza una
afirmacion en sus comentarios que no es del todo precisa. Fijese otra vez en el
comentario redundante y confuso del Listado 4-1.

;Sabe por qué es confuso? El método no devuelve nada cuando
this.closed se convierte en true. Devuelve algo si this.closed es true; en
caso contrario, espera y genera una excepcion si this.closed no es true.

Este sutil fragmento, oculto en un comentario mas dificil de leer que el
cuerpo del codigo, puede hacer que otro programador invoque la funcion con la
esperanza de que devuelva algo cuando this.closed sea true. Ese pobre
programador se encontrara en una sesion de depuracién intentando determinar
por qué el codigo se ejecuta tan lentamente.

Comentarios obligatorios

Es una locura tener una regla que afirme que todas las funciones deben tener un
javadoc o que todas las variables deben tener un comentario. Este tipo de
comentarios ensucian el codigo y generan confusion y desorganizacion. Por
ejemplo, los javadoc obligatorios para todas las funciones crean abominaciones
como el Listado 4-3. No sirven de nada, complican el cddigo y constituyen

posibles engafios y desorientaciones.

Listado 4-3

VAL

* @param title E1 titulo del CD
* @param author E1 autor del CD
* @param tracks E1 numero de pistas del CD

* @param durationInMinutes La duracién del CD en minutos

*/

public void addCD(String title, String author,

int tracks, int durationInMinutes) {

CD cd = new CD();
cd.title = title;
cd.author = author;
cd.tracks = tracks;
cd.duration = duration;
cdList.add(cd);

Comentarios periodicos

En ocasiones, se afiade un comentario al inicio de un modulo cada vez que se
edita. Estos comentarios acumulan una especie de registro de todos los cambios
realizados. He visto modulos con decenas de paginas con estas entradas.

* Cambios (11-0ct-2001)

* 11-0Oct-2001

* 05-Nov-2001
* 12-Nov-2001

* 05-Dic-2001
* 29-May-2002

* 27-Ago-2002
* 03-0ct-2002
* 13-Mar-2003
* 29-May-2003
* 04-Sep-2003
* 05-Ene-2005

Reorganizacién de la clase y cambio a un nuevo paquete

com.jrefinery.date (DG);

Se aflade un método getDescription() y se elimina la clase NotableDate (DG);
IBD requiere el método setDescription(), una vez eliminada la clase NotableDate
(DG); se cambian getPreviousDayOfWeek(), getFollowingDayOfWeek()

y getNearestDayOfWeek() para corregir errores (DG);

Error corregido en la clase SpreadsheetDate (DG);

Se transfieren todas las constantes de mes a una interfaz

independiente (MonthConstants) (DG);

Error corregido en el método addMonths(), gracias a Nalevka Petr (DG);
Errores indicados por Checkstyle (DG) corregidos;

Implementacién de Serializable (DG);

Error corregido en el método addMonths (DG);

Implementaci6én de Comparable. Actualizacién de los javadoc isInRange (DG);
Error corregido en el método addYears() (1096202) (DG);

Hace tiempo hubo una buena razon para crear y mantener estas entradas de
registro al inicio de cada modulo. Careciamos de sistemas de control de codigo
fuente que se encargaran de ello, pero en la actualidad, estas entradas son
elementos sobrantes que complican los modulos. Debe eliminarlas totalmente.

Comentarios sobrantes

En ocasiones vemos comentarios que simplemente sobran. Restan importancia a
lo evidente y no ofrecen informacion nueva.

VAL

* Constructor predeterminado.

*
/

protected AnnualDateRule() {
}

¢En serio? ;Y este otro?:

/** Dia del mes. */
private int dayOfMonth;

Y aqui el parangon de la redundancia:

Jrx
* Devuelve el dia del mes.

* @return el dia del mes.

*

/

public int getDayOfMonth() {

return dayOfMonth;
}

Estos comentarios son tan inservibles que aprendemos a ignorarlos. Al leer
el codigo, la vista los salta. Con el tiempo, los comentarios empiezan a mentir
cuando cambia el codigo que les rodea.

El primer comentario del Listado 4-4 parece correcto®. Explica por qué se
ignora el bloque catch, pero el segundo comentario sobra. Parece que el
programador estaba tan frustrado con crear bloques try/catch en la funcion que
necesitaba explotar.

Listado 4-4
startSending.

private void startSending()

{
try

doSending();

catch(SocketException e)
{

// normal, alguien ha detenido la solicitud.
catch(Exception e)

{
try

{
response.add(ErrorResponder.makeExceptionString(e));
response.closeAll();

catch(Exception el)

{

//;Un respiro!

}
}

En lugar de explotar en un comentario sin sentido, el programador deberia
haber sabido que su frustracion se podria aliviar mejorando la estructura del
codigo. Tendria que haber centrado su energia en extraer el ultimo bloque
try/catch en una funcion independiente, como muestra el Listado 4-5.

Listado 4-5
startSending (refactorizado).

private void startSending()

{
try
doSending();
catch(SocketException e)
{
// normal. Alguien ha detenido la solicitud.
catch(Exception e)
addExceptionAndCloseResponse(e);
}
}
private void addExceptionAndCloseResponse(Exception e)
{
try
{

response.add(ErrorResponder .makeExceptionString(e));
response.closeAll();

catch(Exception el)
{
}

Cambie la tentacion de crear elementos sobrantes por la determinacion de
limpiar su codigo. Mejorara como programador y sera mas facil.

Comentarios sobrantes espeluznantes

Los javadoc también pueden ser innecesarios. ;Para qué sirven los siguientes
javadoc (de una conocida biblioteca) de cédigo abierto? La respuesta: para nada.
Son comentarios redundantes creados en un intento equivocado de redactar
documentacion.

/** E1 nombre. */
private String name;

/** La versién. */
private String version;

/** E1 licenceName. */
private String licenceName;

/** La versién. */
private String info;

Vuelva a leer los comentarios. ¢Detecta el error de corta y pega? Si los
autores no prestan atencion al escribir sus comentarios (o al pegarlos), ;por qué
se espera que sean de utilidad para los lectores?

No usar comentarios si se puede usar una funcion o una variable

Fijese en el siguiente codigo:

// ¢el médulo de la lista global <mod> depende del
// subsistema del que formamos parte?
if (smodule.getDependSubsystems().contains(subSysMod.getSubsystem()))

Se podria cambiar sin el comentario de esta forma:

ArrayList moduleDependees = smodule.getDependSubsystems();
String ourSubSystem = subSysMod.getSubSystem();
if (moduleDependees.contains(ourSubSystem))

El autor del cddigo original seguramente escribio primero el comentario
(improbable) y después el codigo para ajustarlo al comentario. Sin embargo, el
autor tendria que haber refactorizado el codigo, como hice yo, para poder
eliminar el comentario.

Marcadores de posicion

En ocasiones los programadores marcan una determinada posicion en un
archivo. Por ejemplo, recientemente encontré esto en un programa:

// Acciones //////////1////1/71////////////////

Son escasas las ocasiones en las que tiene sentido agrupar funciones bajo
esta estructura. Por lo general, debe eliminarse, sobre todo la molesta hilera de
barras al final.

Piénselo de esta forma. Estas estructuras son atractivas si no las usa
demasiado. Por ello, uselas esporadicamente y s6lo cuando el beneficio sea
significativo. Si las usa en exceso, acabaran por ser ignoradas.

Comentarios de llave de cierre

En ocasiones, los programadores incluyen comentarios especiales en llaves de
cierre, como en el Listado 4-6. Aunque pueda tener sentido en funciones
extensas con estructuras anidadas, unicamente estorba a las funciones
encapsuladas y de pequefio tamafio que nos gustan. Por ello, si siente el deseo de
marcar sus llaves de cierre, pruebe a reducir el tamafio de sus funciones.

Listado 4-6
wc.java.

public class wc {
public static void main(String[] args) {
BufferedReader in = new BufferedReader(new InputstreamReader(System.in));
String line;
int lineCount = 0;
int charCount 0;
int wordCount = 0;
try {
while ((line = in.readLine()) != null) {
lineCount++;
charCount += line.length();
String words[] = line.split(“\\W"”);
wordCount += words.length;
} /iwhile
System.out.println(“wordCount = ” + wordCount);
System.out.println(“lineCount = ” + lineCount);
System.out.println(“charCount = ” + charCount);
} Nty
catch (IOException e) {

System.err.println(“Error: ” + e.getMessage());
} /lcatch
} //main

}

Asignaciones y menciones

/* Anadido por Rick */

Los sistemas de control de codigo fuente recuerdan a la perfeccion quién ha
afladido qué y cuando. No es necesario plagar el codigo con pequefias
menciones. Puede pensar que estos comentarios son Utiles y que ayudan a otros a
hablar sobre el codigo, pero en realidad sobreviven durante afios y cada vez son
menos precisos y relevantes. El sistema de control de cédigo fuente es el punto
idoneo para este tipo de informacion.

Codigo comentado

No hay nada mas odioso que el cdigo comentado. jNo lo haga!

InputStreamResponse response = new inputStreamResponse();
response.setBody(formatter.getResultStream(), formatter.getByteCount());
// InputStream resultsStream = formatter.getResultStream();

// StreamReader reader = new StreamReader(resultsStream);

// response.setContent(reader.read(formatter.getByteCount()));

Los lectores que vean cddigo comentado no tendran el valor de borrarlo.
Pensaran que esta ahi por algo y que es demasiado importante para borrarlo. Por
ello, el codigo comentado se acumula como los sedimentos en una botella de
vino malo.

Fijese en este fragmento de apache commons:

this.bytePos = writeBytes(pngIdBytes, 0);
//hdrPos = bytePos;
writeHeader();
writeResolution();
//dataPos = bytePos;
if (writeImageData()) {
writegEnd();
this.pngBytes = resizeByteArray(this.pngBytes, this.maxPos);
}
else {
this.pngBytes = null;
}

return this.pngBytes;

¢Por qué hay dos lineas comentadas? ¢Son importantes? ;Se han
conservado como recordatorio de un cambio inminente o es algo que alguien
coment6 hace afios y no se ha preocupado de limpiar? Hubo una época, en la
década de 1960, en la que el cddigo comentado pudo ser ttil, pero hace tiempo
que contamos con buenos sistemas de control de cédigo fuente, sistemas que
recuerdan el codigo por nosotros. Ya no tenemos que comentarlo. Eliminelo. No
lo perdera. Se lo aseguro.

Comentarios HTML

El HTML en comentarios de codigo fuente es una aberracion, como puede
apreciar en el siguiente fragmento. Dificulta la lectura de los comentarios donde
deberia ser mas facil; el editor o IDE. Si los comentarios se van a extraer con
una herramienta (como Javadoc) para mostrarlos en una pagina Web, debe ser
responsabilidad de dicha herramienta y no del programador el adornar los
comentarios con el correspondiente HTML.

Jx
Tarea para ejecutar pruebas de aceptacién.

Esta tarea ejecuta pruebas de aceptacién y publica los resultados.
<p/>

<pre>

Uso:

&1t ;taskdef name="execute-fitnesse-tests"
classname="fitnesse.ant.ExecuteFitnesseTestsTask"
classpathref="classpath" />

OR

&1t ;taskdef classpathref="classpath"

resource=" tasks.properties" />

<p/>

<execute-fitnesse-tests
suitepage="FitNesse.SuiteAcceptanceTests"
fitnesseport="8082"
resultsdir="$(results.dir)"
resultshtmlpage="fit-results.html"
classpathref="classpath" />

</pre>

Informacion no local

Si tiene que escribir un comentario, asegtrese de que describa el codigo que le
rodea. No ofrezca informacion global del sistema en el contexto de un
comentario local. Fijese en el siguiente comentario javadoc. Aparte de su terrible
redundancia, también ofrece informacion sobre el puerto predeterminado y la
funcion no tiene control alguno sobre el puerto predeterminado. El comentario
no describe la funcion sino otra parte distinta del sistema. Evidentemente, no hay
garantias de que el comentario cambie cuando lo haga el cédigo que contiene el
valor predeterminado.

Jxx
* Puerto para ejecutar fitnesse. El predeterminado es 8082.

* @param fitnessePort
*/
public void setFitnessePort(int fitnessePort)

{

this.fitnessePort = fitnessePort;

}

Demasiada informacion

No incluya en sus comentarios interesantes reflexiones histdricas ni irrelevantes
descripciones de detalles. El siguiente comentario se ha extraido de un maddulo
disefiado para probar que una funcion puede codificar y descodificar base64.
Aparte del nuimero RFC, el lector de este codigo no necesita la informacion
obsoleta que contiene el comentario.

/%
RFC 2045 - Extensiones Multipropésito de correo de Internet (MIME)
Primera parte: Formato del Cuerpo de los Mensajes de Internet
seccién 6.8. Codificacién de transferencia de contenidos Base64
El proceso de codificacién representa grupos de 24 bits de la entrada
como cadenas de salida de 4 caracteres codificados. Procediendo de
izquierda a derecha, se forma un grupo de 24 bits de entrada
concatenando 3 grupos de 8 bits de entrada. Estos 24 bits se tratan
como 4 grupos concatenados de 6 bits, cada uno de los cuales se
traduce en un solo digito del alfabeto base64. Cuando se codifica un
flujo de bits mediante la codificacién base64, el flujo de bits se
debe considerar ordenado con el bit mas significativo primero. Esto
es, el primer bit del flujo sera el bit de orden mas alto en el
primer byte de 8 bits, y el octavo bit serda el de orden mas bajo en
el primer byte de 8 bits, y asi sucesivamente.

Conexiones no evidentes

La conexion entre un comentario y el codigo que describe debe ser evidente. Si
se ha preocupado de escribir un comentario, lo minimo es que el lector que lo
vea entienda a qué se refiere. Fijese en este comentario obtenido de apache
Ccommons:

/%
* comienza con una matriz de tamafio suficiente para albergar todos los pixeles

* (més bytes de filtro), y 200 bytes adicionales para la informacién de encabezado
*/

this.pngBytes = new byte[((this.width + 1) * this.height * 3) + 200]

¢Qué es un byte de filtro? ;Esta relacionado con +1? ;O con *3? ;Con
ambos? ;Es un pixel un byte? ¢Por qué 200? La funcion de un comentario es
explicar codigo que no se explica por si mismo. Es una lastima que un
comentario requiera su propia explicacion.

Encabezados de funcion

Las funciones breves apenas requieren explicaciéon. Un nombre bien elegido para
una funcién que hace una cosa suele ser mejor que un encabezado de
comentario.

Javadocs en cédigo no publico

A pesar de la utilidad de los javadoc para las API publicas, no sirven para codigo
no dirigido a consumo publico. La generacion de paginas javadoc para clases y
funciones de un sistema no suele ser util y la formalidad adicional de los
comentarios javadoc no es mas que una distraccion.

Ejemplo

Escribi el modulo del Listado 4-7 para la primera version de XP Immersion.
Debia ser un ejemplo de estilo incorrecto de creaciéon de codigo y comentarios.
Después, Kent Beck refactorizo este codigo en algo mucho mas atractivo delante
de varios alumnos. Posteriormente, adapté el ejemplo para mi libro Agile
Software Development, Principles, Patterns, and Practices y para el primero de
mis articulos Craftsman publicados en la revista Software Development.

Lo que me fascina de este modulo es que hubo un tiempo en que muchos lo
hubiéramos considerado bien documentado. Ahora vemos que es un auténtico
desastre. A ver cuantos problemas detecta en los comentarios.

Listado 4-7
GeneratePrimes.java.

JrH
* Esta clase genera numeros primos hasta la cantidad maxima especificada por el
* usuario. El algoritmo usado es la Criba de Eratéstenes.

* <p>

* Eratéstenes de Cirene, 276 a. C., Cirene, Libia -

* 194 a. C., Alejandria. El1 primer hombre en calcular la

* circunferencia de la Tierra. También trabajé con calendarios

* con afios bisiestos y fue responsable de la Biblioteca de Alejandria.

* <p>

* E1 algoritmo es muy simple. Dada una matriz de enteros

* empezando por el 2, se tachan todos los multiplos de 2. Se busca el siguiente
* entero sin tachar y se tachan todos sus multiplos.

* Repetir hasta superar la raiz cuadrada del valor

* maximo.

* ©author Alphonse

* Oversion 13 Feb 2002 atp
*/

import java.util.*;

public class GeneratePrimes
{
Jrx
* @param maxValue es el limite de generacién.
*/
public static int[] generatePrimes(int maxValue)
{
if (maxvalue >= 2) //el unico caso valido
{
// declaraciones
int s = maxvalue + 1; // tamafio de la matriz
boolean[] f = new boolean[s];
int i;

// inicializar la matriz en true.
for (1 =0; i <s; it++)
f[i] = true;

// eliminar los numeros no primos conocidos
f[o] = f[1] = false;

// cribar
int j;
for (1 = 2; i < Math.sqrt(s) + 1; i++)

if (f[i]) // si no estad tachado, tachar sus multiplos.

for (J

=2*1i; j<s; j+=1)
fli1 =

false; // el multiplo no es primo

}

// ¢cuantos primos hay?
int count = 0;
for (1 =0; i <s; it++)

if (f[i])
count++; // contador.

int[] primes = new int[count];

// enviar primos al resultado
for (1 =0, j =0; 1<s; i++)
{
if (f[i]) // si es primo
primes[j++] = 1i;

return primes; // devolver los primos

}

else // maxvalue < 2
return new int[0]; // devolver matriz null si la entrada no es correcta.

En el Listado 4-8 puede ver una version refactorizada del mismo maédulo.
Se ha limitado considerablemente el uso de comentarios. Hay solo dos en todo el
modulo y ambos claramente descriptivos.

Listado 4-8
PrimeGenerator.java (refactorizado).

Jrx
* Esta clase genera numeros primos hasta la cantidad maxima especificada por el
* usuario. El algoritmo usado es la Criba de Eratéstenes. Dada una matriz de enteros
* empezando por el 2: buscar el primer entero sin tachar y tachar todos sus
* multiplos. Repetir hasta que no haya mas multiplos en la matriz.
*/
public class PrimeGenerator
{
private static boolean[] crossedOut;
private static int[] result;

public static int[] generatePrimes(int maxValue)

{
if (maxvalue < 2)
return new int[0];
else
{
uncrossIntegersUpTo(maxvValue);
crossOutMultiples();
putUncrossedIntegersIntoResult();
return result;
}
}
private static void uncrossIntegersUpTo(int maxValue)
{
crossedOut = new boolean[maxValue + 1];
for (int 1 = 2; i < crossedOut.length; i++)
crossedout[i] = false;
}

private static void crossOutMultiples()
{

int limit = determinelterationLimit();

for (int 1 = 2; i <= limit; i++)
if (notCrossed(i))
crossOutMultiplesOf(i);
}

private static int determineIterationLimit()
{
// Cada multiplo en la matriz tiene un factor primordial que
// es menor o igual que la raiz del tamafio de la matriz
// entonces no tenemos que tachar miltiplos de numeros
// mas grande que esa raiz.
double iterationLimit = Math.sqrt(crossedout.length);
return (int) iterationLimit;

}

private static void crossOutMultiplesOf (int i)

{
for (int multiple = 2 * i;
multiple < crossedOut.length;
multiple += 1)
crossedOut[multiple] = true;
}
private static boolean notCrossed(int i)
{
return crossedout[i] == false;
}
private static void putUncrossedIntegersIntoResult()
{
result = new int[numberOfUncrossedIntegers()];
for (int j = 0, i = 2; i < crossedOut.length; i++)
if (notCrossed(i))
result[j++] = i;
}

private static int numberOfUncrossedIntegers()

{
int count = 0;
for (int 1 = 2; i < crossedOut.length; i++)
if (notCrossed(i))
count++;
return count;
}

Se podria decir que el primer comentario es redundante ya que es muy
similar a la funcion generatePrimes, pero creo que muestra mejor el algoritmo
al lector, motivo por el que lo he mantenido. El segundo argumento es sin duda
necesario. Explica la logica del uso de la raiz cuadrada como limite del bucle.
No encontré otro nombre de variable mas sencillo ni otra estructura de codigo
que lo aclarara mas. Por otra parte, el uso de la raiz cuadrada podria resultar
presuntuoso. ;Realmente se ahorra tanto tiempo limitando la iteraciéon a la raiz
cuadrada? ;El calculo de la raiz cuadrada llevaria mas tiempo del que se ahorra?
Conviene analizarlo. El uso de la raiz cuadrada como limite de iteracion satisface
al viejo hacker de C y de lenguajes de ensamblado de mi interior, pero no estoy
convencido de que merezca el tiempo y el esfuerzo que los demas puedan
dedicar a entenderlo.

Bibliografia

e [KP78]: Kernighan and Plaugher, The Elements of Programming Style, 2d.
ed., McGraw-Hill, 1978.

5
Formato

Cuando los wusuarios miran entre bastidores, queremos que queden
impresionados por el atractivo, la coherencia y la atencién al detalle que
perciben. Queremos que el orden les sorprenda, que abran los ojos con asombro
cuando se desplacen por los modulos. Queremos que aprecien que se trata de un
trabajo de profesionales. Si ven una masa amorfa de cédigo que parece escrito
por un grupo de marineros borrachos, es probable que piensen que sucedera lo
mismo en otros aspectos del proyecto.

Debe preocuparse por el formato de su cddigo. Debe elegir una serie de
reglas sencillas que controlen el formato del cédigo y después aplicarlas de
forma coherente. Si trabaja en equipo, debe acordar una serie de reglas que todos
los miembros deben cumplir. También es muy util usar una herramienta
automatizada que se encargue de aplicar las reglas.

La funcion del formato

En primer lugar, debe ser claro. El formato de codigo es importante, demasiado
importante como para ignorarlo y también demasiado importante como para
tratarlo de forma religiosa. El formato del cédigo se basa en la comunicacién y
la comunicacion debe ser el principal pilar de un desarrollador profesional.

Puede que piense que conseguir que algo funcione es la principal
preocupacion de un programador profesional. Espero que este libro le haga
cambiar de idea. La funcionalidad que cree hoy es muy probable que cambie en
la siguiente version, pero la legibilidad de su cédigo afectara profundamente a
todos los cambios que realice. El estilo del cddigo y su legibilidad establecen los
precedentes que afectan a la capacidad de mantenimiento y ampliaciéon mucho
después de que el codigo cambie. Su estilo y su disciplina sobreviviran, aunque
el codigo no lo haga.

Veamos qué aspectos del formato nos permiten comunicarnos mejor.

Formato vertical

Comencemos por el tamafio vertical. ;Qué tamafio debe tener un archivo fuente?
En Java, el tamafio de los archivos esta relacionado con el tamafo de las clases,
como veremos mas adelante. Por el momento, nos detendremos en el tamafio de
los archivos.

¢Qué tamafio tienen la mayoria de archivos fuente de Java? Existe una
amplia gama de tamafios e importantes diferencias de estilo, como se aprecia en
la figura 5.1.

10000.0° -

1000.0 -

100.0 . .

Lineas por archivo

junit . fitnesse . testNG) tam . jdepend) ant tomecat

Figura 5.1. Escala LOG de distribuciones de longitud de archivos (altura del cuadro = sigma).

Se describen siete proyectos: Junit, FitNesse, testNG, Time and Money,
JDepend, Ant y Tomcat. Las lineas que cruzan los cuadros muestran la longitud
maxima y minima de cada proyecto. El cuadro muestra aproximadamente un
tercio (una desviacion estandar®) de los archivos. La parte central del cuadro es
la media. Por tanto, el tamafio de archivo medio del proyecto FitNesse es de 65
lineas y un tercio de los archivos ocupan entre 40 y 100+ lineas.

El mayor archivo de FitNesse tiene unas 400 lineas y el de menor tamafo,
6. Es una escala de registro, de modo que la pequefia diferencia de posicion
vertical supone una gran diferencia en tamafio absoluto.

Junit, FitNesse y Time and Money tienen archivos relativamente pequefios.
Ninguno supera las 500 lineas y la mayoria tienen menos de 200. Tomcat y Ant,
por su parte, tienen archivos con varios miles de lineas de longitud y mas de la
mitad superan las 200.

¢Qué significa todo esto? Aparentemente se pueden crear sistemas
(FitNesse se aproxima a las 50 000 lineas) a partir de archivos de unas 200 lineas
de longitud, con un limite maximo de 500. Aunque no deberia ser una regla, es
un intervalo aconsejable. Los archivos de pequefio tamafio se entienden mejor
que los grandes.

La metafora del periodico

Piense en un articulo de periodico bien escrito. En la parte superior espera un
titular que indique de qué se trata la historia y le permita determinar si quiere
leerlo o no. El primer parrafo ofrece una sinopsis de la historia, oculta los

detalles y muestra conceptos generales. Al avanzar la lectura, aumentan los
detalles junto con todas las fechas, nombres, citas y otros elementos.

Un archivo de cédigo debe ser como un articulo de periodico. El nombre
debe ser sencillo pero claro. Por si mismo, debe bastar para indicarnos si
estamos o no en el modulo correcto. Los elementos superiores del archivo deben
proporcionar conceptos y algoritmos de nivel superior. Los detalles deben
aumentar segun avanzamos, hasta que en la parte final encontremos las
funciones de nivel inferior del archivo.

Un periodico se compone de varios articulos, algunos muy reducidos y
otros de gran tamafio. No hay muchos que ocupen toda la pagina con texto, para
que el periodico sea manejable. Si el periddico fuera un Unico y extenso texto
con una aglomeracion desorganizada de hechos, fechas y nombres, no lo
leeriamos.

Apertura vertical entre conceptos

La practica totalidad del codigo se lee de izquierda a derecha y de arriba a abajo.
Cada linea representa una expresiéon o una clausula, y cada grupo de lineas
representa un pensamiento completo. Estos pensamientos deben separarse
mediante lineas en blanco.

Fijese en el Listado 5-1. Hay lineas en blanco que separan la declaracion
del paquete, las importaciones y las funciones. Es una regla muy sencilla con un
profundo efecto en el disefio visual del cédigo. Cada linea en blanco es una pista
visual que identifica un nuevo concepto independiente. Al avanzar por el listado,
la vista se fija en la primera linea que aparece tras una linea en blanco.

Listado 5-1
BoldWidget.java

package fitnesse.wikitext.widgets;
import java.util.regex.*;

public class Boldwidget extends ParentwWidget {
public static final String REGEXP = “‘‘‘’ +2'''";
private static final Pattern pattern = Pattern.compile (“‘‘‘(.+?)""'",
Pattern.MULTILINE + Pattern.DOTALL
)i

public Boldwidget(ParentWidget parent, String text) throws Exception {
super(parent);
Matcher match = pattern.matcher(text);
match.find();
addChildwidgets(match.group(1));
}

public String render() throws Exception {
StringBuffer html = new StringBuffer(“");

html.append(childHtml()).append (“");
return html.toString();
}
}

Si eliminamos las lineas en blanco, como en el Listado 5-2, se oscurece la
legibilidad del cadigo.

Listado 5-2
BoldWidget.java

package fitnesse.wikitext.widgets;
import java.util.regex.*;
public class Boldwidget extends ParentwWidget {
public static final String REGEXP = “‘‘‘’ +2'''";
private static final Pattern pattern = Pattern.compile(“’’‘(.+?)"""",
Pattern.MULTILINE + Pattern.DOTALL);
public Boldwidget(ParentWidget parent, String text) throws Exception {
super(parent);
Matcher match = pattern.matcher(text);
match.find();
addChildwidgets(match.group(1));}
public String render() throws Exception {
StringBuffer html = new StringBuffer(“");
html.append(childHtml()).append(“");
return html.toString();
}

Este efecto aumenta todavia mas si no centramos la vista. En el primer
ejemplo, los distintos grupos de lineas saltan a la vista, mientras que en el
segundo es una mezcla amorfa. La diferencia entre ambos listados es una ligera
apertura vertical.

Densidad vertical

Si la apertura separa los conceptos, la densidad vertical implica asociaciones.
Por tanto, las lineas de co6digo con una relacién directa deben aparecer
verticalmente densas. Fijese en como los comentarios sin sentido del Listado 5-3
anulan la asociacion entre las dos variables de instancia.

Listado 5-3

public class ReporterConfig {

Jrx
* Nombre de clase del escuchador
*/

private String m_className;

Jrx
* Propiedades del escuchador

*/

private List<Property> m_properties = new ArraylList<Property>();

public void addProperty(Property property) {
m_properties.add(property);
}

El Listado 5-4 es mucho mas facil de leer. Lo apreciamos a simple vista o al
menos yo lo hago. Al mirarlo, veo que es una clase con dos variables y un
método, sin tener que mover la cabeza ni la vista. El listado anterior nos obliga a
forzar la vista y a mover la cabeza para alcanzar el mismo nivel de comprension.

Listado 5-4

public class ReporterConfig {
private String m_className;
private List<Property> m_properties = new ArraylList<Property>();

public void addProperty(Property property) {
m_properties.add(property);
}

Distancia vertical

¢Alguna vez ha tenido que recorrer una clase, saltando de una funcion a otra,
desplazandose por el codigo para intentar adivinar la relacion y el
funcionamiento de las funciones, y acabar totalmente confundido? ;Alguna vez
ha escudrifiado la cadena de herencia buscando la definicion de una variable o
funcion? Resulta frustrante porque intenta comprender lo que hace el sistema,
pero pierde el tiempo y su energia mental en intentar localizar y recordar sus
elementos.

Los conceptos relacionados entre si deben mantenerse juntos verticalmente
[G10]. Esta regla no funciona con conceptos de archivos independientes. Por lo
tanto, no debe separar conceptos relacionados en archivos independientes a
menos que tenga un motivo de peso. De hecho, es uno de los motivos por los que
se debe evitar el uso de variables protegidas.

Para los conceptos relacionados que pertenecen al mismo archivo, su
separacion vertical debe medir su importancia con respecto a la legibilidad del
otro. Debe evitar que el lector deambule entre archivos y clases.

Declaraciones de variables

Las variables deben declararse de la forma mas aproximada a su uso. Como las
funciones son muy breves, las variables locales deben aparecer en la parte
superior de cada funcion, como en este ejemplo de Junit4.3.1.

private static void readPreferences() {
InputStream is = null;
try {
is = new FileInputStream(getPreferencesFile());
setPreferences(new Properties(getPreferences()));

getPreferences().load(is);
} catch (IOException e) {
try {
if (is !'= null)
is.close();
} catch (IOException el) {
}
}
}

Las variables de control de bucles deben declararse en la instruccion del
bucle, como en esta pequefia funcién del mismo cédigo fuente:

public int countTestCases() {
int count= 0;
for (Testeach : tests)
count += each.countTestCases();
return count;

}

En casos excepcionales, una variable puede declararse en la parte superior
de un bloque o antes de un bucle en una funcion extensa. Puede ver este tipo de
variable en la siguiente funcion de TestNG.

for (XmlTest test: m_suite.getTests()) {

TestRunner tr = m_runnerFactory.newTestRunner(this, test);
tr.addListener(m_textReporter);
m_testRunners.add(tr);

invoker = tr.getInvoker();

for (ITestNGMethod m : tr.getBeforeSuiteMethods()) {
beforeSuiteMethods.put(m.getMethod(), m);
}

for (ITestNGMethod m : tr.getAfterSuiteMethods()) {
afterSuiteMethods.put(m.getMethod(), m);
}
}

Variables de instancia

Las variables de instancia, por su parte, deben declararse en la parte superior de
la clase. Esto no debe aumentar la distancia vertical de las variables, ya que en
una clase bien disefiada se usan en muchos sino en todos sus métodos.

Existen discrepancias sobre la ubicacion de las variables de instancia.
En C++ suele aplicarse la denominada regla de las tijeras, que sitiia todas las
variables de instancia en la parte inferior. En Java, sin embargo, es habitual
ubicarlas en la parte superior de la clase. No veo motivos para no hacerlo. Lo
importante es declarar las variables de instancia en un punto conocido para que
todo el mundo sepa donde buscarlas.

Fijese en el extrafio caso de la clase TestSuite de JUnit 4.3.1. He atenuado
considerablemente esta clase para ilustrar este concepto. Si se fija en la mitad del
listado, vera dos variables de instancia declaradas. Resultaria complicado
ocultarlas en un punto mejor. Cualquiera que lea este codigo tendria que toparse
con las declaraciones por casualidad (como me pas6 a mi).

public class TestSuite implements Test {

static public Test createTest(Class<? extends TestCase> theClass,
String name) {

}

public static Constructor<? extends TestCase>
getTestConstructor(Class<? extends TestCase> theClass)
throws NoSuchMethodException {

}

public static Test warning(final String message) {

}

private static String exceptionToString(Throwable t) {

}

private String fName;
private Vector<Test> fTests = new Vector<Test>(10);

public TestSuite() {
}

public TestSuite(final Class<? extends TestCase> theClass) {

}

public TestSuite(Class<? extends TestCase> theClass, String name) {

)

Funciones dependientes

Si una funcion invoca otra, deben estar verticalmente proximas, y la funcion de
invocacion debe estar por encima de la invocada siempre que sea posible. De
este modo el programa fluye con normalidad. Si la convencion se sigue de forma
fiable, los lectores sabran que las definiciones de funcion aparecen después de su
uso. Fijese en el fragmento de FitNesse del Listado 5-5.

La funcion superior invoca las situadas por debajo que, a su vez, invocan a
las siguientes. Esto facilita la deteccion de las funciones invocadas y mejora
considerablemente la legibilidad del m6dulo completo.

Listado 5-5
WikiPageResponder.java.

public class WikiPageResponder implements SecureResponder {
protected WikiPage page;
protected PageData pageData;
protected String pageTitle;
protected Request request;
protected PageCrawler crawler;

public Response makeResponse(FitNesseContext context, Request request)
throws Exception {
String pageName = getPageNameOrDefault(request, “Frontpage”);
LoadPage(pageName, context);
if (page == null)
return notFoundResponse(context, request);
else

return makePageResponse(context);

}

private String getPageNameOrDefault(Request request, String defaultPageName)
{
String pageName = request.getResource();
if (Stringutil.isBlank(pageName))
pageName = defaultPageName;

return pageName;

}

protected void loadPage(String resource, FitNesseContext context)
throws Exception {
wikiPagePath path = PathParser.parse(resource);
crawler = context.root.getPageCrawler();
crawler.setDeadEndStrategy(new VirtualEnabledPageCrawler());
page = crawler.getPage(context.root, path);
if (page != null)

pageData = page.getData();
}

private Response notFoundResponse(FitNesseContext context, Request request)
throws Exception {
return new NotFoundResponder().makeResponse(context, request);

}

private SimpleResponse makePageResponse(FitNesseContext context)
throws Exception {
pageTitle = PathParser.render(crawler.getFullPath(page));
String html = makeHtml(context);

SimpleResponse response = new SimpleResponse();
response.setMaxAge(0);
response.setContent(html);

return response;

}

Ademas, este fragmento es un buen ejemplo de ubicacion de constantes en
un nivel correcto [G35]. La constante FrontPage se podria haber ocultado en la
funcion getPageNameOrDefault, pero eso habria ocultado una constante
conocida y esperada en una funcion de nivel inferior de forma incorrecta. Es
mejor pasar la constante desde un punto en el que tiene sentido a la posicion en
la que realmente se usa.

Afinidad conceptual

Determinados conceptos de codigo deben estar proximos a otros. Tienen una
afinidad conceptual concreta. Cuanto mayor sea esta afinidad, menor distancia
vertical debe existir entre ellos.

Como hemos visto, esta afinidad se puede basar en una dependencia
directa, como cuando una funcién invoca a otra, o cuando usa una variable. Pero
hay otras causas de afinidad. Puede generarse porque un grupo de funciones
realice una operacion similar. Fijese en este fragmento de codigo de Junit 4.3.1:
public class Assert {

statji(; rzt;i]o.izi\écij(;cri])assertTrue(String message, boolean condition) {

fail(message);

}

static public void assertTrue(boolean condition) {
assertTrue (null, condition);

}

static public void assertFalse(String message, boolean condition) {
assertTrue(message, !condition)

}

static public void assertFalse(boolean condition) {
assertFalse(null, condition);

}

Estas funciones tienen una elevada afinidad conceptual ya que comparten
un sistema de nombres comun y realizan variantes de la misma tarea basica. El
hecho de que se invoquen unas a otras es secundario. Aunque no lo hicieran,
deberian seguir estando proximas entre ellas.

Orden vertical

Por lo general, las dependencias de invocaciones de funciones deben apuntar
hacia abajo. Es decir, la funcion invocada debe situarse por debajo de la que

realice la invocacion“”. Esto genera un agradable flujo en el codigo fuente, de los
niveles superiores a los inferiores.

Como sucede en los articulos del periddico, esperamos que los conceptos
mas importantes aparezcan antes y que se expresen con la menor cantidad de
detalles sobrantes. Esperamos que los detalles de nivel inferior sean los ultimos.
De este modo, podemos ojear los archivos de codigo y captar el mensaje en las
primeras funciones sin necesidad de sumergirnos en los detalles. El Listado 5-5
se organiza de esta forma. Puede que otros ejemplos mejores sean los listados
15-5y 3-7.

Formato horizontal

¢Qué ancho debe tener una linea? Para responderlo, fijese en la anchura de las
lineas de un programa convencional. De nuevo, examinamos siete proyectos
diferentes. En la figura 5.2 puede ver la distribucion de longitud de todos ellos.
La regularidad es impresionante, en especial en tomo a los 45 caracteres. De
hecho, los tamafios entre 20 y 60 representan un uno por cien del nimero total de
lineas. iEso es un 40 por 100! Puede que otro 30 por 100 sea menos de 10
caracteres de ancho. Recuerde que es una escala de registro, de modo que la
apariencia lineal es muy significativa. Es evidente que los programadores
prefieren lineas menos anchas.

100.0000%

10.0000% }

1.0000% |

|' w HH}HM i wwnhmmu IHHHMH ””“ "
aimn
| ’ i HV ml"“““luu it

0.0010% | l
0.0001% | T 2 + T : T + ll

0.0000%

MNimemn de lineas

[i] 10 20 3D 40 50 &0 70O &80 a0 100 110 120 130 140 150
Anchura de linea

Figura 5.2. Distribucién de anchura de lineas en Java.

Esto sugiere que debemos intentar reducir las lineas de codigo. El antiguo
limite Hollerith de 80 es un tanto arbitrario y no me opongo a lineas que tienen
100 o incluso 120, pero no mas.

Como norma, no debe tener que desplazarse hacia la derecha. Los
monitores modernos son mas anchos y los programadores noveles pueden
reducir la fuente para encajar hasta 200 caracteres en la pantalla. No lo haga. Mi
limite personal es de 120.

Apertura y densidad horizontal

Usamos el espacio en blanco horizontal para asociar elementos directamente
relacionados y separar otros con una relacion menos estrecha. Fijese en la
siguiente funcion:

private void measureLine(String line) {
lineCount++;
int lineSize = line.length();
totalChars += lineSize;
linewidthHistogram.addLine(lineSize, lineCount);
recordwWidestLine(lineSize);

Hemos rodeado los operadores de asignacion con espacios en blanco para
destacarlos. Las instrucciones de asignacion tienen dos elementos principales: el
lado izquierdo y el derecho. Los espacios acentian esta separacion.

Por otra parte, no hemos incluido espacios entre los nombres de las
funciones y el paréntesis de apertura, ya que la funciéon y sus argumentos estan
estrechamente relacionados. Su separacion los desconectaria. Separo los
argumentos en los paréntesis de invocacion de la funcién para acentuar la coma
e indicar que los argumentos son independientes. El espacio en blanco también
se usa para acentuar la precedencia de los operadores: pusiic ciass quadratic ¢

P ouble determinant o detorminant(a, b, oy) ¢

return (-b + Math.sqrt(determinant)) / (2*a);
}

public static double root2(int a, int b, int c) {
double determinant = determinant(a, b, c);
return (-b - Math.sqrt(determinant)) / (2*a);
}

priviteiuiaagj;z (foit:_;?co:eterminant(double a, double b, double c) {

}

Fijese en lo bien que se leen las ecuaciones. Los factores carecen de
espacios en blanco ya que tienen una mayor precedencia. Los términos se
separan mediante espacios en blanco ya que la suma y la resta son de
precedencia inferior.

Desafortunadamente, muchas herramientas de formato de cédigo ignoran la
precedencia de los operadores e imponen un espaciado uniforme. Por ello,

separaciones sutiles como las anteriores suelen perderse tras modificar el
formato del codigo.

Alineacion horizontal

Cuando era programador de lenguajes de ensamblado®, usaba la alineacion
horizontal para acentuar determinadas estructuras. Cuando comencé a programar
en C, C++ y Java, seguia intentando alinear los nombres de variables en un
conjunto de declaraciones o todos los valores en un grupo de instrucciones de
asignacion. El aspecto de mi codigo era el siguiente:

public class FitNesseExpediter implements ResponseSender
{

private Socket socket;

private InputStream input;

private OutputStream output;

private Request request;

private Response response;

private FitNesseContext context;

protected long requestParsingTimeLimit;
private long requestProgress;

private long requestParsingDeadline;

private boolean hasError;

public FitNesseExpediter(Socket s
FitNesseContext context) throws Exception
{
this.context = context;
socket = s;
input = s.getInputStream();
output = s.getOutputStream();
requestParsingTimeLimit = 10000;

}

Sin embargo, este tipo de alineacién no es util. Parece enfatizar los
elementos incorrectos y aleja la vista de la verdadera intencion. Por ejemplo, en
la lista anterior de declaraciones, nos vemos tentados a leer la lista de nombres
de variables sin fijarnos en sus tipos. Del mismo modo, en la lista de
instrucciones de asignacion, nos fijamos en los valores sin ver el operador. Para
empeorarlo todo, las herramientas automaticas de formato suelen eliminar este
tipo de alineacion. Por tanto, al final, ya no lo uso. Ahora prefiero declaraciones
y asignaciones sin alinear, como se muestra a continuacion, ya que resaltan una
deficiencia importante. Si tengo listas extensas que deben alinearse, el problema
es la longitud de las listas, no la falta de alineacion. La longitud de la siguiente
lista de declaraciones de FitNesseExpediter sugiere que esta clase debe
dividirse.

public class FitNesseExpediter implements ResponseSender
{

private Socket socket;

private InputStream input;

private OutputStream output;

private Request request;

private Response response;

private FitNesseContext context;
protected long requestParsingTimeLimit;
private long request Progress;

private long requestParsingDeadline;
private boolean haskError;

public FitNesseExpediter(Socket s, FitNesseContext context) throws Exception
{

this.context = context;

socket = s;

input = s.getInputStream();

output = s.getOutputStream();

requestParsingTimeLimit = 10000;

Sangrado

Un archivo de c6digo es una jerarquia mas que un contorno. Incluye informacion
que pertenece a la totalidad del archivo, a sus clases individuales, a los métodos
de las clases, a los bloques de los métodos y a los bloques de los bloques. Cada
nivel de esta jerarquia es un ambito en el que se pueden declarar nombres y en el
que se interpretan declaraciones e instrucciones ejecutables.

Para que esta jerarquia de ambitos sea visible, sangramos las lineas de
codigo fuente de acuerdo a su posicion en la jerarquia. Las instrucciones al nivel
del archivo, como las declaraciones de clases, no se sangran. L.os métodos de
una clase se sangran un nivel a la derecha de la clase. Las implementaciones de
dichos métodos se implementan un nivel a la derecha de la declaracion de los
métodos. Las implementaciones de bloques se implementan un nivel a la derecha
de su bloque contenedor y asi sucesivamente.

Los programadores dependen de este sistema de sangrado. Alinean
visualmente las lineas a la izquierda para ver el ambito al que pertenece. De este
modo pueden acceder rapidamente a los ambitos, como por ejemplo a
implementaciones de instrucciones if o while, que no son relevantes para la
situacion actual. Buscan en la izquierda nuevas declaraciones de métodos,
variables e incluso clases. Sin el sangrado, los programas serian practicamente
ilegibles.

Fijese en los siguientes programas, sintactica y semanticamente idénticos:

public class FitNesseServer implements SocketServer { private FitNesseContext
context; public FitNesseServer(FitNesseContext context) { this.context =
context; } public void serve(Socket s) { serve(s, 10000); } public void
serve(Socket s, long requestTimeout) { try { FitNesseExpediter sender = new
FitNesseExpediter(s, context);

sender.setRequestParsingTimeLimit (requestTimeout); sender.start(); }
catch(Exception e) { e.printStackTrace(); } } }

public class FitNesseServer implements SocketServer {
private FitNesseContext context;

public FitNesseServer(FitNesseContext context) {
this.context = context;

}

public void serve(Socket s) {
serve (s, 10000);
}

public void serve(Socket s, long requestTimeout) {
try {
FitNesseExpediter sender = new FitNesseExpediter(s, context);
sender.setRequestParsingTimeLimit(requestTimeout);
sender.start();
}
catch (Exception e) {
e.printStackTrace();
}
}
}

A la vista puede incluso apreciar la estructura del archivo sangrado.
Detectamos inmediatamente las variables, constructores y métodos de acceso.
En cuestiéon de segundos vemos que es una especie de interfaz de conexion, con
un tiempo de espera. La version sin sangrar, por su parte, es practicamente
impenetrable.

Romper el sangrado

En ocasiones tenemos la tentacion de romper la regla de sangrado con
instrucciones if breves, bucles while breves o funciones breves. Siempre que he
sucumbido a esta tentacion, he acabado por volver a aplicar el sangrado. Por
ello, evito replegar ambitos a una linea, como en este ejemplo: puiic crass comentuidget

extends TextWidget

{
public static final String REGEXP = “A#[A\r\n]*(?:(?:\r\n)|\n|\r)?”;

public Commentwidget(Parentwidget parent, String text){super (parent, text);}
public String render() throws Exception { return “”; }

Prefiero desplegar y sangrar los ambitos:

public class CommentWidget extends TextWidget {
public static final String REGEXP = “A#[A\r\n]*(?:(?:\r\n)|\n|\r)?”;

public CommentwWidget(Parentwidget parent, String text) {
super(parent, text);

}

public String render() throws Exception {
return “”

}
}

Ambitos ficticios

En ocasiones, el cuerpo de una instruccion while o for es ficticio, como se
muestra a continuacion. No me gustan estas estructuras y prefiero evitarlas. En
caso de no poder hacerlo, me aseguro de sangrar el cuerpo ficticio y de incluirlo
entre paréntesis. No sabria decir cuantas veces me ha engafiado un punto y coma

situado al final de un bucle while en la misma linea. A menos que lo haga
visible y lo sangre en una linea propia, es dificil de ver.

while (dis.read(buf, 0, readBufferSize) != -1)

Reglas de equipo

Todo programador tiene sus reglas de formato preferidas, pero si forma parte de
un equipo, el equipo manda.

Un equipo de programadores debe acordar un unico estilo de formato y
todos los integrantes del equipo deben aplicarlo. El objetivo es que el software
tenga un estilo coherente. No queremos que parezca escrito por individuos
enfrentados.

Cuando comencé el proyecto FitNesse en 2002, me reuni con el equipo para
definir un estilo de codigo. Tardamos 10 minutos. Decidimos donde afiadir las
llaves, qué tamafio de sangrado utilizar, los nombres de clases, variables y
métodos, y demas. Tras ello, codificamos las reglas en el IDE y las cumplimos
desde entonces. No son las reglas que prefiero, son las que el equipo decidi6. Y
como miembro de ese equipo, las apliqué cuando creamos el cédigo del proyecto
FitNesse.

Recuerde que un buen sistema de software se compone de una serie de
documentos que se leen facilmente. Deben tener un estilo coherente y dinamico.
El lector debe confiar en que los formatos que ve en nuestro archivo de codigo
significaran lo mismo para otros. Lo ultimo que queremos es aumentar la
complejidad del codigo creando una mezcla de estilos diferentes.

Reglas de formato de Uncle Bob

Las reglas que uso personalmente son sencillas y se ilustran en el cédigo del

Listado 5-6. Considérelo un ejemplo de documento estandar de codigo 6ptimo.

Listado 5-6
CodeAnalyzer.java.

public class CodeAnalyzer implements JavaFileAnalysis {
private int lineCount;
private int maxLinewidth;
private int widestLineNumber;
private LinewWidthHistogram linewidthHistogram;
private int totalChars;

public CodeAnalyzer() {
linewidthHistogram = new LinewWidthHistogram();

}

public static List<File> findJavaFiles(File parentDirectory) {
List<File> files = new ArrayList<File>();
findJavaFiles(parentDirectory, files);
return files;

private static void findJavaFiles(File parentDirectory, List<File> files) {
for (File file : parentDirectory.listFiles()) {
if (file.getName().endswWith(”.java”))
files.add(file);
else if (file.isDirectory())
findJavaFiles(file, files);

public void analyzeFile(File javaFile) throws Exception {
BufferedReader br = new BufferedReader(new FileReader(javaFile));
String line;
while ((line = br.readLine()) != null)
measureLine(line);

private void measureLine(String line) {
lineCount++;
int lineSize = line.length();
totalChars += lineSize;
linewidthHistogram.addLine(lineSize, lineCount);
recordwWidestLine(lineSize);

private void recordwidestLine(int lineSize) {
if (lineSize > maxLinewidth) {
maxLinewidth = lineSize;
widestLineNumber = lineCount;

public int getLineCount() {
return lineCount;

}

public int getMaxLinewidth() {
return maxLinewWidth;

}

public int getWidestLineNumber() {
return widestLineNumber;

}

public LinewidthHistogram getLinewidthHistogram() {
return linewidthHistogram;

}

public double getMeanLinewidth() {
return (double)totalChars/lineCount;

}

public int getMedianLineWidth() {
Integer[] sortedwidths = getSortedwidths();
int cumulativelLineCount = 0;

for (int width : sortedwidths) {
cumulativeLineCount += lineCountForwWidth(width);
if (cumulativelLineCount > lineCount/2)
return width;
}

throw new Error (“Cannot get here”);

private int lineCountForWidth(int width) {
return linewidthHistogram.getLinesforwidth(width).size();

}

private Integer[] getSortedwidths() {
Set<Integer> widths = lineWidthHistogram.getwidths();
Integer[] sortedwidths = (widths.toArray(new Integer[0]));
Arrays.sort(sortedwidths);
return sortedwidths;

6
Objetos y estructuras de datos

Hay una razon para que las variables sean privadas. No queremos que nadie mas
dependa de ellas. Queremos poder cambiar su tipo o implementacion cuando
deseemos. Entonces, ;por qué tantos programadores afladen automaticamente

métodos de establecimiento y recuperacion que muestran sus variables privadas
como si fueran publicas?

Abstraccion de datos

Fijese en la diferencia entre los listados 6-1 y 6-2. Ambos representan los datos
de un punto cartesiano, pero uno muestra su implementacion y otro la oculta
totalmente.

Listado 6-1
Punto concreto.

public class Point {
public double x;
public double y;
}

Listado 6-2
Punto abstracto.

public interface Point {
double getX();
double getY();
void setCartesian(double x, double y);
double getR();
double getTheta();
void set Polar(double r, double theta);

Lo mejor del Listado 6-2 es que no hay forma de saber si la implementacion
esta en coordenadas rectangulares o polares. jPuede que en ninguna! Y aun asi la
interfaz representa sin lugar a dudas una estructura de datos.

Pero representa algo mas que una estructura de datos. Los métodos
refuerzan una politica de acceso. Puede leer las coordenadas de forma
independiente, pero debe establecerlas de forma conjunta como operacion
atomica.

El Listado 6-1, por su parte, se implementa claramente en coordenadas
rectangulares y nos obliga a manipularlas de forma independiente, lo que
muestra la implementacion. De hecho, la mostraria igualmente, aunque las
variables fueran privadas y usaramos métodos variables de establecimiento y
recuperacion. Para ocultar la implementacién no basta con afiadir una capa de
funciones entre las variables. Se basa en la abstraccion. Una clase no fuerza sus
variables a través de métodos de establecimiento y recuperacion. Por el
contrario, muestra interfaces abstractas que permiten a sus usuarios manipular la
esencia de los datos sin necesidad de conocer su implementacion.

Fijese en los listados 6-3 y 6-4. El primero usa términos concretos para
indicar el nivel de combustible de un vehiculo mientras que el segundo lo hace
con la abstraccién del porcentaje. En el caso concreto, podemos estar seguros de
que se trata de métodos de acceso de variables. En el caso abstracto,
desconocemos la forma de los datos.

Listado 6-3
Vehiculo concreto.

public interface Vehicle {
double getFuelTankCapacityInGallons();
double getGallonsOfGasoline();

}

Listado 6-4
Vehiculo abstracto.

public interface Vehicle {
double getPercentFuelRemaining();

}

En ambos casos, la segunda opcion es preferible. No queremos mostrar los
detalles de los datos, sino expresarlos en términos abstractos. Esto no se
consigue simplemente mediante interfaces o métodos de establecimiento y
recuperacion. Hay que meditar seriamente la forma optima de representar los
datos que contiene un objeto. La peor opcién es afiadir métodos de
establecimiento y recuperacion a ciegas.

Antisimetria de datos y objetos

Estos dos ejemplos ilustran la diferencia entre objetos y estructuras de datos. Los
objetos ocultan sus datos tras abstracciones y muestran funciones que operan en
dichos datos. La estructura de datos muestra sus datos y carece de funciones con
significado. Vuelva a leerlos. Fijese en la naturaleza complementaria de las dos
definiciones. Son virtualmente opuestas. Puede parecer una diferencia menor,
pero tiene importantes implicaciones.

Fijese en el ejemplo del Listado 6-5. La clase Geometry opera en las tres
clases de formas, que son sencillas estructuras de datos sin comportamiento.
Todo el comportamiento se encuentra en la clase Geometry.

Listado 6-5
Forma mediante procedimientos.

public class Square {
public Point topLeft;
public double side;

}

public class Rectangle {
public Point topLeft;
public double height;
public double width;
}

public class Circle {
public Point center;
public double radius;

}

public class Geometry {
public final double PI = 3.141592653589793;

public double area(Object shape) throws NoSuchShapeException

{
if (shape instanceof Square) {
Square s = (Square)shape;
return s.side * s.side;
}
else if (shape instanceof Rectangle) {
Rectangle r = (Rectangle)shape;
return r.height * r.width;
}
else if (shape instanceof Circle) {
Circle ¢ = (Circle)shape;
return PI c.radius c.radius;
}
throw new NoSuchShapeException();
}

Los programadores orientados a objetos se quejaran de que es un ejemplo
de procedimiento, y tienen razon. Imagine qué pasaria si afiadimos la funcion
perimeter() a Geometry. jLas clases de formas no se verian afectadas! ;Y las
demas clases que dependieran de las formas tampoco! Por otra parte, si afiado
una nueva forma, tendria que cambiar todas las funciones de Geometry. Vuélvalo
a leer. Comprobara que las dos condiciones son diametralmente opuestas.

Fijese ahora en la solucion orientada a objetos del Listado 6-6. Aqui, el
método area() es polimorfico. No se necesita una clase Geometry. Por tanto, si
afiado una nueva forma, ninguna de las funciones existentes se ven afectadas,
pero si afiado otra funcion, habra que cambiar todas las formas®.

Listado 6-6
Formas polimorficas.

public class Square implements Shape {
private Point topLeft;
private double side;

public double area() {
return side*side;

}

public class Rectangle implements Shape {
private Point topLeft;
private double height;
private double width;

public double area() {
return height * width;
}

}

public class Circle implements Shape {
private Point center;
private double radius;
public final double PI = 3.141592653589793;

public double area() {
return PI * radius * radius;

}

De nuevo, vemos la naturaleza complementaria de estas dos definiciones;
totalmente contrarias. Esto ilustra la dicotomia fundamental entre objetos y
estructuras de datos:

El codigo por procedimientos (el que usa estructuras de datos) facilita la
inclusion de nuevas funciones sin modificar las estructuras de datos
existentes. El codigo orientado a objetos, por su parte, facilita la inclusion
de nuevas clases sin cambiar las funciones existentes.

El complemento también es cierto:

El codigo por procedimientos dificulta la inclusion de nuevas estructuras
de datos ya que es necesario cambiar todas las funciones. El codigo
orientado a objetos dificulta la inclusion de nuevas funciones ya que es
necesario cambiar todas las clases.

Por tanto, lo que es dificil para la programacion orientada a objetos es facil
para los procedimientos, y viceversa.

En cualquier sistema complejo habra ocasiones en las que queramos afiadir
nuevos tipos de datos en lugar de nuevas funciones. En dichos casos, los objetos
y la programacion orientada a objetos es lo mas adecuado. Por otra parte, en
ocasiones tendremos que afiadir nuevas funciones en lugar de tipos de datos,
para lo que resulta mas adecuado usar codigo por procedimientos y estructuras
de datos.

Los programadores experimentados saben que la idea de que todo es un
objeto es un mito. En ocasiones solamente queremos sencillas estructuras de
datos con procedimientos que operen en las mismas.

La ley de Demeter

Existe una conocida heuristica denominada Ley de Demeter®™ que afirma que un
modulo no debe conocer los entresijos de los objetos que manipula. Como vimos
en el apartado anterior, los objetos ocultan sus datos y muestran operaciones, lo
que significa que un objeto no debe mostrar su estructura interna a través de
métodos de acceso ya que, si lo hace, mostraria, no ocultaria, su estructura
interna.

En concreto, la ley de Demeter afirma que un método de una clase ¢ sélo
debe invocar los métodos de:

C.

Un objeto creado por f.

Un objeto pasado como argumento a f.

Un objeto en una variable de instancia de c.

El método no debe invocar métodos de objetos devueltos por ninguna de las
funciones permitidas. Es decir, no hable con desconocidos, s6lo con amigos.

El siguiente codigo“" parece incumplir la Ley de Demeter (entre otras
cosas) ya que invoca la funcidon getScratchDir() en el valor devuelto de
getOptions() y después invoca getAbsolutePath() en el valor devuelto de
getScratchDir ().

final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

Choque de trenes

Ese tipo de codigo suele denominarse choque de trenes ya que se asemeja a un
grupo de vagones de tren. Estas cadenas de invocaciones suelen considerarse un
estilo descuidado y deben evitarse [G36]. Conviene dividirlas de esta forma:

Options opts = ctxt.getOptions();
File scratchDir = opts.getScratchDir();
final String outputDir = scratchDir.getAbsolutePath();

¢Incumplen estos dos fragmentos de codigo la Ley de Demeter? Sin duda el
modulo contenedor sabe que el objeto ctxt contiene opciones, que contienen un

directorio scratch, que tiene una ruta absoluta. La funcién sabe demasiado. La
funcion que realiza la invocacion sabe como desplazarse por numerosos objetos
diferentes.

Si incumple o no la Ley de Demeter depende de si ctxt, Options y
ScratchDir son objetos o estructuras de datos. Si son objetos, deberia ocultarse
su estructura interna, no mostrarse, y conocer sus detalles internos seria un claro
incumplimiento de la Ley de Demeter. Por otra parte, si ctxt, Options y
ScratchDir son simples estructuras de datos, mostraran su estructura interna con
naturalidad y la Ley de Demeter no se aplica.

El uso de funciones de acceso complica el problema. Si el codigo se hubiera
escrito de esta otra forma, probablemente no nos preocupariamos de si se
incumple la Ley de Demeter o no.

final String outputDir = ctxt.options.ScratchDir.absolutePath;

El problema seria menos confuso si las estructuras de datos tuvieran
variables publicas y no funciones, y los objetos tuvieran variables privadas y
funciones publicas. Sin embargo, existen estructuras y estandares (como los
bean) que exigen que incluso una sencilla estructura de datos tenga elementos de
acceso y mutacion.

Hibridos

Esta confusion genera ocasionalmente desafortunadas estructuras hibridas mitad
objeto y mitad estructura de datos. Tienen funciones que realizan tareas
significativas y también variables publicas o método publicos de acceso y
mutacion que hacen que las variables privadas sean publicas, y tientan a otras
funciones externas a usar dichas variables de la misma forma que un programa
por procedimientos usaria una estructura de datos®. Estos hibridos dificultan la
inclusién de nuevas funciones y también de nuevas estructuras de datos. Son lo
peor de ambos mundos. Evitelos. Indican un disefio descuidado cuyos autores
dudan, o peor todavia, desconocen, si necesitan protegerse de funciones o tipos.

Ocultar la estructura

¢Qué pasaria si ctxt, options y scratchbDir fueran objetos con un
comportamiento real? Como los objetos deben ocultar su estructura interna, no
podriamos desplazarnos por los mismos. Entonces, ;como obtendriamos la ruta
absoluta del directorio scratch?

ctxt.getAbsolutePathOfScratchDirectoryOption();

(0)

ctxt.getScratchDirectoryOption().getAbsolutePath()

La primera opcion provocaria una explosion de métodos en el objeto ctxt.
La segunda asume que getScratchDirectoryOption() devuelve una estructura
de datos, no un objeto. Ninguna de las opciones parece correcta. Si ctxt es un
objeto, deberiamos indicarle que hiciera algo, no preguntar sobre sus detalles
internos. Entonces, ;para qué queremos la ruta absoluta del directorio scratch?
¢Cbémo vamos a usarla? Fijese en este codigo del mismo médulo (muchas lineas
deSPUES): string outrite = outputvir + ## + classwane. replace(*.”, ') + .class";

FileOutputStream fout = new FileOutputStream(outFile);
BufferedOutputStream bos = new BufferedOutputStream(fout);

La mezcla de distintos niveles de detalle [G34][G6] es preocupante. Puntos,
guiones, extensiones de archivo y objetos File no deben mezclarse de esta
forma, junto al cddigo contenedor. Si lo ignoramos, vemos que la intenciéon de
obtener la ruta absoluta del directorio scratch es crear un archivo de borrador de
un nombre concreto.

¢Y si le dijéramos al objeto ctxt que hiciera esto?

BufferedOutputStream bos = ctxt.createScratchFileStream(classFileName);

Parece algo razonable para un objeto. Permite a ctxt ocultar sus detalles
internos e impide que la funcién actual incumpla la Ley de Demeter y se
desplace por objetos que no deberia conocer.

Objetos de transferencia de datos

La quintaesencia de una estructura de datos es una clase con variables publicas y
sin funciones. En ocasiones se denomina Objeto de transferencia de datos (Data
Transfer Object u OTD). Los OTD son estructuras muy utiles, en especial para
comunicarse con bases de datos o analizar mensajes de conexiones, etc. Suelen
ser los primeros de una serie de fases de traduccion que convierten datos sin
procesar en objetos en el codigo de la aplicacion. Mas comun es la forma de
bean mostrada en el Listado 6-7. Los bean tienen variables privadas manipuladas
por métodos de establecimiento y recuperacion. La cuasi-Encapsulacion de bean
hace que algunos puristas de la programacion orientada a objetos se sientan
mejor pero no ofrece ningun otro beneficio.

Listado 6-7
address.java

public class Address {

private String street;
private String streetExtra;
private String city;
private String state;
private String zip;

public Address(String Street, String streetExtra
String city, String state, String zip) {
this.street = street;
this.streetExtra = streetExtra;
this.city = city;
this.state = state;
this.zip = zip;

}

public String getStreet() {
return street;

}

public String getStreetExtra() {
return streetExtra;

}

public String getCity() {
return city;

}

public String getState() {
return getState;

}

public String getzip() {
return zip;
}
}

Registro activo

Los registros activos son una forma especial de OTD. Son estructuras de datos
con variables publicas (o de acceso por bean) pero suelen tener métodos de
navegacion como save y find. Por lo general, estos registros activos son
traducciones directas de tablas de base de datos u otros origenes de datos.
Desafortunadamente, muchos programadores intentan procesar estas estructuras
de datos como si fueran objetos y les afiaden métodos de reglas empresariales.
Es algo extrafio ya que crea un hibrido entre una estructura de datos y un objeto.

La solucion, evidentemente, consiste en considerar al registro activo una
estructura de datos y crear objetos independientes que contengan las reglas
empresariales y que oculten sus datos internos (que probablemente sean
instancias del propio registro activo).

Conclusion

Los objetos muestran comportamiento y ocultan datos. Esto facilita la inclusion
de nuevos tipos de objetos sin necesidad de cambiar los comportamientos
existentes. También dificulta la inclusion de nuevos comportamientos en objetos

existentes. Las estructuras de datos muestran datos y carecen de comportamiento
significativo. Esto facilita la inclusion de nuevos comportamientos en las
estructuras de datos existentes, pero dificulta la inclusion de nuevas estructuras
de datos en funciones existentes.

En un sistema, en ocasiones necesitaremos la flexibilidad de afadir nuevos
tipos de datos, por lo que preferimos objetos para esa parte del sistema. En otros
casos, querremos afiadir nuevos comportamientos, para lo que preferimos tipos
de datos y procedimientos en esa parte del sistema. L.os buenos programadores
de software entienden estos problemas sin prejuicios y eligen el enfoque mas
adecuado para cada tarea concreta.

Bibliografia

e [Refactoring]: Refactoring: Improving the Design of Existing Code, Martin
Fowler et al., Addison-Wesley, 1999.

7
Procesar errores

por Michael Feathers

Le parecera extrafio encontrar una seccion de control de errores en un libro sobre
codigo limpio. El control de errores es algo que todos tenemos que hacer al
programar. Las entradas pueden ser incorrectas y los dispositivos pueden fallar,
y cuando lo hacen, los programadores somos responsables de comprobar que el
codigo hace lo que debe hacer.

No obstante, la conexion con el codigo limpio debe ser evidente. Muchas
bases de cddigo estan totalmente dominadas por el control de errores. Cuando
digo que estan dominadas, no quiero decir que tnicamente realicen control de
codigo, sino que es practicamente imposible ver lo que el codigo hace debido a
todo ese control de errores. El control de errores es importante, pero si oscurece
la logica, es incorrecto.

En este capitulo detallaremos diversas técnicas y consideraciones que puede
usar para crear codigo limpio y robusto, coédigo que procese los errores con
elegancia y estilo.

Usar excepciones en lugar de codigos devueltos

En el pasado, muchos lenguajes carecian de excepciones. Las técnicas para
procesar e informar de errores eran limitadas. Se definia un indicador de error o
se devolvia un codigo de error que el invocador podia comprobar. El codigo del
Listado 7-1 ilustra estos enfoques.

Listado 7-1
DeviceController.java.

public class DeviceController {

public void sendShutDown() {
DeviceHandle handle = getHandle(DEV1);
// Comprobar el estado del dispositivo
if (handle !'= DeviceHandle.INVALID) {
// Guardar el estado del dispositivo en el campo de registro
retrieveDeviceRecord(handle);
// Si no esta suspendido, cerrarlo
if { record.getStatus() != DEVICE_SUSPENDED) {
pauseDevice(handle);
clearDeviceWorkQueue (handle);
closeDevice(handle);
} else {
logger.log(“Device suspended. Unable to shut down”);
}
} else {
logger.log(“Invalid handle for: ” + DEV1.toString());
}
}

El problema de estos enfoques es que confunden al invocador. El invocador
debe comprobar inmediatamente los errores después de la invocacion.
Desafortunadamente, es algo que se suele olvidar. Por ello, es mas recomendable
generar una excepcion al detectar un error. El codigo de invocacion es mas
limpio. Su légica no se oscurece por el control de errores.

El Listado 7-2 muestra el codigo tras generar una excepcion en los métodos
que pueden detectar errores.

Listado 7-2
DeviceController.java (con excepciones).

public class DeviceController {

public void sendShutDown() {
try {
tryToShutDown();
} catch (DeviceShutDownError e) {
logger.log(e);
}
}

private void tryToShutDown() throws DeviceShutDownError {
DeviceHandle handle = getHandle(DEV1);
DeviceRecord record = retrieveDeviceRecord(handle);

pauseDevice(handle);

clearDevicewWorkQueue(handle);
closeDevice(handle);

}

private DeviceHandle getHandle(DeviceID id) {

throw new DeviceShutDownError(“Invalid handle for: ” - id.toString());

Comprobara que es mucho mas limpio. No es cuestion de estética. El
codigo es mejor porque se solventan dos preocupaciones: el algoritmo para
apagar el dispositivo y el control de errores ahora se encuentran separados.
Puede ver cada uno de ellos y entenderlos de forma independiente.

Crear primero la instruccion try-catch-finally

Uno de los aspectos mas interesantes de las excepciones es que definen un
dambito en el programa. Al ejecutar codigo en la parte try de una instruccion
try-catch-finally, indicamos que la ejecucion se puede cancelar en cualquier
momento y después retomar en catch.

Los bloques try son como las transacciones, catch debe salir del programa
en un estado coherente, independientemente de lo que suceda en try. Por este
motivo, es aconsejable iniciar con una instruccion try-catch-finally el codigo
que genere excepciones. De este modo define lo que debe esperar el usuario del
codigo, independientemente de que se produzca un error en el codigo ejecutado
en la clausula try.

Veamos un ejemplo. Imagine que tiene que crear un co6digo que acceda a un
archivo y lea objetos serializados.

Comenzamos con una prueba de unidad que muestra que obtendremos una
excepcion cuando el archivo no exista:

@Test(expected = StorageException.class)
public void retrieveSectionShouldThrowOnInvalidFileName() {
sectionStore.retrieveSection(“invalid - file”);

}

La prueba nos lleva a crear lo siguiente:

public List<RecordedGrip> retrieveSection(String sectionName) {
// se devuelve un resultado ficticio hasta tener una implementacién real
return new ArrayList<RecordedGrip>();

}

Nuestra prueba falla ya que no genera una excepcion. Tras ello, cambiamos
la implementacion para que intente acceder a un archivo no valido. Esta
operacién genera una excepcion:

public List<RecordedGrip> retrieveSection (String sectionName) {
try {
FileInputstream stream = new FileInputStream(sectionName)
} catch (Exception e) {
throw new StorageException(“retrieval error”, e);

}

return new ArraylList<RecordedGrip>();

}

Ahora la prueba es correcta ya que capturamos la excepcion y ya podemos
refactorizar. Podemos reducir el tipo de la excepcién capturada para que
coincida con el tipo generado desde el constructor FileInputStream:
FileNotFoundException: public List<recordedcrip> retrievesection(string sectionName) {

try {
FileInputStream stream = new FileInputStream(sectionName);
stream.close();

} catch (FileNotFoundException e) {
throw new StorageException(“retrieval error”, e);

3eturn new ArraylList<RecordedGrip>();

Ahora que hemos definido el ambito con una estructura try-catch,
podemos usar TDD para disefiar el resto de la l6gica necesaria. Dicha légica se
afiade entre la creacion de FileInputStream y el cierre, y podemos pretender
que no pasa nada incorrecto.

Intente crear pruebas que fuercen las excepciones, para después afiadir al
controlador un comportamiento que satisfaga dichas pruebas. De este modo
primero creara el ambito de transaccion del bloque try y podra mantener la
naturaleza de transaccion del ambito.

Usar excepciones sin comprobar

El debate ha terminado. Durante afios, los programadores de Java han debatido
las ventajas y los problemas de las excepciones comprobadas. Cuando
aparecieron en la primera version de Java, parecian una gran idea. La firma de
todos los métodos enumeraria todas las excepciones que se podian pasar a su
invocador. Es mas, estas excepciones formaban parte del tipo del método. El
codigo no se compilaria si la firma no coincidia con lo que el cédigo iba a hacer.

En aquel momento, pensabamos que las excepciones comprobadas eran una
gran idea y si, ofrecian ciertas ventajas. Sin embargo, ahora es evidente que no
se necesitan para crear software robusto. C# carece de excepciones comprobadas
y, a pesar de los intentos, C++ tampoco, como sucede en Python o Ruby. Y en
todos estos lenguajes se puede crear software robusto. Por ello, debemos decidir
si las excepciones comprobadas valen su precio.

¢Qué precio? El precio de las excepciones comprobadas es un
incumplimiento del principio abierto/cerrado®. Si genera una excepcion
comprobada desde un método de su cédigo y la clausula catch se encuentra tres
niveles por debajo, debe declarar dicha excepcién en la firma de todos los
métodos comprendidos entre su posicion y catch. Esto significa que un cambio

en un nivel inferior del software puede forzar cambios de firma en muchos
niveles superiores. Sera necesario volver a generar e implementar los modulos
cambiados, aunque no cambien los elementos a los que hacen referencia.

Piense en la jerarquia de invocacion de un sistema. Las funciones de la
parte superior invocan a las funciones situadas debajo, que invocan a otras
funciones inferiores y asi sucesivamente. Imagine que una de las funciones de
nivel inferior se modifica de forma que debe generar una excepcion. Si la
excepcion se comprueba, la firma de la funcion tendra que afiadir una clausula
throws. Pero esto significa que todas las funciones que invoquen nuestra funcién
modificada también tendran que cambiarse para capturar la nueva excepcion o
para afadir la correspondiente clausula throws en su firma. Y asi
indefinidamente. El resultado final es una cascada de cambios que pasan desde
los niveles inferiores del software hasta los superiores. La encapsulacion se
rompe ya que todas las funciones en la ruta de throw deben conocer detalles de
la excepcion de nivel inferior. Como el cometido de las excepciones es
permitimos procesar errores a distancia, es una lastima que las excepciones
comprobadas rompan la encapsulacion de esta forma.

Las excepciones comprobadas pueden ser ttiles si tiene que crear una
biblioteca critica: tendra que capturarlas. Pero en el desarrollo de aplicaciones
generales, los costes de dependencia superan las ventajas.

Ofrecer contexto junto a las excepciones

Las excepciones que genere deben proporcionar el contexto adecuado para
determinar el origen y la ubicacion de un error. En Java, puede obtener un
rastreo de pila de cualquier excepcion; sin embargo, no le indicara el cometido
de la funcion fallida.

Redacte mensajes de error informativos y paselos junto a sus excepciones.
Mencione la operacion fallida y el tipo de fallo. Si guarda registros en su
aplicacion, incluya informacion suficiente para poder registrar el error en la
clausula catch.

Definir clases de excepcion de acuerdo a las
necesidades del invocador

Existen varias formas de clasificar los errores. Podemos hacerlo por origen

(¢provienen de uno u otro componente?) o por tipo (¢son fallos del dispositivo,
de la red o errores de programacion?). Sin embargo, al definir clases de
excepcion en una aplicacion, debemos preocuparnos principalmente en como se
capturan.

Veamos un pobre ejemplo de clasificacion de excepciones. Es una
instruccion try-catch-finally de la invocacion de una biblioteca de terceros.
Abarca todas las excepciones que las invocaciones pueden generar:

ACMEPort port = new ACMEPort(12);

try {
port.open();
} catch (DeviceResponseException e) {
reportPortError(e);
logger.log{“Device response exception”, e);
} catch (ATM1212UnlockedException e) {
reportPortError(e);
logger.log(“Unlock exception”, e);
} catch (GMXError e) {
reportPortError(e);
logger.log(“Device response exception”);
} finally {

}

Esta instruccion contiene elementos duplicados, algo que no deberia
sorprendernos. En muchos casos de control de excepciones, el trabajo que
realizamos es relativamente estandar independientemente de la causa real.
Debemos registrar un error y asegurarnos de poder continuar.

En este caso, como sabemos que el trabajo es el mismo independientemente
de la excepcién, podemos simplificar el codigo si incluimos la API invocada y
nos aseguramos de que devuelve un tipo de excepcion comun:

LocalPort port = new LocalPort(12);

try {
port.open();

} catch (PortDeviceFailure e) {
reportError(e);
logger.log(e.getMessage(), e);

} finally {

}

Nuestra clase LocalPort es un simple envoltorio que captura y traduce
excepciones generadas por la clase ACMEPort:

public class LocalPort {
private ACMEPort innerPort;

public LocalPort(int portNumber) {
innerPort = new ACMEPort(portNumber);

}

public void open() {
try {
innerPort.open();
} catch (DeviceResponseException e) {
throw new PortDeviceFailure(e);
} catch (ATM1212uUnlockedException e) {
throw new PortDeviceFailure(e);
} catch (GMXError e) {
throw new PortDeviceFailure(e);
}
}

Los envoltorios como el definido para ACMEPort pueden ser muy utiles. De
hecho, es recomendable envolver API de terceros. Al hacerlo, se minimizan las
dependencias: puede cambiar a otra biblioteca diferente sin apenas problemas y
el envoltorio también facilita imitar invocaciones de terceros cuando se prueba el
codigo. Una ultima ventaja es que no estamos limitados a las decisiones de
disefio de API de un determinado fabricante. Puede definir una API que le
resulte comoda. En el ejemplo anterior, definimos un tnico tipo de excepcion
para el fallo de puertos y podemos escribir un cédigo mucho mas limpio. A
menudo, una unica clase de excepcion es suficiente para una zona concreta del
codigo. La informacion enviada con la excepcion puede distinguir los errores.
Use clases diferentes s6lo para capturar una excepcion y permitir el paso de otra
distinta.

Definir el flujo normal

Si sigue los consejos de apartados anteriores, realizara una importante
separacion entre la l6gica empresarial y el control de errores. La mayoria de su
codigo parecera un algoritmo limpio y sin adornos. Sin embargo, el proceso
desplaza la deteccion de errores hacia los bordes del programa. Debe envolver
API externas para poder generar sus propias excepciones y definir un
controlador por encima del codigo para poder procesar calculos cancelados. En
muchos casos es el enfoque mas acertado, pero en ocasiones conviene no
cancelar.

Veamos un ejemplo, un cédigo extrafio que suma gastos en una aplicacion
de facturacion:

try {
MealExpenses expenses = expenseReportDAO.getMeals(employee.getID());
m_total += expenses.getTotal();

} catch(MealExpensesNotFound e) {
m_total += getMealPerDiem();

}

En esta empresa, si las comidas son gastos, pasan a formar parte del total.

Si no lo son, los trabajadores reciben una cantidad diaria para la comida. La
excepcion entorpece la logica. Seria mas adecuado no tener que procesar el caso
especial y el codigo seria mucho mas sencillo: eaexpenses expenses -

expenseReportDAO.getMeals(employee.getID());
m_total += expenses.getTotal();

¢De verdad que el codigo puede ser tan simple? Pues si. Podemos cambiar
ExpenseReportDAO para que siempre devuelva un objeto MealExpense. Si no hay
gastos de comida, devuelve un objeto MealExpense que devuelve la dieta diaria
(:()II]() t()tfil: public class PerDiemMealExpenses implements MealExpenses {
public int getTotal() {
// devolver la dieta diaria predeterminada

}
}

Es lo que se denomina Patron de Caso Especial [Fowler]. Se crea una clase
o se configura un objeto que procese un caso especial. Al hacerlo, el codigo
cliente no tiene que procesar comportamientos excepcionales. Dichos
comportamientos se encapsulan en un objeto de caso especial.

No devolver Null

Creo que toda descripcion del control de errores debe mencionar los elementos
proclives a errores. El primero es devolver null. He perdido la cuenta de la
cantidad de aplicaciones en que las que linea si y linea también se comprueba
null:

public void registerItem(Item item) {
if (item != null) {
ItemRegistry registry = peristentStore.getItemRegistry();
if (registry != null) {
Item existing = registry.getItem(item.getID());
if (existing.getBillingPeriod().hasRetailOwner()) {
existing.register(item);
}
}
}
}

Si trabaja en una base de codigo como ésta, puede que no le parezca tan
mala, pero lo es. Al devolver null, basicamente nos creamos trabajo y
generamos problemas para los invocadores. Basta con que falte una
comprobacion de null para que la aplicacion pierda el control.

¢Se ha fijado en que no hay una comprobacion de null en la segunda linea
de la instruccion if anidada? ;Qué sucederia en tiempo de ejecucion si
persistentStore fuera null? Se generaria NullPointerException en tiempo
de ejecucion y se capturaria NullPointerException en el nivel superior o no. En
ambos casos es incorrecto. ;Qué deberia hace como respuesta a la generacion de
NullPointerException desde el interior de su aplicacién? Se puede afirmar que
el problema de este codigo es la ausencia de una comprobacién de null pero en

realidad el problema es su exceso. Si siente la tentacion de devolver null desde
un método, pruebe a generar una excepcion o a devolver un objeto de caso
especial. Si invoca un método que devuelva null desde una API de terceros,
envuélvalo en un método que genere una excepcion o devuelva un objeto de
caso especial. En muchos casos, los objetos de caso especial son un remedio
sencillo. Imagine que tiene el siguiente cOdig0: List<emioyees enployees = getemployees();
if (employees != null) {
O otathay o= o.getpay())

}
}

Ahora, getEmployees puede devolver null, ;pero es necesario? Si
cambiamos getEmployee para que devuelva una lista vacia, podremos limpiar el
codigo:

List<Employee> employees = getEmployees();
for(Employee e : employees) {

totalPay += e.getPay();
}

Afortunadamente, Java dispone de Collections.emptyList() y devuelve
una lista inmutable predefinida que podemos usar para este cometido:

public List<Employee> getEmployees() {
if (.. there are no employees ..)
return Collections.emptyList();

}

Si usa este tipo de cbédigo, minimizara la presencia de
NullPointerException y su codigo sera mas limpio.

No pasar Null

Devolver null desde métodos es incorrecto, pero es peor pasar null a métodos.
A menos que trabaje con una API que espere que pase null, debe evitarlo
siempre que sea posible. Veamos otro ejemplo, un sencillo método que calcula
una métrica para dos puntos: pwiic ciass vetricscalcutator

{

public double xProjection(Point p1, Point p2) {
return (p2.x - pl1.x) * 1.5;
}

¢Qué sucede cuando alguien pasa null como argumento?

calculator.xProjection(null, new Point (12, 13));

Se genera NullPointerException, evidentemente.
¢Como solucionarlo? Podriamos crear un nuevo tipo de excepcion y
generarla:

public class MetricsCalculator
{
public double xProjection(Point p1, Point p2) {
if (p1==null || p2==null) {
throw InvalidArgumentException(

“Invalid argument for MetricsCalculator.xProjection”);

}
return (p2.x - p1.x) * 1.5; }

}
}

:Mejor? Puede que sea mejor que una excepcion de puntero nulo, pero
recuerde que debe definir un controlador para InvalidArgumentException.
¢Qué debe hacer el controlador? ;Hay alguna forma correcta de hacerlo?

Existe otra alternativa, usar un grupo de afirmaciones:

public class MetricsCalculator (
public double xProjection{Point p1, Point p2) {
assert pl != null : “p1 should not be null”;
assert p2 != null : “p2 should not be null”;
return (p2.x - pl.x) * 1.5;
}
}

Es documentacion correcta pero no soluciona el problema. Si alguien pasa
null, seguira produciéndose un error de tiempo de ejecucion.

En la mayoria de lenguajes de programacion no hay una forma correcta de
procesar un null pasado por accidente. Como éste es el caso, el enfoque racional
es impedir que se pase null de forma predeterminada. Si lo hace, puede disefiar
codigo sabiendo que null en una lista de argumentos indica un problema y los
errores seran menores.

Conclusion

El codigo limpio es legible pero también debe ser robusto. No son objetivos
opuestos. Podemos crear codigo limpio y robusto si consideramos el control de
errores una preocupacion diferente, algo que vemos de forma independiente
desde nuestra légica principal. Si somos capaces de lograrlo, razonaremos de
forma independiente y podemos aumentar la capacidad de mantenimiento de
nuestro codigo.

Bibliografia

e [Martin]: Agile Software Development: Principles, Patterns, and
Practices, Robert C. Martin, Prentice Hall, 2002.

8
Limites

por James Grenning

1

L LA R SR R

[I

Eﬂl‘ T R TR T MR ITT

No es habitual que controlemos todo el software de nuestros sistemas. En
ocasiones, adquirimos paquetes de terceros o usamos codigo abierto. En otros
casos, dependemos de equipos de nuestra propia empresa para producir
componentes 0 subsistemas que utilizamos. De algin modo debemos integrar
este codigo externo con el nuestro. En este capitulo veremos practicas y técnicas
para definir con claridad los limites de nuestro software.

Utilizar codigo de terceros

Existe una tension natural entre el proveedor de una interfaz y el usuario de la
misma. Los proveedores de paquetes y estructuras de terceros abogan por una
capacidad de aplicacion global para poder trabajar en diversos entornos y atraer
a un publico mas amplio. Los usuarios, por su parte, desean una interfaz centrada
en sus necesidades concretas. Esta tension puede provocar problemas en los
limites de nuestros sistemas.

Analicemos java.util.Map como ejemplo. Como puede apreciar en la
siguiente lista. Map tiene una amplia interfaz con numerosas prestaciones. Esta
potencia y flexibilidad es muy ttil, pero también puede ser un problema. Por
ejemplo, nuestra aplicacion puede generar un Map y compartirlo. Nuestra
intencion puede que sea que ninguno de los receptores del mapa borre sus
elementos. Pero en la parte superior de la lista encontramos el método clear ().
Cualquier usuario del mapa puede borrarlo. O puede que nuestra convencion de
disefio determine que solo se puedan almacenar objetos concretos en el mapa,
pero Map no limita de forma fiable los tipos de objetos que admite. Cualquier
usuario puede afiadir elementos de cualquier tipo a cualquier mapa.

clear() void - Map

containsKey (Object key) boolean - Map
containsValue (Object value) boolean - Map
entrySet() Set - Map

equals(Object o) boolean - Map

get(Object key) Object - Map

getClass() Class<? extends Object> - Object
hashCode() int - Map

isEmpty() boolean - Map

keySet() Set - Map

notify() void - Object

notifyAll() void - Object

put(Object key, Object value) Object - Map
putAll(Map t) void - Map

remove(Object key) Object - Map

size() int - Map

toString() String - Object

values() Collection - Map

wait() void - Object

wait(long timeout) void - Object

wait(long timeout, int nanos) void - Object

Figura 8.1. Los métodos de Map

Si nuestra aplicacién necesita un mapa de Sensor, comprobara que los
sensores se definen de esta forma:

Map sensors = new HashMap();

Tras ello, cuando otra parte del codigo necesite acceder a sensor, vemos
este codigo:

Sensor s = (Sensor)sensors.get(sensorId);

No lo vemos una sola vez, sino repetidamente a lo largo del cédigo. El
cliente de este codigo es responsable de obtener un objeto de Map y convertirlo al
tipo correcto. Funciona, pero no es codigo limpio. Ademas, este codigo no
cuenta su historia como deberia. La legibilidad del codigo se podria mejorar
mediante el uso de genéricos, como se indica a continuacion: wap<sensor> sensors = new

HashMap<Sensor>();

Sensor s = sensors.get(sensorId);

Sin embargo, esto no soluciona el problema de que Map<Sensor> ofrezca
mas prestaciones de las que necesitamos o deseamos.

Al pasar una instancia de Map<Sensor> en el sistema, significa que habra
muchos puntos que corregir si la interfaz de Map cambia. Seguramente piense
que son cambios improbables, pero recuerde que se han producido al afiadir
compatibilidad con genéricos en Java 5. Sin duda hemos visto sistemas que
impiden el uso de genéricos debido a la gran cantidad de cambios necesarios
para compensar el uso liberal de Map.

Una forma mas limpia de usar Map seria la siguiente. A ninguin usuario
Sensor le importa si se usan genéricos o no. Esa opcion se ha convertido (y
siempre deberia serlo) en un detalle de implementacion.

public class Sensors {
private Map sensors = new HashMap();

public Sensor getById(String id) {
return (Sensor) sensors.get(id);

3/corte

La interfaz en el limite (Map) esta oculta. Ha conseguido evolucionar sin
apenas impacto en el resto de la aplicacion. El uso de genéricos ya no es un
problema ya que la conversion y la administracion de tipos se procesa dentro de
la clase Sensors.

Esta interfaz también se ha ajustado y limitado a las necesidades de la
aplicacion. Genera codigo mas facil de entender y con menor probabilidad de
errores. La clase Sensors puede aplicar las reglas empresariales y de disefio.

No sugerimos que se encapsulen de esta forma todos los usos de Map, sino

que no se pase Map (ni otras interfaces en el limite) por el sistema. Si usa una
interfaz de limite como Map, manténgala dentro de la clase o la familia de clases
en la que se use. Evite devolverla o aceptarla como argumento de API publicas.

Explorar y aprender limites

El cédigo de terceros nos permite obtener mayor funcionalidad en menos
tiempo. ¢Por donde empezamos cuando queremos utilizar un paquete de
terceros? Nuestra labor no es probar el codigo, pero si crear pruebas para el
codigo de terceros que utilicemos.

Imagine que no es evidente como usar una biblioteca de terceros.
Podriamos perder uno o varios dias en leer la documentacion y decidir como
usarla. Tras ello, podriamos escribir el codigo para usar el cédigo de terceros y
comprobar si se comporta de la forma esperada. No deberiamos sorprendernos
por tener que realizar extensas sesiones de depuracion intentando localizar
errores en nuestro codigo o en el suyo.

Aprender el codigo de terceros es complicado, y también integrarlo. Hacer
ambas cosas al mismo tiempo es el doble de complicado. Necesitamos un
enfoque diferente. En lugar de experimentar y probar el nuevo material en
nuestro codigo de produccion, podriamos crear pruebas que analicen nuestro
entendimiento del cédigo de terceros. Jim Newkirk las denomina pruebas de
aprendizaje™.

En las pruebas de aprendizaje, invocamos la API de terceros como
supuestamente la usariamos en nuestra aplicacién. Basicamente realizamos
experimentos controlados para comprobar si la entendemos. Las pruebas se
centran en lo que queremos obtener de la API.

Aprender log4j

Imagine que desea usar el paquete de Apache log4j en lugar de su propio
dispositivo de registro personalizado. Lo descarga y abre la pagina inicial de la
documentacion. Sin una lectura exhaustiva, crea el primer caso de prueba con la
esperanza de que escriba hello en la consola.

@Test

public void testLogCreate() {
Logger logger = Logger.getLogger(“MyLogger”);
logger.info(“hello”);

}

Al ejecutarlo, el registrador genera un error que nos indica que necesitamos

algo denominado Appender. Tras investigar, descubrimos que existe un elemento
ConsoleAppender. Creamos ConsoleAppender y comprobamos si hemos
conseguido revelar los secretos del registro en la consola.

@Test

public void testLogAddAppender() {
Logger logger = Logger.getLogger (“MyLogger”);
ConsoleAppender appender = new ConsoleAppender();
logger.addAppender (appender);
logger.info(“hello”);

En esta ocasion descubrimos que Appender carece de flujo de salida, algo
extrafio, ya que parece 16gico que lo tuviera. Tras recurrir a Google, probamos lo
siguiente:

@Test
public void testLogAddAppender() {
Logger logger = Logger.getLogger(“MyLogger”);
logger.removeAllAppenders();
logger.addAppender (new ConsoleAppender (
new PatternLayout(“%p %t %m%n”),
ConsoleAppender.SYSTEM_OUT));
logger.info(“”hello”);

Funciona; en la consola aparece un mensaje con la palabra hello. Resulta
extrafio tener que indicarle a ConsoleAppender que escriba en la consola.

Al eliminar el argumento ConsoleAppender.SystemOut, vemos que hello
sigue impreso. Pero al eliminar PatternLayout, de nuevo vemos la queja de la
falta de un flujo de salida. Es un comportamiento muy extrafio.

Si nos fijamos en la documentacion, vemos que el constructor
ConsoleAppender predeterminado no esta configurado, lo que no parece
demasiado obvio ni util. Parece mas bien un error o una incoherencia de 1log4j.

Tras nuevas busquedas en Google, investigaciones y pruebas, conseguimos
el Listado 8-1. Hemos descubierto como funciona log4j y hemos codificado
esos conocimientos en un grupo de sencillas pruebas de unidad.

Listado 8-1
LogTest.java.

public class LogTest (
private Logger logger;

@Before

public void initialize() {
logger = Logger.getLogger(“logger”);
logger.removeAllAppenders();
Logger.getRootLogger ().removeAllAppenders();

}

@Test

public void basicLogger() {
BasicConfigurator.configure();
logger.info(“basicLogger”);

}

@Test
public void addAppenderwWithStream() {
logger.addAppender (new ConsoleAppender (
new PatternLayout (“%p %t %m%n”),
ConsoleAppender.SYSTEM_OUT));
logger.info(“addAppenderwWithStream”);

}

@Test
public void addAppenderWithoutStream() {
logger.addAppender (new ConsoleAppender (
new PatternLayout(“%p %t %m%n”)));
logger.info(“addAppenderWithoutStream”);
}

Ahora sabemos como inicializar un sencillo registrador de consola y
encapsular ese conocimiento en nuestra propia clase de registro para que el resto
de la aplicacion se aisle de la interfaz de limite log4j.

Las pruebas de aprendizaje son algo mas que
gratuitas

Las pruebas de aprendizaje no cuestan nada. De todas formas, hemos tenido que
aprender la API y crear las pruebas fue una forma sencilla y aislada de adquirir
esos conocimientos. Las pruebas de aprendizaje fueron experimentos precisos
que permitieron aumentar nuestros conocimientos.

Las pruebas no sélo son gratuitas, sino también rentables. Cuando
aparezcan nuevas versiones del paquete de terceros, ejecutamos las pruebas de
aprendizaje para comprobar si hay diferencias de comportamiento.

Las pruebas de aprendizaje demuestran que los paquetes de terceros que
usamos funcionan de la forma esperada. Una vez integrados, no hay garantia de
que el codigo de terceros sea compatible con nuestras necesidades. Los autores
originales se veran presionados para cambiar el codigo y ajustarlo a sus propias
necesidades. Corregiran errores y afiadiran nuevas funciones. En cada version
surgiran nuevos riesgos. Si el paquete de terceros cambia de una forma
incompatible con nuestras pruebas, lo sabremos al instante.

Independientemente de que necesite los conocimientos proporcionados por
las pruebas de aprendizaje, un limite claro debe estar respaldado por un conjunto
de pruebas que ejerciten la interfaz de la misma forma que hace el codigo de
produccion. Sin estas pruebas de limites para facilitar la transicién, podriamos
conservar la version antigua mas tiempo del necesario.

Usar codigo que todavia no existe

Existe otro tipo de limite, que separa lo conocido de lo desconocido. En
ocasiones, nuestro conocimiento del cédigo parece desvanecerse. Lo que hay al
otro lado del limite es desconocido (al menos por el momento). En ocasiones,

decidimos no mirar mas alla del limite.

Hace afios formé parte de un equipo de desarrollo de software para un
sistema de comunicacién por radio. Habia un subsistema, el Transmisor, que
apenas conociamos y cuya interfaz todavia no se habia disefiado. Como no
queriamos quedarnos parados, comenzamos a trabajar alejandonos de la parte
desconocida del codigo.

Sabiamos perfectamente donde acababa nuestro mundo y comenzaba el
nuevo. Mientras avanzabamos, en ocasiones nos topabamos con este limite.
Aungque la ignorancia ocultaba nuestra vision mas alla del limite, sabiamos como
queriamos que fuera la interfaz. Queriamos decirle al transmisor algo como lo
siguiente:

Ajustar el transmisor en la frecuencia proporcionada y emitir una
representacion analogica de los datos que provienen de este flujo.

No sabiamos cémo hacerlo ya que todavia no se habia disefiado la API. Por
ello decidimos determinar después los detalles.

Para no quedarnos bloqueados, definimos nuestra propia interfaz. Le dimos
un nombre sencillo, Transmitter. Le asignamos el método transmit que
aceptaba una frecuencia y un flujo de datos. Es la interfaz que deseabamos haber
tenido.

Lo mejor de escribir la interfaz que deseabamos haber tenido era que la
controlabamos. Esto hace que el codigo cliente sea mas legible y se cifia a los
objetivos previstos.

En la figura 8.1 se aprecia que aislamos las clases
CommunicationsController de la API del transmisor (que no controlabamos y
estaba por definir). Al usar nuestra propia interfaz especifica de la aplicacion, el
codigo de CommunicationsController era limpio y expresivo. Una vez definida
la API del transmisor, creamos TransmitterAdapter para reducir las distancias.
El adaptador® encapsulaba la interaccion con la API y ofrecia un unico punto en
el que evolucionaba.

1
Controlador 5

de comunicacion

Interfaz del transmisor

+transmitter{frecuency,stream)

i

Transmisar Adaptador Futura API
falso del transmisor del transmisor

Figura 8.1. Prediccién del transmisor

Este disefio también nos ofrece un sello™ en el cddigo para realizar pruebas.
Con un elemento FakeTransmitter, podemos probar las clases
CommunicationsController. También podemos crear pruebas de limite una vez
diseflada la API Transmitter para asegurarnos de que la utilizamos
correctamente.

Limites limpios

En los limites suceden cosas interesantes. Los cambios es una de ellas. Los
disefios de codigo correctos acomodan los cambios sin necesidad de grandes
modificaciones. Cuando usamos codigo que no controlamos, hay que prestar
especial atencion a proteger nuestra inversion y asegurarnos de que los cambios
futuros no son demasiado costosos. El codigo en los limites requiere una
separacion evidente y pruebas que definan expectativas. Debemos evitar que el
codigo conozca los detalles de terceros. Es mas aconsejable depender de algo
que controlemos que de algo que no controlemos, y menos todavia si nos
controla. Los limites de terceros se gestionan gracias a la presencia de puntos
minimos en el codigo que hagan referencia a los mismos. Podemos envolverlos
como hicimos con Map o usar un adaptador para convertir nuestra interfaz
perfecta en la interfaz proporcionada. En cualquier caso, el cédigo se lee mejor,
promueve el uso coherente e interno en el limite y hay menos puntos de
mantenimiento cuando cambie el codigo de terceros.

Bibliografia

e [BeckTDD]: Test Driven Development, Kent Beck, Addison-Wesley, 2003.

e [GOF]: Design Patterns: Elements of Reusable Object Oriented Software,
Gamma et al., Addison Wesley, 19%.
e [WELC]: Working Effectively with Legacy Code, Addison-Wesley, 2004.

9
Pruebas de unidad

Nuestra profesion ha evolucionado mucho en los tltimos 10 afios. En 1997 nadie
habia oido hablar del Desarrollo guiado por pruebas (DGP). Para la mayoria, las
pruebas de unidad eran pequefios fragmentos de codigo desechable que
creabamos para asegurarnos de que nuestros programas funcionaban.
Escribiamos clases y métodos, y después codigo ad hoc para probarlos, lo que
implicaba algun tipo de programa controlador que nos permitiera interactuar
manualmente con el programa que habiamos escrito.

Recuerdo crear un programa de C++ para un sistema incrustado de tiempo
real a mediados de la década de 1990. El programa era un sencillo temporizador

con la siguiente firma:

void Timer::ScheduleCommand(Command* theCommand, int milliseconds)

La idea era sencilla; el método execute de Command se ejecutaba en un
nuevo subproceso tras el nimero especificado de milisegundos. El problema era
como probarlo. Confeccioné un sencillo programa controlador que escuchaba al
teclado. Cada vez que se introducia un caracter, se programaba un comando que
escribia el mismo caracter cinco segundos después. Introduje una ritmica
melodia en el teclado y esperé a que se reprodujera en pantalla cinco segundos
después:

«l... want-a-girl... just... like-the-girl-who-marr... ied... dear... old... dad.»

Incluso tarareé la melodia mientras pulsaba la tecla, y la volvi a cantar
cuando aparecieron los puntos en la pantalla.

Fsa fue mi prueba. Cuando vi que funcionaba y se lo mostré a mis
compafieros, me deshice del codigo de prueba.

Como he afirmado, nuestra profesion ha evolucionado mucho. Ahora
crearia una prueba que garantizara el funcionamiento de hasta el mas minimo
detalle del codigo. Aislaria el codigo del sistema operativo en lugar de invocar
las funciones estandar de temporizacion. Las imitaria para tener control total
sobre el tiempo. Programaria comandos que definieran indicadores Booleanos y
avanzaria el tiempo, para observar los indicadores y asegurarme de que pasaran
de false a true al cambiar el tiempo al valor correcto. Cuando superara una
serie de pruebas, comprobaria que fueran adecuadas para todo el que tuviera que
trabajar con el codigo. Me aseguraria de comprobar las pruebas y el codigo en el
mismo paquete. Si, hemos avanzado mucho, pero nos queda mucho por avanzar.
Los movimientos Agile y TDD han animado a muchos programadores a crear
pruebas de unidad automatizadas y cada vez son mas. Pero en esta alocada
carrera por afladir pruebas a nuestra disciplina, muchos programadores han
pasado por alto dos de los aspectos mas sutiles e importantes de disefiar pruebas
de calidad.

Las tres leyes del DGP

Todos sabemos que el DGP nos pide que primero creemos las pruebas de
unidad, antes que el codigo de produccién. Pero esa norma es solo la punta del

iceberg. Tenga en cuenta las tres siguientes leyes“:

e Primera ley: No debe crear codigo de produccién hasta que haya creado
una prueba de unidad que falle.

e Segunda ley: No debe crear mas de una prueba de unidad que baste como
fallida, y no compilar se considera un fallo.

e Tercera ley: No debe crear mas cédigo de produccion que el necesario para
superar la prueba de fallo actual.

Estas tres leyes generan un ciclo de unos 30 segundos de duracion. Las
pruebas y el codigo de produccion se crean de forma conjunta, las pruebas unos
segundos antes que el codigo. Si trabajamos de esta forma, crearemos decenas de
pruebas al dia, cientos al mes y miles al afio. Si trabajamos de esta forma, las
pruebas abarcaran todos los aspectos de nuestro codigo de produccion. El
tamafio de dichas pruebas, que puede ser similar al del cédigo de produccion,
puede suponer un problema de administracion.

Realizar pruebas limpias

Hace unos afios me pidieron que dirigiera un equipo que habia decidido
explicitamente que su codigo de prueba no debia mantenerse con los mismos
estandares de calidad que su cédigo de produccion. Podian incumplir las reglas
en sus pruebas de unidad. La premisa era «Rapido y directo». No era necesario
que las variables tuvieran nombres adecuados, ni que las funciones de prueba
fueran breves y descriptivas. No era necesario que el codigo de prueba estuviera
bien disefiado. Bastaba con que funcionara y abarcara el cédigo de produccion.

Puede que algunos lectores empaticen con esta decisién. Puede que en el
pasado creara el tipo de pruebas que cree para la clase Timer. Supone un gran
paso crear ese tipo de pruebas desechables a disefiar una suite de pruebas de
unidad automatizadas. Por ello, como el equipo que dirigia, puede decidir que
pruebas incorrectas sea mejor que no tener pruebas.

Pero el equipo no se daba cuenta que tener pruebas incorrectas era igual o
peor que no tener prueba alguna. El problema es que las pruebas deben cambiar
de acuerdo a la evolucion del codigo. Cuanto menos limpias sean, mas dificil es
cambiarlas. Cuando mas enrevesado sea el codigo de prueba, mas probabilidades
de que dedique mas tiempo a afiadir nuevas pruebas a la suite que el empleado
en crear el nuevo cddigo de produccion. Al modificar el codigo de produccion,
las pruebas antiguas comienzan a fallar y el desastre impide que las pruebas se

superen, por lo que acaban por convertirse en un obstaculo interminable.

Entre versiones, aument6 el coste de mantener la suite de pruebas de mi
equipo. Acab6 por convertirse en la principal queja entre los desarrolladores.
Cuando los directores preguntaron sobre este aumento, los desarrolladores
culparon a las pruebas. Al final, se vieron obligados a descartar la suite de
pruebas completa.

Pero sin una suite de pruebas perdieron la posibilidad de garantizar el
funcionamiento esperado de los cambios en el cddigo. Sin una suite de pruebas
no podian asegurar que los cambios en una parte del sistema no afectaran a otras
diferentes. Los defectos aumentaron, lo que propicié que temieran realizar
cambios. Dejaron de limpiar su codigo de produccion por miedo a que los
cambios fueran dafiinos. El cédigo de produccion comenzé a corromperse. Al
final, se quedaron sin pruebas, con un codigo de produccion enmarafiado y
defectuoso, clientes frustrados y la sensacion de que su esfuerzo les habia
fallado.

En cierto modo tenian razon. Su esfuerzo les habia fallado. Pero fue su
decision de permitir que las pruebas fueran incorrectas lo que provoco el fallo. Si
hubieran empleado pruebas limpias, su esfuerzo no habria fallado. Puedo
afirmarlo con cierta seguridad porque he participado y dirigido muchos equipos
que han tenido éxito gracias a pruebas de unidad limpias.

La moraleja de la historia es sencilla: el cédigo de prueba es tan importante
como el de produccion. No es un ciudadano de segunda. Requiere concentracion,
disefio y cuidado. Debe ser tan limpio como el codigo de produccién.

Las pruebas propician posibilidades

Si sus pruebas no son limpias, las perdera. Y sin ellas pierde lo mismo que hace
que su codigo de produccion sea flexible. Si, ha leido bien. Las pruebas de
unidad son las que hacen que el codigo sea flexible y se pueda mantener y
reutilizar. La razon es sencilla. Si tiene pruebas, no tendra miedo a realizar
cambios en el cddigo. Sin pruebas, cada cambio es un posible error.
Independientemente de la flexibilidad de su arquitectura, de la division del
disefio, sin pruebas tendra miedo a realizar cambios por la posibilidad de afiadir
errores no detectados.

Pero con las pruebas ese miedo desaparece. Cuanto mayor sea el alcance de
sus pruebas, menos miedo tendra. Podra modificar el cdédigo con total
impunidad, aunque su arquitectura no sea la mejor y el disefio sea mediocre.
Podra mejorar la arquitectura y el disefio sin miedo alguno.

Por tanto, disponer de una suite automatizada de pruebas de unidad que
cubran el codigo de produccion es la clave para mantener limpio el disefio y la
arquitectura. Las pruebas proporcionan las posibilidades, ya que permiten el
cambio.

Si sus pruebas no son limpias, la capacidad de modificar el cédigo se vera
limitada y perdera la posibilidad de mejorar la estructura de dicho cédigo.
Cuanto menos limpias sean las pruebas, menos lo sera el codigo. En ultima
instancia perdera las pruebas y el cddigo se corrompera.

Pruebas limpias

¢Qué hace que una prueba sea limpia? Tres elementos: legibilidad, legibilidad y
legibilidad. La legibilidad es sin duda mas importante en las pruebas de unidad
que en el codigo de produccion. ;Qué hace que una prueba sea legible? Lo
mismo que en el cddigo: claridad, simplicidad y densidad de expresion. En una
prueba debe decir mucho con el menor nimero de expresiones posible.

Fijese en el cddigo de FitNesse del Listado 9-1. Estas tres pruebas son
dificiles de entender y sin duda se pueden mejorar. Por un lado, hay mucho
codigo duplicado [G5] en las invocaciones repetidas a addPage ¥y
assertSubString. Sobre todo, este codigo se carga con detalles que interfieren
con la expresividad de la prueba.

Listado 9-1
SerializedPageResponderTest.java.

public void testGetPageHieratchyAsXml() throws Exception

{
crawler.addPage(root, PathParser.parse(“PageOne”));
crawler.addPage(root, PathParser.parse(“PageOne.ChildOne”));
crawler.addPage(root, PathParser.parse(“PageTwo”));

request.setResource(“root”);
request.addInput(“type”, “pages”);
Responder responder = new SerializedPageResponder();
SimpleResponse response =
(SimpleResponse) responder.makeResponse(
new FitNesseContext(root), request);
String xml = response.getContent();

assertEquals(“text/xml”, response.getContentType());
assertSubString(“<name>PageOne</name>", xml);
assertSubString(“<name>PageTwo</name>", xml);
assertSubString(“<name>ChildOne</name>", xml);

}

public void testGetPageHieratchyAsXmlDoesntContainSymbolicLinks()
throws Exception

wikiPage pageOne = crawler.addPage(root, PathParser.parse(“PageOne”));
crawler.addPage(root, PathParser.parse(“PageOne.ChildOne”));
crawler.addPage(root, PathParser.parse(“PageTwo”));

PageData data = pageOne.getData();

wikiPageProperties properties = data.getProperties();

wWikiPageProperty symLinks = properties.set(SymbolicPage.PROPERTY_NAME);
symLinks.set(“SymPage”, “PageTwo”);

pageOne.commit(data);

request.setResource(“root”);
request.addInput(“type”, “pages”);
Responder responder = new SerializedPageResponder();
SimpleResponse response =
(SimpleResponse) responder.makeResponse(
new FitNesseContext(root), request);
String xml = response.getContent();

assertEquals(“text/xml”, response.getContentType());
assertSubString(“<name>PageOne</name>", xml);
assertSubString(“<name>PageTwo</name>", xml);
assertSubString(“<name>ChildOne</name>", xml);
assertNotSubString(“SymPage”, xml);

}

public void testGetDataAsHtml() throws Exception
{

crawler.addPage(root, PathParser.parse(“TestPageOne”), “test page”);

request.setResource(“TestPageOne”);
request.addInput(“type”, “data”);
Responder responder = new SerializedPageResponder();
SimpleResponse response =
(SimpleResponse) responder.makeResponse(
new FitNesseContext(root), request);
String xml = response.getContent();

assertEquals(“text/xml”, response.getContentType());
assertSubString(“test page”, xml);
assertSubString(“<Test”, xml);

Fijese en las invocaciones de PathParser. Transforman cadenas en
instancias de PagePath usadas por las arafias. Esta transformacion es totalmente
irrelevante para la prueba y unicamente complica su cometido. Los detalles
circundantes a la creacién del respondedor y la obtencion y conversion de la
respuesta también sobran. También la forma de crear la URL de solicitud a partir
de un recurso y un argumento (contribui a crear este cédigo, por lo que tengo
todo el derecho a criticarlo).

Al final, el codigo no se ha disefiado de forma legible. El lector se ve
rodeado de miles de detalles que debe comprender antes de que las pruebas
tengan sentido.

Fijese ahora en las pruebas mejoradas del Listado 9-2. Hacen exactamente
lo mismo, pero se han refactorizado de forma mas clara y descriptiva.

Listado 9-2
SerializedPageResponderTest.java (refactorizado)

public void testGetPageHierarchyAsXml() throws Exception {
makePages(“PageOne”, “PageOne.ChildOne”, “PageTwo”);

submitRequest(“root”, “type:pages”);

assertResponseIsXML();
assertResponseContains(
“<name>PageOne</name>", “<name>PageTwo</name>", “<name>ChildOne</name>"
)i
}

public void testSymbolicLinksAreNotInXmlPageHierarchy() throws Exception {
wikiPage page = makePage(“PageOne”);
makePages(“PageOne.ChildOne”, “PageTwo”);

addLinkTo(page, “PageTwo”, “SymPage”);
submitRequest(“root”, “type:pages”);

assertResponseIsXML();
assertResponseContains(

“<name>PageOne</name>", “<name>PageTwo</name>", “<name>ChildOne</name>"
)i
assertResponseDoesNotContain(“SymPage”);

}

public void testGetDataAsXml() throws Exception {
makePagewWithContent (“TestPageOne”, “test page”);

submitRequest(“TestPageOne”, “type:data”);

assertResponseIsXML();
assertResponseContains(“test page”, “<Test”);

El patron Generar-Operar-Comprobar® es evidente en la estructura de las
pruebas. Cada una se divide claramente en tres partes. La primera crea los datos
de prueba, la segunda opera en dichos datos y la tercera comprueba que la
operacion devuelva los resultados esperados.

Comprobara que se ha eliminado gran parte de los detalles molestos. Las
pruebas son concisas y so6lo usan los tipos de datos y funciones que realmente
necesitan. Todo el que lea estas pruebas sabra rapidamente para qué sirven y no
se perdera entre detalles irrelevantes.

Lenguaje de pruebas especifico del dominio

Las pruebas del Listado 9-2 ilustran la creacion de un lenguaje especifico del
dominio para sus pruebas. En lugar de usar las API que los programadores
emplean para manipular el sistema, creamos una serie de funciones y utilidades
que usan dichas API y que facilitan la escritura y la lectura de las pruebas. Estas
funciones y utilidades se convierten en una API especializada usada por las
pruebas. Son un lenguaje de pruebas que los programadores usan personalmente
para crear sus pruebas y para ayudar a los que después las lean.

Esta API de pruebas no se disefia con antelacion, sino que evoluciona con la
refactorizacion continuada del cédigo de prueba. Al igual que refactorizamos el
Listado 9-1 en el Listado 9-2, los programadores disciplinados refactorizan su
codigo de prueba en versiones mas sucintas y expresivas.

Un estandar dual

En un sentido, el equipo que mencionamos antes tenia razon. El codigo de la

API de pruebas tiene un conjunto de estandares de ingenieria diferentes al
codigo de produccion. También tiene que ser sencillo, sucinto y expresivo, pero
no tan eficaz como el codigo de produccion. Después de todo, se ejecuta en un
entorno de prueba, no de produccién, y cada entorno tiene sus propias
necesidades.

Fijese en la prueba del Listado 9-3. La creé como parte de un prototipo de
sistema de control medioambiental. Sin entrar en detalles, se aprecia que esta
prueba comprueba que la alarma de baja temperatura, el calentador y el fuelle
estén activados cuando la temperatura sea demasiado fria.

Listado 9-3
EnvironmentControllerTest.java

@Test
public void turnOnLoTempAlarmAtThreashold() throws Exception {

hw.setTemp(WAY_TOO_COLD);

controller.tic();

assertTrue(hw.heaterState());
assertTrue(hw.blowerState());
assertFalse(hw.coolerState());
assertFalse(hw.hiTempAlarm());
assertTrue(hw.loTempAlarm());

}

Aqui hay muchos detalles. Por ejemplo, ¢para qué sirve la funcion tic? De
hecho, la ignoraria mientras leemos esta prueba. Intente centrarse en saber si esta
de acuerdo en que el estado final del sistema tiene que ver con que la
temperatura sea demasiado baja.

Al leer la prueba, la vista tiene que cambiar entre el nombre del estado
comprobado y el sentido del estado comprobado. Vemos heaterState y después
la vista salta a assertTrue. Vemos coolerState y nos fijamos en assertFalse.
Resulta tedioso y dificulta la lectura de la prueba.

He conseguido mejorar la legibilidad de la prueba transformandola en el
Listado 9-4.

Listado 9-4
EnvironmentControllerTest.java (refactorizado)

@Test
public void turnOnLoTempAlarmAtThreshold() throws Exception {
wayTooCold();
assertEquals(“HBchL”, hw.getState());
}

Evidentemente, he ocultado el detalle de la funciéon tic creando una
funcion wayTooCold. Pero lo importante es la extrafia cadena de assertEquals.
Las mayusculas significan activado y las minusculas desactivado, y las letras
siempre aparece en este orden: {heater, blower, cooler, hi-temp-alarm,

lo-temp-alarm}.

Aunque practicamente sea un incumplimiento de las reglas de asignacion
mental®, en este caso parece apropiado. Una vez que conocemos el significado,
la vista pasa por la cadena y podemos interpretar los resultados. La lectura de la
prueba es casi un placer. Fijese en el Listado 9-5 y compruebe con qué facilidad
entiende las pruebas.

Listado 9-5
EnvironmentControllerTest.java (una selecciéon mayor).

@Test
public void turnOnCoolerAndBlowerIfTooHot() throws Exception {
tooHot();
assertEquals(”“hBChl”, hw.getState());
}

@Test

public void turnOnHeaterAndBlowerIfTooCold() throws Exception {
tooCold();
assertEquals(“HBchl”, hw.getState());

}

@Test

public void turnOnHiTempAlarmAtThreshold() throws Exception {
wayTooHot () ;
assertEquals(“hBCHL”, hw.getState());

}

@Test

public void turnOnLoTempAlarmAtThreshold() throws Exception {
wayTooCold();
assertEquals(“HBchL”, hw.getState());

}

La funcion getState se reproduce en el Listado 9-6. No es un cédigo muy
eficaz. Para que lo sea, deberiamos haber usado StringBuffer.

Listado 9-6
MockControlHardware.java.

public String getState() {

String state = “”

state += heater ? “H” : “h”;
state += blower ? “B” : “b”;
state += cooler ? “Cc” : “
state += hiTempAlarm ? “H” : “h";
state += loTempAlarm ? “L” : “1";
return state;

StringBuffer es poco atractivo. Incluso en cédigo de produccion, intento
evitarlo si el coste es minimo, como podria suceder en el Listado 9-6. Pero esta
aplicacion es claramente un sistema incrustado en tiempo real y es probable que
los recursos del equipo y la memoria estén limitados. Sin embargo, el entorno de
pruebas es improbable que lo esté. Es la naturaleza del estandar dual. Hay cosas
que nunca haria en un entorno de produccion totalmente validas para un entorno
de prueba. Suelen ser problemas de memoria o eficacia de la CPU, pero nunca

problemas de limpieza.

Una afirmacion por prueba

Existe una escuela de pensamiento que afirma que todas las funciones de
prueba de una prueba JUnit s6lo deben tener una instrucciéon de afirmacion.
Puede parecer una regla draconiana pero la ventaja se aprecia en el Listado 9-5.
Las pruebas llegan a una misma conclusion, que se entiende de forma rapida y
sencilla.

;Pero qué sucede con el Listado 9-2? No parece razonable afirmar que el
resultado es XML y que contiene determinadas subcadenas. Sin embargo,
podemos dividir la prueba en dos, cada una con una afirmacién concreta, como
se muestra en el Listado 9-7.

Listado 9-7
SerializedPageResponderTest.java (una sola afirmacion).

public void testGetPageHierarchyAsXml() throws Exception {
givenPages(“PageOne”, “PageOne.ChildOne”, “PageTwo”);

whenRequestIsIssued(“root”, “type:pages”);

thenResponseShouldBeXML();
}

public void testGetPageHierarchyHasRightTags() throws Exception {
givenPages(“PageOne”, “PageOne.ChildOne”, “PageTwo”);

whenRequestIsIssued(“root”, “type:pages”);

thenResponseShouldContain(
“<name>PageOne</name>", “<name>PageTwo</name>", “<name>ChildOne</name>"
)i
}

He cambiado los nombres de las funciones para usar la convencion dado-
cuando-entonces®’. De este modo las pruebas son mas faciles de leer.
Desafortunadamente, al dividir las pruebas se genera codigo duplicado.

Podemos eliminar los duplicados por medio del patréon Método de
plantilla®? e incluir las partes dado/cuando en la clase base, y las partes entonces
en derivaciones diferentes. O podriamos crear una clase de prueba independiente
e incluir las partes dado y cuando en la funcién @eefore y las partes entonces en
cada funcion @Test. Pero parece un mecanismo excesivo para un problema tan
menor. Al final, opto por las afirmaciones multiples del Listado 9-2. Considero
que la regla de una sola afirmacion es una directriz adecuada®. Siempre intento
crear un lenguaje de pruebas especifico del dominio que la complemente, como

en el Listado 9-5, pero no rechazo incluir mas de una afirmacion en una prueba.
Creo que lo mejor que podemos decir es que el nimero de afirmaciones de una
prueba debe ser minimo.

Un solo concepto por prueba

Puede que una regla mas indicada sea probar un unico concepto en cada funcion
de prueba. No queremos extensas funciones que prueben una cosa diferente tras
otra, como sucede en el Listado 9-8. Esta prueba deberia dividirse en tres
diferentes que probaran tres cosas distintas. Al combinarlas en la misma funcion
se obliga al lector a determinar por qué cada seccién se ubica en ese punto y qué
prueba dicha seccién.

Listado 9-8

Jrx
* Varias pruebas para el método addMonths().
*/
public void testAddMonths() {
SerialDate d1 = SerialDate.createInstance(31, 5, 2004);

SerialDate d2 = SerialDate.addMonths(1, di);
assertEquals(30, d2.getDayOfMonth());
assertEquals(6, d2.getMonth());
assertEquals(2004, d2.getYYYY());

SerialDate d3 = SerialDate.addMonths(2, di);
assertEquals(31, d3.getDayOfMonth());
assertEquals(7, d3.getMonth());
assertEquals(2004, d3.getYYYY());

SerialDate d4 = SerialDate.addMonths(1, SerialDate.addMonths(1, di1));
assertEquals(30, d4.getDayOfMonth());

assertEquals(7, d4.getMonth());

assertEquals(2004, d4.getYYYY());

Las tres funciones deberian ser las siguientes:

¢ Dado el ultimo dia de un mes con 31 dias (como mayo):
1. Cuando se afiade un mes, si el tltimo dia de ese mes es el 30 (como en
junio), entonces la fecha debe ser el dia 30 de ese mes, no el 31.
2. Cuando se afladen dos meses a esa fecha, si el altimo mes tiene 31
dias, entonces la fecha debe ser el dia 31.
¢ Dado el ultimo dia de un mes con 30 dias (como junio):
1. Cuando se afiade, si el ultimo dia de ese mes tiene 31 dias, entonces la
fecha debe ser el 30, no el 31.

Expresado de esta forma, se aprecia que existe una regla general entre las
distintas pruebas. Al incrementar el mes, la fecha no puede ser mayor que su
ultimo dia. Esto implica que al incrementar el mes en el 28 de febrero debe
generarse el 28 de marzo. Falta esa prueba y convendria que la escribiéramos.

Asi pues, no son las multiples afirmaciones del Listado 9-8 las causantes
del problema, sino el hecho de que se prueba mas de un concepto.
Probablemente la regla dptima sea minimizar el nimero de activos por concepto
y probar un solo concepto por funcién de prueba.

F.I.R.S.T.*

Las pruebas limpias siguen otras cinco reglas, cuyas iniciales forman las siglas
FIRST en inglés:

Rapidez (Fast): Las reglas deben ser rapidas y ejecutarse de forma rapida.
Si lo hacen lentamente, no las ejecutara con frecuencia. Al no hacerlo, no
detectara los problemas con la suficiente antelacion como para solucionarlos. No
se sentira con libertad para limpiar el codigo, que acabara corrompiéndose.

Independencia (Independent): Las pruebas no deben depender entre ellas.
Una prueba no debe establecer condiciones para la siguiente. Debe poder
ejecutar cada prueba de forma independiente y en el orden que desee. Si las
pruebas dependen unas de otras, la primera que falle provocara una sucesion de
fallos, dificultara el diagnostico y ocultara efectos posteriores.

Repeticion (Repeatable): Las pruebas deben poder repetirse en cualquier
entorno. Debe poder ejecutarlas en el entorno de produccion, en el de calidad y
en su portatil de camino a casa en un tren sin red. Si no puede repetir las pruebas
en cualquier entorno, siempre tendra una excusa de su fallo. También vera que
no puede ejecutar las pruebas si el entorno no esta disponible.

Validacion automatica (Self-Validating): Las pruebas deben tener un
resultado booleano: o aciertan o fallan. No debe tener que leer un extenso
archivo de registro para saber si una prueba ha acertado, ni comparar
manualmente dos archivos de texto distintos para ello. Si las pruebas no se
validan automaticamente, el fallo puede ser subjetivo y la ejecucion de las
pruebas puede requerir una extensa evaluacion manual.

Puntualidad (Timely): Las pruebas deben crearse en el momento preciso:
antes del codigo de produccion que hace que acierten. Si crea las pruebas
después del codigo de produccién, puede que resulte dificil probarlo. Puede
decidir qué parte del codigo de produccion sea demasiado dificil de probar. No
disefie codigo de produccion que no se pueda probar.

Conclusion

Apenas hemos abordado la superficie de este tema. De hecho, se podria crear un
libro entero sobre pruebas limpias. Las pruebas son tan importantes para la salud
de un proyecto como el codigo de produccion. Puede que incluso mas, ya que
conservan y mejoran la flexibilidad, capacidad de mantenimiento y reutilizacion
del codigo de produccion. Por ello, intente que sean limpias. Trabaje para que
resulten expresivas y concisas. Invente API de prueba que actien como lenguaje
especifico del dominio que le ayude a crear las pruebas.

Si deja que las pruebas se corrompan, sucedera lo mismo con el codigo de
produccion. Mantenga limpias las pruebas.

Bibliografia

e [RSpec]: RSpec: Behavior Driven Development for Ruby Programmers,
Aslak Hellesay, David Chelimsky, Pragmatic Bookshelf, 2008.

e [GOF]: Design Patterns: Elements of Reusable Object Oriented Software,
Gamma et al., Addison-Wesley, 1996.

10
Clases

con Jeff Langr

I
I
WT@

o 2 ek

W r.'a';
L o i
L D

A

Hasta ahora nos hemos centrado en escribir bien lineas y bloques de codigo. Nos
hemos adentrado en la correcta composicion de las funciones y en su
interrelacion. Pero a pesar de la atencion dedicada a la expresividad de las
instrucciones y las funciones, no tendremos codigo limpio hasta que nos fijemos
en los niveles superiores de su organizacion. Hablemos sobre clases.

Organizacion de clases

De acuerdo a la convencion estandar de Java, una clase debe comenzar con una
lista de variables. Las constantes estaticas publicas, si existen, deben aparecer

primero. Tras ello, las variables estaticas privadas y después las variables de
instancia privadas. No suele ser necesario usar variables publicas.

Las funciones publicas deben seguir a la lista de variables. Incluimos las
utilidades publicas invocadas por una funcién publica tras la propia funcion
publica. Este sistema cumple la regla descendente y permite que el programa se
lea como un articulo de periodico.

Encapsulacion

Queremos que nuestras variables y funciones de utilidad sean privadas, pero no
es imprescindible. En ocasiones podemos proteger una variable o funcion de
utilidad para que sea accesible para una prueba. Las reglas mandan. Si una regla
del mismo paquete tiene que invocar una funcién o acceder a una variable,
hacemos que tenga ambito protected o de paquete. Sin embargo, primero
veremos una forma de mantener la privacidad. La relajacion de la encapsulacion
siempre es un ultimo resorte.

Las clases deben ser de tamano reducido

La primera regla de las clases es que deben ser de tamafio reducido. La segunda
regla es que deben ser todavia mas reducidas. No, no vamos a repetir el mismo
texto en el capitulo sobre las funciones, pero como sucede con las funciones, el
tamafio reducido es lo principal a la hora de disefiar una clase. Y la pregunta
inmediata es qué nivel de reduccién. Con las funciones medimos el tamafio
contando lineas fisicas. Con las clases usamos otra medida distinta: las
responsabilidades.

El Listado 10-1 muestra una clase, SuperDashboard, que muestra 70
métodos publicos. Muchos programadores estaran de acuerdo en que es un
tamafio excesivo. Algunos denominarian a Superbashboard una clase Dios.

Listado 10-1
Demasiadas responsabilidades.

public class SuperDashboard extends JFrame implements MetaDataUser
public String getCustomizerLanguagePath()
public void setSystemConfigPath(String systemConfigPath)
public String getSystemConfigDocument()
public void setSystemConfigDocument(String systemConfigDocument)
public boolean getGuruState()
public boolean getNoviceState()
public boolean getOpenSourceState()
public void showObject(MetaObject object)
public void showProgress(String s)

public boolean isMetadataDirty()

public void setIsMetadataDirty(boolean isMetadataDirty)
public Component getLastFocusedComponent()

public void setlLastFocused(Component lastFocused)
public void setMouseSelectState(boolean isMouseSelected)
public boolean isMouseSelected()

public LanguageManager getlLanguageManager ()

public Project getProject()

public Project getFirstProject()

public Project getLastProject()

public String getNewProjectName()

public void setComponentSizes(Dimension dim)

public String getCurrentDir()

public void setCurrentDir(String newDir)

public void updateStatus(int dotPos, int markPos)
public Class[] getDataBaseClasses()

public MetadataFeeder getMetadataFeeder()

public void addProject(Project project)

public boolean setCurrentProject(Project project)
public boolean removeProject(Project project)

public MetaProjectHeader getProgramMetadata()

public void resetDashboard()

public Project loadProject(String fileName, String projectName)
public void setCanSaveMetadata(boolean canSave)

public MetaObject getSelectedObject()

public void deselectObjects()

public void setProject(Project project)

public void editorAction(String actionName, ActionEvent event)
public void setMode(int mode)

public FileManager getFileManager ()

public void setFileManager(FileManager fileManager)
public ConfigManager getConfigManager()

public void setConfigManager(ConfigManager configManager)
public ClassLoader getClassLoader()

public void setClassLoader(ClassLoader classLoader)
public Properties getProps()

public String getUserHome()

public String getBaseDir()

public int getMajorVersionNumber ()

public int getMinorVersionNumber ()

public int getBuildNumber ()

public MetaObject pasting(

MetaObject target, MetaObject pasted, MetaProject project)
public void processMenuItems(MetaObject metaObject)
public void processMenuSeparators(MetaObject metaObject)
public void processTabPages(MetaObject metaObject)
public void processPlacement(MetaObject object)
public void processCreateLayout(MetaObject object)
public void updateDisplayLayer(MetaObject object, int layerIndex)
public void propertyEditedRepaint(MetaObject object)
public void processDeleteObject(MetaObject object)
public boolean getAttachedToDesigner()
public void processProjectChangedState(boolean hasProjectChanged)
public void processObjectNameChanged(MetaObject object)
public void runProject()
public void setAllowDragging(boolean allowDragging)
public boolean allowDragging()
public boolean isCustomizing()
public void setTitle(String title)
public IdeMenuBar getIdeMenuBar()
public void showHelper(MetaObject metaObject, String propertyName)
//.. y otros muchos métodos no publicos..

¢Y si SuperDashboard sdlo incluyera los métodos mostrados

Listado 10-27?

Listado 10-2
¢Suficientemente reducido?

public class SuperDashboard extends JFrame implements MetaDataUser
public Component getLastFocusedComponent()
public void setlLastFocused(Component lastFocused)
public int getMajorVersionNumber ()
public int getMinorVersionNumber ()
public int getBuildNumber ()

en el

Cinco métodos no es demasiado, ;verdad? En este caso si ya que a pesar

del reducido nimero de métodos, SuperDashboard también tiene demasiadas
responsabilidades.

El nombre de una clase debe describir las responsabilidades que
desempefia. De hecho, el nombre es la primera forma para determinar el tamafio
de una clase. Si no podemos derivar un nombre conciso para una clase,
seguramente sea demasiado extenso. Cuanto mas ambiguo sea el nombre de la
clase, mas probabilidades hay de que tenga demasiadas responsabilidades. Por
ejemplo, los nombres de clase con palabras como Processor, Manager 0 Super
suelen indicar una desafortunada acumulacion de responsabilidades.

También debemos ser capaces de escribir una breve descripcion de la clase
en unas 25 palabras, sin usar las palabras «si», «o», «y» 0 «pero». ;COmo
describiriamos SuperDashboard?: SuperDashboard permite acceder al
componente con el enfoque y nos permite controlar los nimeros de version y
producto. El primer y indica que SuperDashboard tiene demasiadas
responsabilidades.

El Principio de responsabilidad unica

El Principio de responsabilidad unica (Single Responsibility Principle, SRP)“
indica que una clase o modulo debe tener uno y s6lo un motivo para cambiar.
Este principio nos indica la definicion de responsabilidad y una directriz para el
tamafio de la clase. Las clases s6lo deben tener una responsabilidad, un motivo
para cambiar. La clase Superbashboard aparentemente reducida del Listado 10-
2 tiene dos motivos para cambiar. Primero, controla informacion de version que
supuestamente debe actualizarse cada vez que se comercialice el software. Por
otra parte, gestiona componentes de Java Swing (un derivado de JFrame, la
representacion Swing de una ventana de IGU de nivel superior). Sin duda,
querremos cambiar el nimero de version si cambiamos el codigo Swing, pero lo
contrario no es necesario: podriamos cambiar la informacion de version en
funcion de los cambios de otro cdodigo del sistema. La identificacion de
responsabilidades (los motivos del cambio) nos permite reconocer y mejorar las
abstracciones en nuestro codigo. Podemos extraer los tres métodos de
SuperDashboard relacionados con la informaciéon de versiones en una clase
independiente como Version (véase el Listado 10-3.) La clase Version es una
construccion que se puede reutilizar en otras aplicaciones.

Listado 10-3
Una clase con una tnica responsabilidad.

public class Version {
public int getMajorVersionNumber ()
public int getMinorVersionNumber ()
public int getBuildNumber ()

}

SRP es uno de los conceptos mas importantes del disefio orientado a objetos
y también uno de los mas sencillos de entender y cumplir, pero también es uno
de los que mas se abusa al disefiar clases. Habitualmente nos encontramos clases
que hacen demasiadas cosas. ¢Por qué?

Crear software que funcione y crear software limpio son dos actividades
diferentes. Muchos tenemos un cerebro limitado, de modo que nos centramos en
que el cédigo funcione mas que en su organizacién y limpieza. Es algo
totalmente valido. Mantener objetivos separados es tan importante en nuestras
actividades de programacion como en nuestros programas.

El problema es que muchos creemos que hemos terminado cuando el
programa funciona. No cambiamos al otro objetivo de organizacion y limpieza.
Pasamos al siguiente problema en lugar de retroceder y dividir las clases en
unidades independientes con una tnica responsabilidad.

Al mismo tiempo, muchos programadores temen que un elevado niimero de
pequefias clases con un tnico proposito dificulten la comprension del conjunto.
Les preocupa que tengan que desplazarse entre las clases para determinar cOmo
funciona un aspecto concreto.

Sin embargo, un sistema con muchas clases reducidas no tiene mas
elementos modviles que un sistema con algunas clases enormes. En ambos hay
que entender lo mismo. La pregunta es si quiere organizar sus herramientas en
cajas con muchos pequefios cajones que contengan componentes bien definidos
y etiquetados, o usar varios cajones grandes en los que mezcle todo.

Todos los sistemas tienen una gran logica y complejidad. El objetivo
principal para gestionar dicha complejidad es organizarla para que un
programador sepa dénde buscar y comprenda la complejidad directamente
afectada en cada momento concreto. Por el contrario, un sistema con clases
multipropdsito de mayor tamafio nos obliga a buscar entre numerosos elementos
que no siempre necesitamos conocer.

Para reformular los puntos anteriores, diremos que los sistemas deben estar
formados por muchas claves reducidas, no por algunas de gran tamafio. Cada
clase reducida encapsula una unica responsabilidad, tiene un solo motivo para
cambiar y colabora con algunas otras para obtener los comportamientos
deseados del sistema.

Cohesion

Las clases deben tener un numero reducido de variables de instancia. Los
métodos de una clase deben manipular una o varias de dichas variables. Por lo
general, cuantas mas variables manipule un método, mas cohesion tendra con su
clase. Una clase en la que cada variable se usa en cada método tiene una
cohesion maxima.

Por lo general, no es recomendable ni posible crear este tipo de clases pero
queremos que la cohesion de nuestras clases sea elevada. Si lo logramos,
significa que los métodos y variables de la clase dependen unos de otros y acttian
como un todo légico.

Fijese en la implementacion de Stack en el Listado 10-4. Es una clase muy
consistente. De los tres métodos, solo size() no usa ambas variables.

Listado 10-4
Stack.java, una clase consistente.

public class Stack {
private int topOfStack = 0;
List<Integer> elements = new LinkedList<Integer>();

public int size() {
return topOfStack;
}

public void push(int element) {
topOfStack++;
elements.add(element);

}

public int pop() throws PoppedwhenEmpty {
if (topofsStack == 0)
throw new PoppedwWhenEmpty();
int element = elements.get(--topOfStack);
elements.remove(topOfStack);
return element;

}

La estrategia de reducir el tamafio de las funciones y de las listas de
parametros suele provocar la proliferacion de variables de instancia usadas por
un subconjunto de los métodos. Si esto sucede, siempre existe al menos una
clase que intenta huir de la clase de mayor tamafio. Debe intentar separar las
variables y métodos en dos o mas clases para que las nuevas sean mas
consistentes.

Mantener resultados consistentes en muchas clases de tamano
reducido

La division de grandes funciones en otras mas pequefias aumenta la proliferacion
de clases. Imagine una gran funcion con numerosas variables declaradas.
Imagine que desea extraer una pequefia parte de esa funcion en otra

independiente. Sin embargo, el codigo que extrae usa cuatro de las variables
declaradas en la funcion. ¢ Debe pasar las cuatro variables como argumentos a la
nueva funcion?

En absoluto. Si ascendemos estas cuatro variables a variables de instancia
de la clase, podremos extraer el cddigo sin pasar las variables. Resultaria mas
sencillo dividir la funcion en pequefios fragmentos.

Desafortunadamente, eso significaria que nuestras clases perderian
cohesion ya que acumularian mas y mas variables de instancia que sélo existen
para que otras funciones las compartan. Pero un momento. Si apenas existen
funciones que compartan determinadas variables, ;no son entonces una clase con
derecho propio? Por supuesto. Cuando las clases pierdan cohesion, dividalas.

Por tanto, dividir una gran funcion en otras mas reducidas también nos
permite dividir varias clases mas reducidas. De este modo mejora la
organizacion del programa y su estructura resulta mas transparente. Como
ejemplo, usaremos un ejemplo obtenido del libro de Knuth Literate
Programming*”. El Listado 10-5 muestra una traduccion a Java del programa
PrintPrimes de Knuth. Para hacerle justicia, no es el programa que cre6 sino el
resultado generado por su herramienta WEB. Lo usamos aqui por ser un
magnifico punto de partida para dividir una funcion de gran tamafio en varias
funciones y clases mas reducidas.

Listado 10-5
PrintPrimes.java

package literatePrimes;

public class PrintPrimes {
public static void main(String[] args) {

final int M = 1000;
final int RR = 50;
final int CC = 4;
final int ww = 10;
final int ORDMAX = 30;
int P[] = new int[M + 1];
int PAGENUMBER;
int PAGEOFFSET;
int ROWOFFSET;
int C;
int J;
int K;
boolean JPRIME;
int ORD;
int SQUARE;
int N;
int MULT[] = new int[ORDMAX + 1];

;
SQUARE = 9;

while (K < M) {
do {
J =3+ 2;
if (J == SQUARE) {

ORD = ORD + 1;
SQUARE = P[ORD] * P[ORD];
MULT[ORD - 1] = J;
}
N = 2;
JPRIME = true;
while (N < ORD && JPRIME) {
while (MULT[N] < J)

MULT[N] = MULT[N] + P[N] + P[N];
if (MULT[N] == J)

JPRIME = false;
N=N+1;

}
} while (!JPRIME);
K=K+ 1;
P[K] = J;

PAGENUMBER = 1;
PAGEOFFSET = 1;
while (PAGEOFFSET <= M) {
System.out.println(“The First ” + M +
“ Prime Numbers --- Page ” + PAGENUMBER);
System.out.println(“");
for (ROWOFFSET = PAGEOFFSET; ROWOFFSET < PAGEOFFSET + RR; ROWOFFSET++) {
for (C = 0; C < CC;C++)
if (ROWOFFSET + C * RR <= M)
System.out.format(“%16d”, P[ROWOFFSET + C * RR]);
System.out.println(“");
}
System.out.println(“\f");
PAGENUMBER = PAGENUMBER + 1;
PAGEOFFSET = PAGEOFFSET + RR * CC;
}
}
}

Este programa, escrito como una sola funcion, es un desastre. El sangrado
de su estructura es excesivo y hay demasiadas variables extrafias. Como minimo,
la funcion deberia dividirse en otras mas pequefias. Los listados del 10-6 al 10-8
muestran la division del codigo del Listado 10-5 en clases y funciones de menor
tamafio, ademas de los nombres elegidos para dichas clases, funciones y
variables.

Listado 10-6
PrimePrinter.java (refactorizado)

package literatePrimes;

public class PrimePrinter (
public static void main(String[] args) {
final int NUMBER_OF_PRIME5 = 1000;
int[] primes = PrimeGenerator.generate(NUMBER_OF_PRIMES);

final int ROWS_PER_PAGE = 50;

final int COLUMNS_PER_PAGE = 4;

RowColumnPagePrinter tablePrinter =

new RowColumnPagePrinter (ROWS_PER_PAGE,

COLUMNS_PER_PAGE,
“The First ” + NUMBER_OF_PRIMES +
“ Prime Numbers”);

tablePrinter.print(primes);

Listado 10-7
RowColumnPagePrinter.java.

package literatePrimes;

import java.io.PrintStream;

public class RowColumnPagePrinter {
private int rowsPerPage;
private int columnsPerPage;
private int numbersPerPage;
private String pageHeader;
private PrintStream printStream;

public RowColumnPagePrinter(int rowsPerPage,

int columnsPerPage,

String pageHeader) {
this.rowsPerPage = rowsPerPage;
this.columnsPerPage = columnsPerPage;
this.pageHeader = pageHeader;
numbersPerPage = rowsPerPage * columnsPerPage;
printStream = System.out;

public void print(int data[]) {
int pageNumber = 1;
for (int firstIndexOnPage = 0;
firstIndexOnPage < data.length;
firstIndexOnPage += numbersPerPage) {
int lastIndexOnPage =
Math.min(firstIndexOnPage + numbersPerPage - 1,
data.length - 1);
printPageHeader (pageHeader, pageNumber)
printPage(firstIndexOnPage, lastIndexOnPage, data);
printStream.println(“\f");
pageNumber++;

private void printPage (int firstIndexOnPage,
int lastIndexOnPage
int[] data) {
firstIndexOfLastRowOnPage =
firstIndexOnPage + rowsPerPage - 1;
for (int firstIndexInRow = firstIndexOnPage;
firstIndexInRow <= firstIndexOfLastRowOnPage;
firstIndexInRow++) {
printRow(firstIndexInRow, lastIndexOnPage, data);
printStream.println(“”);

=4

in

private void printRow(int firstIndexInRow,
int lastIndexOnPage
int[] data) {
for (int column = ©; column < columnsPerPage; column++)
int index = firstIndexInRow + column * rowsPerPage;
if (index <= lastIndexOnPage)
printStream.format(“%10d”, data[index]);

-~

private void printPageHeader(String pageHeader,
int pageNumber) {
printStream.println(pageHeader + “ --- Page ” + pageNumber)
printStream.println(“”);

public void setOutput(PrintStream printStream) {
this.printStream = printStream;

}

Listado 10-8
PrimeGenerator.java

package literatePrimes;
import java.util.Arraylist;

public class PrimeGenerator {
private static int[] primes;
private static ArraylList<Integer> multiplesOfPrimeFactors;

protected static int[] generate(int n) {
primes = new int[n];
multiplesOfPrimeFactors = new ArrayList<Integer>();
set2AsFirstPrime();
checkOddNumbersForSubsequentPrimes();
return primes;

}

private static void set2AsFirtsPrime() {
primes[0] = 2;
multiplesOfPrimeFactors.add(2);

}

private static void checkOddNumbersForSubsequentPrimes() {
int primeIndex = 1;
for (int candidate = 3;
primeIndex < primes.length;
candidate += 2) {
if (isPrime(candidate))
primes[primeIndex++] = candidate;
}
}

private static boolean isPrime(int candidate) {
if (isLeastRelevantMultipleOfNextLargerPrimeFactor(candidate)) {
multiplesOfPrimeFactors.add(candidate);
return false;
}
return isNotMultipleOfAnyPreviousPrimeFactor(candidate);

}

private static boolean

isLeastRelevantMultipleOfNextLargerPrimeFactor(int candidate) {
int nextLargerPrimeFactor = primes[multiplesOfPrimeFactors.size()];
int leastRelevantMultiple = nextLargerPrimeFactor * nextlLargerPrimeFactor;
return candidate == leastRelevantMultiple;

}

private static boolean
isNotMultipleOfAnyPreviousPrimeFactor(int candidate) {
for (int n = 1; n < multiplesOfPrimeFactors.size(); n++) {
if (isMultipleOfNthPrimeFactor(candidate, n))
return false;

}

return true;

}

private static boolean
isMultipleOfNthPrimeFactor(int candidate, int n) {
return
candidate == smallestOddNthMultipleNotLessThanCandidate(candidate, n);
}

private static int

smallestOddNthMultipleNotLessThanCandidate(int candidate, int n) {
int multiple = multiplesOfPrimeFactors.get(n);
while (multiple < candidate)

multiple += 2 * primes[n];

multiplesOfPrimeFactors.set(n, multiple);
return multiple;

}

}

Lo primero que apreciara es que ha aumentado la longitud del programa, de
una a casi tres paginas. Este aumento se debe a varios motivos. En primer lugar,
el programa refactorizado usa nombres de variable mas extensos y descriptivos.
Por otra parte, usa declaraciones de funciones y clases como comentarios del
codigo. Por ultimo, usamos espacios en blanco y técnicas de formato para
mantener la legibilidad.

El programa se ha dividido en tres responsabilidades principales. La parte
principal se incluye en la clase PrimePrinter, responsable de controlar el
entorno de ejecucion. Cambia si se modifica el método de invocacion. Por
ejemplo, si este programa se convierte en un servicio SOA, es la clase que se

vera afectada.

RowColumnPagePrinter sabe como aplicar formato a una lista de nimeros
con una determinada cantidad de filas y columnas. Si es necesario cambiar el
formato del resultado, es la clase que se vera afectada.

La clase PrimeGenerator sabe como generar una lista de nimeros primos.
No se creara una instancia como objeto. La clase es s6lo un ambito ttil en el que
declarar y ocultar sus variables. Esta clase cambia si se modifica el algoritmo
para calcular nimeros primos. No hemos reescrito el programa. No hemos
empezado de cero y los hemos vuelto a disefiar. En realidad, si se fija
atentamente en los dos programas, vera que usan los mismos algoritmos y
mecanismos.

El cambio se ha realizado creando una suite de pruebas que verifican el
comportamiento preciso del primer programa. Tras ello, se aplican numerosos
cambios minimos, de uno en uno. Tras cada cambio, se ejecuta el programa para
garantizar que el comportamiento no varia. Paso a paso, el primer programa se
limpia y se transforma en el segundo.

Organizar los cambios

En muchos sistemas, el cambio es continuo. Cada cambio supone un riesgo de
que el resto del sistema no funcione de la forma esperada. En un sistema limpio
organizamos las clases para reducir los riesgos de los cambios.

La clase sql del Listado 10-9 se usa para generar cadenas SQL de forma
correcta con los metadatos adecuados. Es un trabajo continuo y, como tal, no
admite funciones SQL como instrucciones update. Cuando la clase Sql tenga
que admitir una instruccion update, tendremos que abrirla para realizar
modificaciones. El problema de abrir una clase es el riesgo que conlleva.
Cualquier modificacion puede afectar a otro codigo de la clase. Debe probarse
concienzudamente.

Listado 10-9
Clase que debemos abrir para realizar cambios.

public class Sql {
public Sql(String table, Column[] columns)
public String create()
public String insert(Object[] fields)
public String selectAll()
public String findByKey(String keyColumn, String keyVvalue)
public String select(Column column, String pattern)
public String select(Criteria criteria)
public String preparedInsert()
private String columnList(Column[] columns)
private String valuesList(Object[] fields, final Column[] columns)

private String selectWithCriteria(String criteria)
private String placeholderList(Column[] columns)

}

La clase sql debe cambiar al afiadir un nuevo tipo de instruccion. También
debe cambiar cuando variemos los detalles de un tipo de instruccion concreto;
por ejemplo, si tenemos que modificar la funcionalidad select para admitir
selecciones secundarias. Estos dos motivos de cambio significan que la clase Sql
incumple SRP.

Podemos detectar este incumplimiento desde un punto de vista
organizativo. El método outline de Sql muestra que hay métodos privados,
como selectWithCriteria, que parecen relacionarse unicamente con
instrucciones select.

El comportamiento de métodos privados aplicados a un pequefio
subconjunto de una clase puede ser una heuristica util para detectar zonas que
mejorar. Sin embargo, la verdadera razon debe ser el cambio del sistema. Si la
clase sql se considera totalmente l6gica, no debemos preocuparnos por separar
las responsabilidades. Si no necesitamos funcionalidad de actualizacion en el
futuro, podemos olvidarnos de Sql. Pero si tenemos que abrir una clase,
debemos corregir el disefio.

¢Y si optamos por una solucion como la del Listado 10-10? Los métodos
publicos de interfaz definidos en Sql en el Listado 10-9 se refactorizan en sus
propias variantes de la clase Sql. Los métodos privados, como valuesList, se
mueven directamente a las posiciones necesarias. El comportamiento privado se
reduce a un par de clases de utilidad: Wwhere y ColumnList.

Listado 10-10
Un grupo de clases cerradas.

Abstract public class Sql {
public Sql(String table, Column[] columns)
abstract public String generate();

}

public class CreateSgql extends Sql {
public CreateSql(String table, Column[] columns)
@override public String generate()

}

public class SelectSql extends Sql {
public SelectSql(String table, Column[] columns)
@override public String generate()

}

public class InsertSgql extends Sql {
public SelectSql(String table, Column[] columns, Object[] fields)
@override public String generate()
private String valuesList(Object[] fields, final Column[] columns)

}

public class SelectWithCriteriaSql extends Sql {
public SelectwithCriteriaSql(
String table, Column[] columns, Criteria criteria)
@override public String generate()

}

public class SelectWithMatchSql extends Sql {
public SelectwithMatchSql(
String table, Column[] columns, Column column, String pattern)
@override public String generate()

}

public class FindByKeySql extends Sql {
public FindByKeySql(
String table, Column[] columns, String keyColumn, String keyValue)
@override public String generate()

}

public class PreparedInsertSql extends Sql {
public PreparedInsertSql(String table, Column[] columns)
@override public String generate()
private String placeholderList(Column[] columns)

}

public class Where {
public Where(String criteria)
public String generate()

}

public class ColumnList {
public ColumnList(Column[] columns)
public String generate()

}

El cédigo de cada clase se simplifica enormemente. El tiempo necesario
para entender las clases se reduce al minimo. El riesgo de que una funcion afecte
a otra desaparece casi por completo. Desde el punto de vista de las pruebas,
resulta mas sencillo probar la l6gica de esta solucion, ya que las clases se aislan
unas de otras.

Ademas, cuando llegue el momento de afiadir las instrucciones update, no
cambia ninguna de las clases existentes. Afiadimos la ldgica para generar
instrucciones update a una nueva subclase de Sql, UpdateSqgl. Este cambio no
afecta a otro codigo del sistema.

Nuestra l6gica Sql reestructurada representa lo mejor de ambos mundos.
Cumple con SRP y también con otro principio clave del disefio de clases
orientadas a objetos, denominado Principio abierto/cerrado“’: las clases deben
abrirse para su ampliacion para cerrarse para su modificacion. La nueva clase
Sql se abre a nuevas funcionalidades mediante la creacion de subclases pero
podemos realizar estos cambios y mantener cerradas las demas clases. Basta con
afiadir nuestra clase UpdateSql.

Debemos estructurar nuestros sistemas para ensuciarlos lo menos posible
cuando los actualicemos con nuevas funciones o cambios. En un sistema ideal,
incorporamos nuevas funciones ampliandolo, no modificando el cddigo
existente.

Aislarnos de los cambios

Las necesidades cambiaran y también lo hara el codigo. En la programacion
orientada a objetos aprendemos que hay clases concretas que contienen detalles

de implementacion (el codigo) y clases abstractas que so6lo representan
conceptos. Una clase cliente que dependa de detalles concretos esta en peligro si
dichos detalles cambian. Podemos recurrir a interfaces y clases abstractas para
aislar el impacto de dichos detalles.

Las dependencias de detalles de concretos crean retos para nuestro sistema.
Si tenemos que crear la clase Portfolio y ésta depende de una API
TokyoStockExchange externa para obtener su valor, nuestros casos de prueba se
veran afectados por la volatilidad de esta busqueda. Resulta complicado crear
una prueba cuando se obtiene una respuesta diferente cada cinco minutos. En
lugar de disefiar Portfolio para que dependa directamente de
TokyoStockExchange, creamos una interfaz, StockExchange, que declara un
ljniCO métOdO: public Interface StockExchange {

Money currentPrice(String symbol);

}

Diseflamos TokyoStockExchange para implementar esta interfaz. También
nos aseguramos de que el constructor de Portfolio adopte como argumento una
referencia a StockExchange:

public Portfolio {
private StockExchange exchange;
public Portfolio(StockExchange exchange) {
this.exchange = exchange;

.

Ahora la prueba puede crear una implementacion de la interfaz
StockExchange que emule TokyoStockExchange. Esta implementacion de
prueba fijara el valor actual del simbolo que usemos en la prueba.

Si nuestra prueba demuestra la adquisicion de cinco acciones de Microsoft
para nuestra cartera de valores, disefie el codigo de la implementacion de prueba
para que siempre devuelva 100 dolares por accion de Microsoft. Nuestra
implementacion de prueba de la interfaz StockExchange se reduce a una sencilla
busqueda de tabla. De este modo podemos crear una prueba que espere un valor
de cartera total de 500 dolares: pusiic ciass rortroriorest ¢

private FixedStockExchangeStub exchange;
private Portfolio portfolio;

@Before

protected void setUp() throws Exception {
exchange = new FixedStockExchangeStub();
exchange.fix(“MSFT”, 100);
portfolio = new Portfolio(exchange);

}

@Test

public void GivenFiveMSFTTotalShouldBe500() throws Exception {
portfolio.add(5, “MSFT”);
Assert.assertEquals(500, portfolio.value());

}

Si diseccionamos un sistema para poder probarlo de esta forma, resultara

mas flexible y se podra reutilizar. La ausencia de conexiones significa que los
elementos del sistema se aislan entre ellos y de otros cambios. Este aislamiento
hace que comprendamos mejor los elementos del sistema.

Al minimizar las conexiones de esta forma, nuestras clases cumplen otro
principio de disefio: Dependency Inversion Principle (DIP) o Principio de
inversion de dependencias*. Basicamente afirma que nuestras clases deben
depender de abstracciones, no de detalles concretos.

En lugar de depender de los detalles de implementacién de la clase
TokyoStockExchange, nuestra clase Portfolio depende de la interfaz
StockExchange, que representa el concepto abstracto de solicitar el precio actual
de una accién. Esta abstraccion aisla todos los datos concretos de la obtencion de
dicho precio, incluyendo de donde se obtiene.

Bibliografia

e [RDD]: Object Design: Roles, Responsibilities, and Collaborations,
Rebecca Wirfs-Brock et al., Addison-Wesley, 2002.

e [PPP]: Agile Software Development: Principles, Patterns, and Practices,
Robert C. Martin, Prentice Hall, 2002.

e [Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study
of language and Information, Leland Stanford Junior University, 1992.

11
Sistemas

por el Dr. Kevin Dean Wampler

«La complejidad es letal. Acaba con los desarrolladores y dificulta
la planificacion, generacion y pruebas de los productos».
—Ray Ozzie, CTO, Microsoft Corporation

Como construir una ciudad

¢Podria encargarse de todos los detalles por su cuenta? Seguramente no. Incluso
la gestion de una ciudad existente seria demasiado para una sola persona. Y aun
asi, las ciudades funcionan (en la mayoria de los casos). Funcionan porque
tienen equipos que controlan partes concretas de la ciudad, el alcantarillado, la
red eléctrica, el trafico, la seguridad, las normativas urbanisticas, etc. Algunos se
encargan de aspectos generales y otros se centran en los detalles.

Las ciudades también funcionan porque disponen de evolucionados niveles
de abstraccion y modularidad que permiten a individuos y componentes trabajar
de forma eficaz, sin necesidad de entender el trasfondo general.

Aunque los equipos de software se suelen organizar de esta forma, los
sistemas en los que trabajan no suelen contar con la misma separacion de
aspectos y niveles de abstraccion. En este capitulo veremos como mantener la
limpieza en niveles superiores de abstraccion, en el sistema.

Separar la construccion de un sistema de su uso

En primer lugar, recuerde que la construccion es un proceso muy diferente al
uso. Mientras escribo estas lineas, a través de la ventana veo un nuevo hotel en
construccion en Chicago. Hoy instalaran una gran grida. Todos los obreros llevan
casco. Dentro de un afio habran acabado el hotel. La gria desaparecera. El
edificio estara terminado, con su reluciente fachada de cristal y su atractiva
decoracion. La gente que trabajara en él también sera diferente.

Los sistemas de software deben separar el proceso de inicio, en el que se
crean los objetos de la aplicacion y se conectan las dependencias, de la
l6gica de ejecucion que toma el testigo tras el inicio.

El proceso de inicio es un aspecto que toda aplicacion debe abordar. Es el
primero que veremos en este capitulo. La separacion de aspectos es una de las
técnicas de disefio mas antiguas e importantes de nuestra profesion.

Desafortunadamente, muchas aplicaciones no lo hacen. El cédigo del
proceso de inicio se mezcla con la l6gica de tiempo de ejecucion. Veamos un
ejemplo tipico:

public Service getService() {
if (service == null)

service = new MyServiceImpl (..); //:Lo bastante predeterminado para la mayoria de los casos?
return service;

}

Es la técnica de inicializacion/evaluacion tardia y tiene sus meéritos. No
incurrimos en la sobrecarga de la construccion a menos que usemos el objeto
realmente, y como resultado el tiempo de inicio se puede acelerar. También
evitamos que se devuelva null.

Sin embargo, ahora tenemos una dependencia en MyServiceImpl y todo lo
que su constructor requiere (que he omitido). No podemos compilar sin resolver
estas dependencias, aunque nunca usemos un objeto de este tipo en tiempo de
ejecucion.

Las pruebas también pueden ser un problema. Si MyServiceImpl es un
objeto pesado, tendremos que asegurarnos de asignar el correspondiente test
double®™ u objeto simulado al campo de servicio antes de invocar este método en
las pruebas de unidad. Como la logica de la construccion se mezcla con el
procesamiento normal de tiempo de ejecucion, debemos probar todas las rutas de
ejecucion (como la prueba null y su bloque). Al contar con ambas
responsabilidades, el método hace mas de una cosa, por lo que se incumple el
principio de responsabilidad unica.

Lo peor de todo es que no sabemos si MyServiceImpl es el objeto correcto
en todos los casos. ¢Por qué la clase con este método tiene que conocer el
contexto global? ;Podemos saber realmente cual es el objeto correcto que usar
aqui? ¢Es posible que un mismo tipo sea el correcto para todos los contextos
posibles?

Un caso de inicializacion tardia no es un problema serio. Sin embargo,
suele haber muchos casos de este tipo de configuracion en las aplicaciones. Por
tanto, la estrategia de configuracion global (si existe) se disemina por la
aplicacion, sin apenas modularidad y con una significativa duplicacién.

Si somos diligentes sobre el disefio de sistemas robustos y bien formados,
no debemos permitir fallos de modularidad. El proceso de inicio de la
construccion y conexion de objetos no es una excepcion. Debemos modularizar
este proceso y asegurarnos de contar con una estrategia global y coherente para
resolver las dependencias principales.

Separar Main

Una forma de separar la construccion del uso consiste en trasladar todos los
aspectos de la construccion a main o a modulos invocados por main, y disefiar el
resto del sistema suponiendo que todos los objetos se han creado y conectado
correctamente (véase la figura 11.1).

El flujo de control es facil de seguir. La funciéon main crea los objetos
necesarios para el sistema, los pasa a la aplicacion y ésta los utiliza. Vera que las
flechas de dependencia atraviesan la barrera entre main y la aplicacion. Todas
van en la misma direccién, alejandose de main, lo que significa que la aplicacion
no tiene conocimiento de main ni del proceso de construccién. Simplemente
espera que todo se haya construido correctamente.

2: ejecutar (oc)

aplicacion

1: generar
Generador 1.1: construir - oc: Objeto
<<greas> configurado
T — .

Figura 11.1. Separaci6n de la construccién en main().

Factorias

En ocasiones, la aplicacién tendra que ser responsable de la creacion de un
objeto. Por ejemplo, en un sistema de procesamiento de pedidos, la aplicacion
debe crear las instancias LineItem que afiadir a Order. En este caso, podemos
usar el patron de factoria abstracta® para que la aplicacién controle cuando crear
LineItem, pero mantener los detalles de dicha construccion separados del codigo
de la aplicacion (véase la figura 11.2).

De nuevo vemos que todas las dependencias se desplazan desde main a la
aplicacion orderProcessing, lo que significa que la aplicacion se desconecta de
los detalles de creaciéon de LineItem. Esta capacidad se incluye en
LineItemFactoryImplementation, en el extremo main de la linea. Y sin
embargo, la aplicacion tiene control total sobre cuando se crean las instancias
LineItem e incluso puede proporcionar argumentos de constructor especificos de
la aplicacion.

ejecutar (factoria)

OrderProcessing

<<interfaz>>

Implementacién de > LineltemFactory
LineltemFactory

+makeLineltem
- ____________________»

Lineltem

<<Crea=>

Figura 11.2. Separacion de la construccién con una factoria.

Inyectar dependencias

Un potente mecanismo para separar la construccion del uso es la Inyeccion de
dependencias, la aplicacion de Inversion de control (Inversion of Control o 1o0C)
a la administracion de dependencias®. La Inversion de control pasa
responsabilidades secundarias de un objeto a otros dedicados a ese cometido, por
lo que admite el principio de responsabilidad unica. En el contexto de la
administracion de dependencias, un objeto no debe ser responsable de instanciar
dependencias, sino que debe delegar esta responsabilidad en otro mecanismo
autorizado, de modo que se invierte el control. Como la configuracion es un
aspecto global, este mecanismo autorizado suele ser la rutina main o un
contenedor de proposito especial.

Las busquedas JNDI son una implementacion parcial de la inyeccion de
dependencias, en las que un objeto solicita a un servidor de directorios un
servicio que coincida con un nombre concreto.

MyService myService = (MyService)(jndiContext.lookup(“NameOfMyService”));

El objeto invocador no controla el tipo de objeto devuelto (siempre que
implemente la interfaz correcta, evidentemente), pero es el que resuelve la
dependencia de forma activa.

La verdadera inyeccion de dependencias va un paso mas alla. La clase no
hace nada directamente para resolver sus dependencias, es totalmente pasiva. Por
el contrario, ofrece métodos de establecimiento o argumentos de constructor (o
ambos) que se usan para inyectar las dependencias. En el proceso de

construccion, el contenedor de inyeccion de dependencias crea instancias de los
objetos necesarios (normalmente bajo demanda) y usa los argumentos de
constructor o métodos de establecimiento proporcionados para conectar las
dependencias. Los objetos dependientes empleados suelen especificarse a través
de un archivo de configuraciéon o mediante programacién en un modulo de
construccion de proposito especial.

La estructura Spring proporciona el contenedor de inyeccion de
dependencias mas conocido para Java®. Los objetos que se van a conectar se
definen en un archivo de configuracion XML y después se solicitan objetos
concretos por nombre en codigo de Java. Veremos un ejemplo en breve.

¢Y qué sucede con las virtudes de la inicializacion tardia? En ocasiones es
util con la inyeccion de dependencias. Por un lado, muchos contenedores de
inyeccion de dependencias no crean un objeto hasta que es necesario. Por otra
parte, muchos de estos contenedores cuentan con mecanismos para invocar
factorias o crear proxies que se pueden usar para evaluaciéon tardia y
optimizaciones similares®.

Evolucionar

Las ciudades nacen de pueblos, que nacen de asentamientos. Inicialmente, los
caminos son estrechos y practicamente inexistentes, después se asfaltan y
aumentan de tamafio.

Los pequefios edificios y solares vacios se llenan de otros mayores que
acaban convirtiéndose en rascacielos. Al principio no hay servicios, electricidad,
agua, alcantarillado o Internet (jvaya!). Estos servicios se afiaden cuando
aumenta la densidad de poblacion.

Este crecimiento no es facil. Cuantas veces mientras conduce por una
carretera llena de baches y ve una sefial de obras no se ha preguntado por qué no
la hicieron mas ancha desde un principio.

No se podia haber hecho de otra forma. ;Quién puede justificar el gasto en
una autopista de seis carriles que atraviese un pequefio pueblo como anticipacion
a un supuesto crecimiento? ;Quién querria una autopista asi en su ciudad?

Conseguir sistemas perfectos a la primera es un mito. Por el contrario,
debemos implementar hoy, y refactorizar y ampliar mafiana. Es la esencia de la
agilidad iterativa e incremental. El desarrollo controlado por pruebas, la
refactorizacion y el cédigo limpio que generan hace que funcione a nivel del
codigo.

;Pero qué sucede en el nivel del sistema? ;La arquitectura del sistema no

requiere una planificacion previa? Sin duda no puede aumentar
incrementalmente algo sencillo a algo complejo, ;0 si?

Los sistemas de software son unicos si los comparamos con los sistemas
fisicos. Sus arquitecturas pueden crecer incrementalmente, si mantenemos
la correcta separacion de los aspectos.

La naturaleza efimera de los sistemas de software hace que sea posible,
como veremos. Primero nos centraremos en una arquitectura que no separa
correctamente los aspectos. Las arquitecturas EJB1 y EJB2 originales no
separaban correctamente los aspectos y por tanto imponian barreras innecesarias
al crecimiento organico. Imagine un bean de entidad para una clase Bank
persistente. Un bean de entidad es una representacion en memoria de datos
relacionales, es decir, una fila de una tabla.

Primero, debe definir una interfaz local (en proceso) o remota (MVJ
independiente), que los clientes usen. El Listado 1-1 muestra una posible interfaz
local:

Listado 11-1
Una interfaz local EJB2 para el EJB Bank.

package com.example.banking;
import java.util.Collections;
import javax.ejb.*;

public interface BankLocal extends java.ejb.EJBLocalObject {
String getStreetAddrl{} throws EJBException;
String getStreetAddr2{} throws EJBException;
String getCity() throws EJBException;
String getState() throws EJBException;
String getzipCode() throws EJBException;
void setStreetAddr1(String streetl) throws EJBException;
void setStreetAddr2(String street2) throws EJBException;
void setCity(String city) throws EJBException;
void setState(String state) throws EJBException;
void setZipCode(String zip) throws EJBException;
Collection getAccounts() throws EJBException;
void setAccounts(Collection accounts) throws EJBException;
void addAccount(AccountDTO accountDTO) throws EJBException;

Mostramos diversos atributos de la direccion de Bank y una coleccion de
cuentas del banco, cuyos datos se procesaran por un EJB Account diferente. El
Listado 11-2 muestra la correspondiente clase de implementacion del bean Bank.

Listado 11-2
Implementacion del bean de entidad EJB2.

package com.example.banking;

import java.util.Collections;
import javax.ejb.*;

public abstract class Bank implements javax.ejb.EntityBean {

// Légica empresarial..

public abstract String getStreerAddri();

public abstract String getStreetAddr2();

public abstract String getCity();

public abstract String getState();

public abstract String getzZipCode();

public abstract void setStreetAddr1(String streetl);

public abstract void setStreetAddr2(String street2);

public abstract void setcity(String city);

public abstract void setState(String state);

public abstract void setzZipCode(String zip);

public abstract Collection getAccounts();

public abstract void setAccounts(Collection accounts);

public void addAccount(AccountPTO accountDTO) {
InitialContext context = new InitialContext();
AccountHomeLocal accountHome = context.lookup(“AccountHomeLocal”);
AccountLocal account = accountHome.create(accountDTO);
Collection accounts = getAccounts();
accounts.add(account);

}

// Légica del contenedor EJB

public abstract void setId(Integer id);

public abstract Integer getId();

public Integer ejbCreate(Integer id) {..}

public void ejbPostCreate(Integer id) {..}

// E1l resto tendria que implementarse pero se deja vacio:

public void setEntityContext(EntityContext ctxt) {}

public void unsetEntityContext() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void ejbLoad() {}

public void ejbStore() {}

public void ejbRemove() {}

No mostramos la correspondiente interfaz LocalHome, basicamente una
factoria usada para crear objetos, no los métodos de consulta Bank que pueda
afiadir.

Por ultimo, debemos crear uno o varios descriptores de implementacion
XML que especifiquen los detalles de asignacion relacional de objetos en un
almacén persistente, el comportamiento deseado de la transaccion, limitaciones
de seguridad y demas.

La logica empresarial esta directamente conectada al contenedor de la
aplicacion EJB2. Debe crear subclases de tipos de contenedor y proporcionar los
métodos de ciclo vital necesarios para el contenedor. Debido a esta conexion al
contenedor pesado, las pruebas de unidad aisladas son complicadas. Es necesario
imitar el contenedor, algo dificil, o perder demasiado tiempo en la
implementacion de EJB y pruebas en un servidor real. La reutilizacion fuera de
la arquitectura EJB2 es imposible, debido a esta estrecha conexion. Por tultimo,
incluso la programacion orientada a objetos se ve afectada. Un bean no se puede
heredar de otro. Fijese en la l6gica para afiadir una nueva cuenta. En bean EJB2
es habitual definir Objetos de transferencia de datos (Data Transfer Objects o
DTO), estructuras sin comportamiento. Esto suele generar tipos redundantes con
los mismos datos y requiere codigo predefinido para copiar datos entre objetos.

Aspectos transversales

La arquitectura EJB2 se acerca a la verdadera separacion de aspectos en
determinados aspectos. Por ejemplo, los comportamientos transaccionales, de
seguridad y comportamiento deseados se declaran en los descriptores de
implementacion, independientemente del codigo fuente. Aspectos como la
persistencia suelen cruzar los limites de objeto naturales de un dominio. Por lo
general intentara mantener todos sus objetos mediante la misma estrategia, por
ejemplo con un determinado DBMS®' y no archivos planos, usando
determinadas convenciones de nomenclatura para tablas y columnas, una
semantica transaccional coherente, etc.

En principio, puede razonar su estrategia de persistencia de una forma
modular y encapsulada, pero en la practica tendra que distribuir el mismo codigo
que implemente la estrategia de persistencia entre varios objetos. Usamos el
término transversales para este tipo de aspectos. De nuevo, la estructura de
persistencia podria ser modular y la légica de dominios, aislada, también. El
problema es la interseccion entre ambos dominios.

De hecho, la forma en que la arquitectura EJB procesa persistencia,
seguridad y transacciones es una Programacién orientada a aspectos (Aspect
Oriented Programming o AOP)™ anticipada, un enfoque de caricter general
para restaurar la modularidad en aspectos transversales. En AOP, construcciones
modulares denominadas aspectos especifican qué puntos del sistema deben
modificar su comportamiento de forma coherente para admitir un determinado
aspecto. Esta especificacion se realiza mediante un sucinto mecanismo de
declaracion o programacion.

Si usamos la persistencia como ejemplo, podria declarar qué objetos y
atributos (o patrones) deben conservarse y después delegar las tareas de
persistencia a su estructura de persistencia. Las modificaciones de
comportamiento no son invasivas para el cédigo de destino. Veamos tres
aspectos o mecanismos similares en Java.

Proxies de Java

Los proxies de Java son utiles en casos sencillos, como envolver invocaciones
de métodos en objetos o clases concretas. Sin embargo, los proxies dinamicos
proporcionados en el JDK solo funcionan con interfaces. Para aplicarlos a clases,
debe usar una biblioteca de manipulacion de cédigo de bytes, como CGLIB,
ASM o Javassist™.

El Listado 11-3 muestra la estructura de un proxy JDK para ofrecer

asistencia de persistencia a nuestra aplicacion Bank; unicamente abarca los
métodos para obtener y establecer la lista de cuentas.

Listado 11-3
Ejemplo de proxy del JDK.

// Bank.java (eliminando nombres de paquetes..)
import java.utils.*;

// La abstraccién de un banco.
public interface Bank {
Collection<Account> getAccounts();
void setAccounts(Collection<Accounts> accounts);

// BankImpl.java
import java.utils.*;

// “Plain 0ld Java Object” P0JO que implementa la abstraccioén.
public class BankImpl implements Bank {
private List<Account> accounts;

public Collection<Account> getAccounts() {
return accounts;
}
public void setAccounts(Collections<Accounts> accounts) {
this.accounts = new ArrayList<Accounts>();
for (Account account: accounts) {
this.accounts.add(account);

}

// BankProxyHandler.java
import java.lang.reflect.*;
import java.util.*;

// «InvocationHandler» necesario para la API de proxy.
public class BankProxyHandler implements InvocationHandler {
private Bank bank;

public BankHandler (Bank bank) {
this.bank = bank;
}

// Método definido en InvocationHandler
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {

String methodName = method.getName();

if (methodName.equals(“getAccounts”)) {
bank.setAccounts(getAccountsFromDatabase());
return bank.getAccounts();

} else if (methodName.equals(“setAccounts”)) {
bank.setAccounts((Collection<Account>) args[0]);
setAccountsToDatabase(bank.getAccounts());
return null;

} else {

}

// Muchos detalles:
protected Collection<Account> getAccountsFromDatabase() {..}
protected void setAccountsToDatabase(Collection<Account> accounts) {.}

//En otra parte..

Bank bank = (Bank) Proxy.newproxyInstance(
Bank.class.getClassLoader (),
new Class[] { Bank.class },
new BankProxyHandler (new BankImpl()));

Definimos la interfaz Bank, que envolvemos en el proxy y un POJO (Plain-

Old Object u Objeto sencillo de Java), BankImpl, que implementa la légica
empresarial (encontrara mas informacién sobre POJO en un apartado posterior).

La API Proxy requiere un objeto InvocationHandler que invocar para
implementar las invocaciones de métodos Bank realizadas en el proxy.
BankProxyHandler usa la API de reflexion de Java para asignar las invocaciones
de métodos genéricos a los métodos correspondientes de BankImpl, y asi
sucesivamente.

El codigo es abundante y complejo, incluso para este sencillo caso™. El uso
de una de las bibliotecas de manipulacion de bytes es igualmente complicado. El
volumen y la complejidad de este codigo son dos de los inconvenientes de los
proxies. Dificultan la creacién de cédigo limpio. Ademas, los proxies no
ofrecen un mecanismo para especificar puntos de ejecucion globales del sistema,
imprescindibles para una verdadera solucion AOP*”.

Estructuras AOP Java puras

Afortunadamente, gran parte del codigo predefinido de proxy se puede procesar
de forma automatica mediante herramientas. Los proxies se usan internamente
en varias estructuras de Java como Spring AOP y JBoss AOP, para implementar
aspectos en Java®. En Spring, se crea la l6gica empresarial en forma de POJO,
especificos de su dominio. No dependen de estructuras empresariales (ni de otros
dominios). Por tanto, son conceptualmente mas sencillos y mas faciles de probar.
Su relativa simplicidad garantiza que se implementen correctamente las
correspondientes historias y el mantenimiento y evolucién del codigo en
historias futuras.

La infraestructura necesaria de la aplicacion, incluidos aspectos
transversales como persistencia, transacciones, seguridad, almacenamiento en
caché y recuperacion ante fallos, se incorpora por medio de archivos de
configuracion declarativos o API. En muchos casos, se especifican aspectos de
bibliotecas Spring o JBoss, en los que la estructura controla el uso de proxies de
Java o bibliotecas de cddigo de bytes de forma transparente al usuario. Estas
declaraciones controlan el contenedor de inyeccion de dependencias, que crea
instancias de los principales objetos y las conecta bajo demanda.

El Listado 11-4 muestra un fragmento tipo de un archivo de configuracion
de Spring V2.5, app.xml*,

Listado 11-4

Archivo de configuracién de Spring 2.X

<beans>

<bean id="appDataSource”
class=*org.apache.commons.dbcp.BasicDataSource”
destroy-method="close”
p:driverClassName=*“com.mysql.jdbc.Driver”
p:url=“jdbc:mysql://localhost:3306/mydb”
p:username=“me” />

<bean id="bankDataAccessObject”
class=*com.example.banking.persistence.BankDataAccessObject”
p:dataSource-ref=“appbDataSource”/>

<bean id="bank”
class=*“com.example.banking.model.Bank”
p:dataAccessObject-ref="bankDataAccessObject”/>

</beans>

Cada bean es como una parte de una mufieca rusa anidada, con un objeto de
domino de un proxy Bank (envuelto) por un Objeto de acceso a datos (Data
Accessor Object, DAO), que también se procesa a través de un proxy por medio
de un origen de datos de controlador JDBC (véase la figura 11.3).

AppDataSource
—— BankDataAcessObject -
<
Bank = i

Figura 11.3. La “muiieca rusa” de elementos de decoracion.

El cliente cree que invoca getAccounts() en un objeto Bank, pero en
realidad se comunica con el objeto DECORATORE mas externo de un grupo, un
objeto que amplia el comportamiento basico del POJO Bank. Podriamos afiadir
otros objetos de decoracion para transacciones, almacenamiento en caché y
demas.

En la aplicacién, bastan unas lineas para solicitar al contenedor de ID los
objetos de nivel superior del sistema, como se especifica en el archivo XML.

XmlBeanFactory bf =
new XmlBeanFactory(new ClassPathResource(“app.xml”, getclass()));
Bank bank = (Bank) bf.getBean(“bank”);

Como apenas se necesitan lineas de codigo Java especifico de Spring, la
aplicacion se desconecta casi por completo de Spring y desaparecen los
problemas de conexién de sistemas como EJB2.

Aunque XML puede ser dificil de leer*, la directiva especificada en estos
archivos de configuracion es mas sencilla que la complicada lo6gica de proxy y
aspectos oculta a la vista y creada de forma automatica. Es una arquitectura tan
atractiva que sistemas como Spring modificaron totalmente el estandar EJB para

la version 3. EJB3 sigue el modelo de Spring de aspectos transversales admitidos
mediante declaraciones con archivos de configuraciéon XML y/o anotaciones de
Java 5.

El Listado 11-5 muestra nuestro objeto Bank reescrito en EJB3*.,

Listado 11-5
Un EJB Bank EJB3.

package com.example.banking.model;
import javax.persistence;

import java.util.Arraylist;

import java.util.Collection;

@Entity

@Table(name = “BANKS”)

public class Bank implements java.io.Serializable {
@Id @Generatedvalue(strategy=GenerationType.AUTO)
private int id;

@Embeddable // Un objeto en linea en la fila DB de Bank
public class Address {

protected String streetAddril;

protected String streetAddr2;

protected String city;

protected String state;

protected String zipCode;
}

@Embedded
private Address address;

@OneToMany (cascade = CascadeType.ALL, fetch = FetchType.EAGER,
mappedBy="bank”)
private Collection<Account> accounts = new ArraylList<Account>();

public int getId() {
return id;

}

public void setID(int id) {
this.id = id;

}

public void addAccount(Account account) {
account.setBank(this);
accounts.add(account);

}

public Collection<Account> getAccounts() {
return accounts;

}

public void setAccounts(Collection<Account> accounts) {
this.accounts = accounts;

}

Este codigo es mucho mas limpio que el cdédigo EJB2 original. Se
conservan algunos detalles de entidades, en las anotaciones. Sin embargo, como
no hay informacion fuera de las anotaciones, el codigo es limpio y facil de
probar, mantener y demas.

Parte de la informacion de persistencia de las anotaciones se puede cambiar
a descriptores de implementaciéon XML si es necesario, dejando un POJO puro.
Si los detalles de asignacion de persistencia no cambian con frecuencia, muchos

equipos pueden optar por mantener las anotaciones pero con menos obstaculos
que si usaran EJB2.

Aspectos de Aspect]

Por tultimo, la herramienta mas completa de separacion a través de aspectos es el
lenguaje Aspect]®®, una extension de Java que ofrece compatibilidad de primer
nivel para aspectos como construcciones de modularidad. Los enfoques puros de
Java proporcionados por Spring AOP y JBoss AOP son suficientes en el 80-90
por 100 de los casos en los que los aspectos son utiles. Sin embargo, AspectJ
ofrece un conjunto de herramientas avanzadas y completas para la separacion de
aspectos. El inconveniente de Aspect] es la necesidad de adoptar nuevas
herramientas y aprender nuevas construcciones del lenguaje. Los problemas de
adopcion se han mitigado parcialmente gracias a la introduccion de un formato
de anotacion de Aspect], en el que se usan anotaciones de Java 5 para definir
aspectos con codigo puro de Java. Ademas, la estructura Spring dispone de
funciones que facilitan la incorporacién de aspectos basados en anotaciones en
un equipo con experiencia limitada con Aspect].

El analisis completo de Aspect] supera los objetivos de este libro. Si
necesita mas informacion al respecto, consulte [AspectJ], [Colyer] y [Spring].

Pruebas de unidad de la arquitectura del sistema

La separacion a través de enfoques similares a aspectos no se puede
menospreciar. Si puede crear la l6gica de dominios de su aplicacion mediante
POJO, sin conexién con los aspectos arquitectonicos a nivel del codigo, entonces
se podra probar realmente la arquitectura. Puede evolucionar de simple a
sofisticado, de acuerdo a las necesidades, adoptando nuevas tecnologias bajo
demanda. No es necesario realizar un Buen disefio por adelantado (Big Design
Up Front®””, BDUF). De hecho, BDUF puede ser negativo ya que impide la
adaptacion al cambio, debido a la resistencia fisiologica a descartar esfuerzos
previos y a la forma en que las decisiones arquitectonicas influyen en la
concepcion posterior del disefio.

Los arquitectos deben realizar BDUF ya que no resulta factible aplicar
cambios arquitectonicos radicales a una estructura fisica una vez avanzada la
construccion®. Aunque el software se rige por una fisica propia®, es
economicamente factible realizar cambios radicales si la estructura del software

separa sus aspectos de forma eficaz.

Esto significa que podemos iniciar un proyecto de software con una
arquitectura simple pero bien desconectada, y ofrecer historias funcionales de
forma rapida, para después aumentar la infraestructura. Algunos de los
principales sitios Web del mundo han alcanzado una gran disponibilidad y
rendimiento por medio de sofisticadas técnicas de almacenamiento en caché,
seguridad, virtualizacion y demas, todo ello de forma eficaz y flexible ya que los
disefios minimamente conectados son adecuadamente simples en cada nivel de
abstraccion y ambito. Evidentemente, no quiere decir que acometamos los
proyectos sin timon. Debemos tener expectativas del ambito general, objetivos y
un programa, asi como la estructura general del sistema resultante. Sin embargo,
debemos mantener la capacidad de cambiar de rumbo en respuesta a las
circunstancias.

La arquitectura EJB inicial es una de las API conocidas con un exceso de
ingenieria y que compromete la separacion de aspectos. Incluso las API bien
disefiadas pueden ser excesivas cuando no resultan necesarias. Una API correcta
debe desaparecer de la vista en la mayoria de los casos, para que el equipo
dedique sus esfuerzos creativos a las historias implementadas. En caso contrario,
las limitaciones arquitecténicas impediran la entrega eficaz de un valor 6ptimo
para el cliente. Para recapitular:

Una arquitectura de sistema optima se compone de dominios de aspectos
modularizados, cada uno implementado con POJO. Los distintos dominios
se integran mediante aspectos o herramientas similares minimamente
invasivas. Al igual que en el cddigo, en esta arquitectura se pueden realizar
pruebas.

Optimizar la toma de decisiones

La modularidad y separacién de aspectos permite la descentralizacién de la
administracion y la toma de decisiones. En un sistema suficientemente amplio,
ya sea una ciudad o un proyecto de software, no debe haber una sola persona que
adopte todas las decisiones.

Sabemos que conviene delegar las responsabilidades en las personas mas
cualificadas. Solemos olvidar que también conviene posponer decisiones hasta el
ultimo momento. No es falta de responsabilidad; nos permite tomar decisiones
con la mejor informacion posible. Una decisién prematura siempre es subjetiva.

Si decidimos demasiado pronto, tendremos menos informacion del cliente,
reflexion mental sobre el proyecto y experiencia con las opciones de
implementacion.

La agilidad que proporciona un sistema POJO con aspectos modularizados
nos permite adoptar decisiones optimas a tiempo, basadas en los
conocimientos mds recientes. Ademds, se reduce la complejidad de estas
decisiones.

Usar estandares cuando anadan un valor demostrable

La construccion de edificios es una maravilla para la vista debido al ritmo
empleado (incluso en invierno) y los extraordinarios disefios posibles gracias a la
tecnologia actual. La construccion es un sector maduro con elementos, métodos
y estandares optimizados que han evolucionado bajo presién durante siglos.

Muchos equipos usaron la arquitectura EJB2 por ser un estandar, aunque
hubiera bastado con disefios mas ligeros y sencillos. He visto equipos
obsesionados con estandares de moda y que se olvidaron de implementar el valor
para sus clientes.

Los estandares facilitan la reutilizacion de ideas y componentes, reclutan
individuos con experiencia, encapsulan buenas ideas y conectan
componentes. Sin embargo, el proceso de creacion de estdandares puede
tardar demasiado para el sector, y algunos pierden el contacto con las
verdaderas necesidades de aquello para los que estdn dirigidos.

Los sistemas necesitan lenguajes especificos del
dominio

La construccion de edificios, como muchos dominios, ha desarrollado un rico
lenguaje con vocabularios, frases y patrones™ que comunican informacion
esencial de forma clara y concisa. En el mundo del software, ha renacido el
interés por crear Lenguajes especificos del dominio (Domain-Specific
Languages o DSL)”, pequefios lenguajes independientes de creacién de
secuencias de comandos o API de lenguajes estandar que permiten crear codigo

que se lea de una forma estructurada, como lo escribiria un experto del dominio.
Un buen DSL minimiza el vacio de comunicacién entre un concepto de dominio
y el codigo que lo implementa, al igual que las practicas agiles optimizan la
comunicaciéon entre un equipo y los accionistas del proyecto. Si tiene que
implementar la 16gica de dominios en el mismo lenguaje usado por un experto
del dominio, hay menos riesgo de traducir incorrectamente el dominio en la
implementacion.

Los DSL, si se usan de forma eficaz, aumentan el nivel de abstraccion por
encima del codigo y los patrones de disefio. Permiten al desarrollador revelar la
intencion del codigo en el nivel de abstraccion adecuado.

Los lenguajes especificos del dominio permiten expresar como POJO todos
los niveles de abstraccion y todos los dominios de la aplicacion, desde
directivas de nivel superior a los detalles mds minimos.

Conclusion

Los sistemas también deben ser limpios. Una arquitectura invasiva afecta a la
légica de dominios y a la agilidad. Si la l6gica de dominios se ve afectada, la
calidad se resiente, ya que los errores se ocultan y las historias son mas dificiles
de implementar. Si la agilidad se ve comprometida, la productividad sufre y las
ventajas de TDD se pierden.

En todos los niveles de abstraccion, los objetivos deben ser claros. Esto so6lo
sucede si crea POJO y usa mecanismos similares a aspectos para incorporar
otros aspectos de implementacion de forma no invasiva.

Independientemente de que disefie sistemas o modulos individuales, no
olvide usar los elementos mas sencillos que funcionen.

Bibliografia

¢ [Alexander]: Christopher Alexander, A Timeless Way of Building, Oxford
University Press, New York, 1979.

e [AOSD]: Puerto de Desarrollo de software orientado a aspectos,
http://aosd.net.

[ASM]: Pagina de ASM, http://asm.objectweb.org/.

[Aspect]J]: http: //eclipse.org/aspect;.

[CGLIB]: Biblioteca de generacion de codigo, http://cglib.sourceforge.net/.
[Colyer]: Adrian Colyer, Andy Clement, George Hurley, Mathew Webster,
Eclipse Aspect], Person Education, Inc., Upper Saddle River, NJ, 2005.
[DSL]: Lenguaje de programacion especifico del dominio,
http://es.wikipedia.org/wiki/Lenguaje_espec%C3%ADfico_del_dominio.
[Fowler]: Inversién de contenedores de control y el patrén de inyeccién de
dependencias (http://martinfowler.com/articles/injection.html).

[Goetz]: Brian Goetz, Java Theory and Practice: Decorating with Dynamic
Proxies, http://www.ibm.com/developerworks/java/library/j-jtp08305.html.
[Javassist]: Pagina de Javassist,
http://www.csg.is.titech.ac.jp/chiba/javassist/.

[JBoss]: Pagina de JBoss, http: //jboss.org.

[JMock]: JMock: Una biblioteca de objetos Mock ligeros para Java,
http://jmock.org.

[Kolence]: Kenneth W. Kolence, Software physics and computer
performance measurements, Proceedings of the ACM annual conference-
Volume 2, Boston, Massachusetts, pp. 1024-1040,1972.

[Spring]: The Spring Framework, http://www.springframework.org.
[Mezzaros07]: XUnit Patterns, Gerard Mezzaros, Addison-Wesley, 2007.
[GOF]: Design Patterns: Elements of Reusable Object Oriented Software,
Gamma et al., Addison-Wesley, 1996.

12
Emergencia

con Jeff Langr

,4/

il
: {ﬁi’f
;‘}W

S e TR A T LU BT RTTR
ok ‘-lﬂ.lﬁl,'.ll.ﬂl!' gt
- | e 5

&
[X

Limpieza a través de disenos emergentes

Imagine que existieran cuatro sencillas reglas para crear disefios de calidad.
Imagine que siguiéndolas accediera a la estructura y al disefio de su codigo y
facilitara la aplicacion de principios como SRP y DIP. Imagine que estas cuatro
reglas facilitaran la emergencia de disefios de calidad.

Muchos consideramos que las cuatro reglas de Kent Beck de disefio
sencillo™ son fundamentales para crear un software bien disefiado.

Segun Kent, un disefio es sencillo si cumple estas cuatro reglas:

Ejecuta todas las pruebas.

No contiene duplicados.

Expresa la intencion del programador.
Minimiza el nimero de clases y métodos.

Describiremos estas reglas en orden de importancia.

Primera regla del diseno sencillo: Ejecutar todas las
pruebas

En primer lugar, un disefio debe generar un sistema que actie de la forma
prevista. Un sistema puede tener un disefio perfecto sobre el papel pero si no
existe una forma sencilla de comprobar que realmente funciona de la forma
esperada, el esfuerzo sobre el papel es cuestionable.

Un sistema minuciosamente probado y que supera todas las pruebas en todo
momento se denomina sistema testable. Es una afirmacién obvia, pero
importante. Los sistemas que no se pueden probar no se pueden verificar, y un
sistema que no se puede verificar no debe implementarse.

Afortunadamente, crear sistemas testables hace que disefiemos clases de
tamafio reducido y un solo cometido. Resulta mas sencillo probar clases que
cumplen el SRP. Cuantas mas pruebas disefiemos, mas nos acercaremos a
elementos mas faciles de probar. Por lo tanto, hacer que nuestro sistema se
pueda probar nos ayuda a crear mejores disefios.

Las conexiones rigidas dificultan la creacion de pruebas. Del mismo modo,
cuantas mas pruebas creemos, mas usaremos principios como DIP vy
herramientas con inyeccion de dependencias, interfaces y abstraccion para
minimizar dichas conexiones. Nuestros disefios mejoraran todavia mas.

En especial, seguir una sencilla regla que afirme que debemos realizar
pruebas y ejecutarlas continuamente afecta el cumplimiento por parte de nuestro
sistema de los principales objetivos de la programacion orientada a objetos de
baja conexion y elevada cohesion. La creacion de pruebas conduce a obtener
mejores disefios.

Reglas 2 a 4 del diseno sencillo: Refactorizar

Una vez creadas las pruebas, debemos mantener limpio el codigo y las clases.
Para ello, refactorizamos el codigo progresivamente. Tras afiadir unas lineas, nos
detenemos y reflejamos el nuevo disefio. ;Ha empeorado? En caso afirmativo, lo
limpiamos y ejecutamos las pruebas para comprobar que no hay elementos
afectados. La presencia de las pruebas hace que perdamos el miedo a limpiar el
codigo y que resulte dafiado.

En la fase de refactorizacion, podemos aplicar todos los aspectos del disefio
de software correcto. Podemos aumentar la cohesion, reducir las conexiones,
separar las preocupaciones, modularizar aspectos del sistema, reducir el tamafo
de funciones y clases, elegir nombres mas adecuados, etc. Aqui también
aplicamos las tres ultimas reglas del disefio correcto: eliminar duplicados,
garantizar la capacidad de expresion y minimizar el numero de clases y métodos.

Eliminar duplicados

Los duplicados son los mayores enemigos de un sistema bien disefiado. Suponen
un esfuerzo adicional, riesgos afiadidos y una complejidad a mayores
innecesaria. Los duplicados se manifiestan de diversas formas. Las lineas de
codigo similar pueden modificarse para que parezcan refactorizadas, y hay otras
formas de duplicacion como la de implementacion. Por ejemplo, podriamos
tener dos métodos en una clase de coleccion: i size) ¢

boolean isEmpty() {3}

Podriamos tener implementaciones separadas para cada método. El método
isEmpty podria controlar un valor booleano y size un contador, o podemos
eliminar la duplicacion y vincular isEmpty a la definicion de size: sooiean ssemty() ¢

return 0 == size();

}

La creacion de un sistema limpio requiere la eliminacion de duplicados,
aunque sean unas cuantas lineas de codigo. Fijese en el siguiente ejemplo:

public void scaleToOneDimension {
float desiredDimension, float imageDimension) {
if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
return;
float scalingFactor = desiredDimension / imageDimension;
scalingFactor = (float)(Math.floor(scalingFactor 100) 0.01f);

RenderedOp newImage = ImageUtilities.getScaledImage(
image, scalingFactor, scalingFactor)
image.dispose();
System.gc();
image = newImage;
}
public synchronized void rotate(int degrees) {
RenderedOp newImage = ImageUtilities.getRotatedImage(
image, degrees);
image.dispose();
System.gc();
image = newImage;

}

Para mantener limpio este sistema, debemos eliminar la pequefia cantidad
de duplicacion entre los métodos scaleToOneDimension y rotate:

public void scaleToOneDimension (
float desiredDimension, float imageDimension) {
if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
return;
float scalingFactor = desiredDimension / imageDimension;
scalingFactor = (float)(Math.floor(scalingFactor 100) 0.01f);
replaceImage(ImageUTtilities.getScaledImage(
image, scalingFactor, scalingFactor));

}

public synchronized void rotate (int degrees) {
replacelmage(ImageUtilities.getRotatedImage(image, degrees));

private void replacelmage(RenderedOp newImage) (
image.dispose();
System.gc();
image = newImage;

Al extraer a este reducido nivel, comenzamos a detectar incumplimientos
de SRP. Por ello, podriamos cambiar un nuevo método extraido a otra clase.
Esto aumenta su visibilidad. Otro miembro del equipo puede ver la necesidad de
volver a extraer el nuevo método y usarlo en otro contexto diferente. Esta
reutilizacion minima puede reducir considerablemente la complejidad del
sistema. Saber como lograrlo es fundamental para alcanzar la reutilizacion a gran
escala.

El patron Método de plantilla” es una técnica muy utilizada para eliminar
duphcadOS de HiVEl Superior. POF Ej eIl’lplOZ public class VacationPolicy {

public void accrueuUSDivisionVacation() {

// cédigo para calcular las vacaciones en funcién de las horas trabajadas
;;mcédigo para garantizar que las vacaciones cumplen los minimos legales
/7.

// cédigo para aplicar vacation al registro payroll

/1..
}

public void accrueEUDivisionvacation() {
// cédigo para calcular las vacaciones en funcién de las horas trabajadas

/7.
// cédigo para garantizar que las vacaciones cumplen los minimos legales
/7.
// cédigo para aplicar vacation al registro payroll
/7.

}

}
El codigo entre accrueUsDivisionVacation y

accrueEuropeanDivisionVacation es practicamente idéntico, a excepcion del
calculo de minimos legales. Esa parte del algoritmo cambia en funcion del tipo
de empleado. Podemos eliminar la duplicacion evidente si aplicamos el patron
de Método de plantill@: asstract puviic ciass vacationporicy ¢

public void accruevacation() {
calculateBaseVacationHours();
alterForLegalMinimums();
applyToPayroll();

private void calculateBaseVacationHours() { /* .. */ };
abstract protected void alterForLegalMinimums();
private void applyToPayroll(); { /* .. */ };

}

public class USvVacationPolicy extends VacationPolicy {
@override protected void alterForLegalMinimums() {
// Légica especifica de EE.UU.
}
}

public class EUvVacationPolicy extends VacationPolicy {
@override protected void alterForLegalMinimums() {
// Légica especifica de la UE.
}
}

Las subclases ocupan el vacio generado en el algoritmo accruevacation y
solamente proporcionan los datos que no estan duplicados.

Expresividad

Muchos tenemos experiencia con codigo enrevesado. Muchos lo hemos creado.
Es facil crear codigo que entendamos, ya que durante su creacion nos centramos
en comprender el problema que intentamos resolver. Los encargados de
mantener el cédigo no lo comprenderan de la misma forma.

El principal coste de un proyecto de software es su mantenimiento a largo
plazo. Para minimizar los posibles defectos al realizar cambios, es fundamental
que comprendamos el funcionamiento del sistema. Al aumentar la complejidad
de los sistemas, el programador necesita mas tiempo para entenderlo y aumentan
las posibilidades de errores. Por tanto, el codigo debe expresar con claridad la
intencion de su autor. Cuando mas claro sea el cédigo, menos tiempo perderan
otros en intentar comprenderlo. Esto reduce los defectos y el coste de
mantenimiento.

Puede expresarse si elige nombres adecuados. El objetivo es ver el nombre
de una clase y funcién, y que sus responsabilidades no nos sorprendan.

También puede expresarse si reduce el tamafio de funciones y clases. Al
hacerlo, resulta mas sencillo asignarles nombres, crearlas y comprenderlas. Otra
forma de expresarse es usar una nomenclatura estandar. Los patrones de disefio,
por ejemplo, se basan en la comunicacion y en la capacidad de expresion. Al
usar los nombres de patrones estandar, como COMMAND 0 VISITOR, en los nombres
de las clases que implementan dichos patrones puede describir sucintamente su
disefio a otros programadores.

Las pruebas de unidad bien escritas también son expresivas. Uno de los
principales objetivos de una prueba es servir de documentacion mediante
ejemplos. Los que lean las pruebas deben entender con facilidad para qué sirve
una clase.

Pero la forma mas importante de ser expresivo es la practica. A menudo,
conseguimos que el codigo funcione y pasamos al siguiente problema sin
detenernos en facilitar la lectura del cdédigo para otros. No olvide que
seguramente sea el préximo que lea el codigo.

Por tanto, afronte su creacion con orgullo. Dedique tiempo a sus funciones
y clases. Seleccione nombres mejores, divida las funciones extensas en otras mas
reducidas y cuide su obra. El cuidado es un recurso precioso.

Clases y métodos minimos

Incluso conceptos tan basicos como la eliminacion de codigo duplicado, la
expresividad del codigo y SRP pueden exagerarse. En un esfuerzo por reducir el
tamafio de clases y métodos, podemos crear demasiadas clases y métodos
reducidos. Esta regla también sugiere minimizar la cantidad de funciones y
clases.

Una gran cantidad de clases y métodos suele indicar un dogmatismo sin
sentido. Imagine un estandar de cddigo que insista en la creacion de una interfaz
para todas las clases, o a programadores que insisten en qué campos ¥y
comportamientos siempre deben separarse en clases de datos y clases de
comportamiento. Este dogma debe evitarse y cambiarse por un enfoque mas
pragmatico.

Nuestro objetivo es reducir el tamafio general del sistema ademas del
tamafio de clases y funciones, pero recuerde que esta regla es la de menor
prioridad de las cuatro. Por ello, aunque sea importante reducir la cantidad de
clases y funciones, es mas importante contar con pruebas, eliminar duplicados y
expresarse correctamente.

Conclusion

¢Existen practicas sencillas que puedan reemplazar a la experiencia? Por
supuesto que no. Sin embargo, las practicas descritas en este capitulo y en el
libro son una forma cristalizada de décadas de experiencia de muchos autores.
La practica del disefio correcto anima y permite a los programadores adoptar
principios y patrones que en caso contrario tardarian afios en aprender.

Bibliografia

e [XPE]: Extreme Programming Explained: Embrace Change, Kent Beck,
Addison Wesley, 1999.

e [GOF]: Design Patterns: Elements of Reusable Object Oriented Software,
Gamma et al., Addison-Wesley, 1996.

13
Concurrencia

por Brett L. Schuchert

“Los objetos son abstracciones de procesamiento.
Los subprocesos son abstracciones de programaciones”.
—James O. Coplien™

La creacion de programas concurrentes limpios es complicada, muy complicada.
Es mucho mas sencillo crear cédigo que se ejecute en un mismo proceso.

También es facil crear codigo de subprocesamiento multiple que parezca
correcto en la superficie pero que esté dafiado a niveles mas profundos. Este
codigo funciona correctamente hasta que el sistema se somete a determinadas
presiones.

En este capitulo analizaremos la necesidad de la programacion concurrente
y sus dificultades. Tras ello, presentaremos diversas recomendaciones para
superar dichas dificultades y crear codigo concurrente limpio. Por ultimo,
finalizaremos con los problemas relacionados con la prueba de cddigo
concurrente.

La concurrencia limpia es un tema complejo, merecedor de un libro propio.
Aqui, intentaremos ofrecer una vision general, que después ampliaremos en el
apéndice A. Si simplemente tiene curiosidad por el tema, le bastara con este
capitulo. Si necesita entender la concurrencia a un nivel mas profundo, consulte
también el apéndice.

¢Por qué concurrencia?

La concurrencia es una estrategia de desvinculacion. Nos permite desvincular lo
que se hace de donde se hace. En aplicacion de un solo proceso, el qué y el
cuando estan tan firmemente vinculados que el estado de la aplicacion se puede
determinar analizando la huella de la pila. Un programador que depure este tipo
de sistemas puede definir un punto de interrupcion (o varios) y saber el estado de
la aplicacion en funcion del punto al que se llegue.

La desvinculacion del qué del donde puede mejorar considerablemente el
rendimiento y la estructura de una aplicaciéon. Desde un punto de vista
estructural, la aplicacion parece una serie de equipos colaboradores y no un gran
bucle principal. Esto puede hacer que el sistema sea mas facil de comprender y
ofrece diversas formas de separar las preocupaciones. Pongamos por caso el
modelo Servlet estandar de aplicaciones Web. Estos sistemas se ejecutan bajo un
contenedor Web o EJB que gestiona parcialmente la concurrencia. Los servlet se
ejecutan de forma asincrona cuando se reciben solicitudes Web. El programador
de los servlet no tiene que gestionar todas las solicitudes entrantes. En principio,
la ejecucion de cada servlet vive en un mundo propio y se desvincula del resto.

Evidentemente, si fuera tan sencillo, no necesitariamos este capitulo. De
hecho, la desvinculacion proporcionada por los contenedores Web dista mucho
de ser perfecta. Los programadores de servlet deben asegurarse de que sus
programas sean correctos. No obstante, las ventajas estructurales del modelo de
servlet son significativas.

Pero la estructura no es el unico motivo para adoptar la concurrencia.
Algunos sistemas tienen limitaciones de tiempo de respuesta y producciéon que
requieren soluciones concurrentes manuales. Imagine un dispositivo para afiadir
informacién, con un solo proceso, que obtiene datos de distintos sitios Web y los
combina en un resumen diario. Al tener un solo proceso, accede por turnos a
cada sitio Web y siempre termina uno antes de comenzar el siguiente. Su
recorrido diario debe ejecutarse en menos de 24 horas. Sin embargo, al afiadir
nuevos sitios Web, el tiempo aumenta hasta necesitarse mas de 24 horas para
recopilar todos los datos. El tinico proceso implica una prolongada espera para
completar la E/S. Podriamos mejorar el rendimiento con ayuda de un algoritmo
de subprocesamiento multiple que visite mas de un sitio Web por vez.

Imagine un sistema que procesa un usuario por vez y sOlo requiere un
segundo por cada uno. Su capacidad de respuesta es valida para un nimero
reducido de usuarios pero si aumenta, también lo hace el tiempo de respuesta del
sistema. Ningun usuario querra esperar a otros 150. Podriamos mejorar el tiempo
de respuesta de este sistema procesando varios usuarios a la vez. Imagine un
sistema que interprete grandes conjuntos de datos pero que sdlo ofrezca una
solucion completa tras procesarlos todos. Se podria procesar cada conjunto de
datos en un equipo distinto, para poder procesarlos todos en paralelo.

Mitos e imprecisiones

También existen motivos evidentes para adoptar la concurrencia aunque, como
indicamos antes, sea complicada. Si no presta la suficiente atencion, pueden
darse casos desagradables. Veamos los mitos e imprecisiones mas habituales:

e La concurrencia siempre mejora el rendimiento: En ocasiones lo hace pero
s0lo cuando se puede compartir tiempo entre varios procesos o
procesadores. Ninguna situacion es trivial.

e El disefio no cambia al crear programas concurrentes: De hecho, el disefio
de un algoritmo concurrente puede ser muy distinto al de un sistema de un
solo proceso. La desvinculacion entre el qué y el cuando suele tener un
efecto importante en la estructura del sistema.

e No es importante entender los problemas de concurrencia al trabajar con
un contenedor Web o EJB: En realidad, debe saber lo que hace su
contenedor y protegerlo de problemas de actualizaciones concurrentes y
bloqueo, como veremos después.

Veamos otros aspectos relacionados con la creacion de software
concurrente:

e La concurrencia genera cierta sobrecarga, tanto en rendimiento como en la
creacion de codigo adicional.

e La concurrencia correcta es compleja, incluso para problemas sencillos.

e Los errores de concurrencia no se suelen repetir, de modo que se ignoran®
en lugar de considerarse verdaderos problemas.

e La concurrencia suele acarrear un cambio fundamental de la estrategia de
disefio.

Desafios

¢Qué hace que la programacion concurrente sea tan complicada? Fijese en la
siguiente clase:

public class X {
private int lastIdUsed;

public int getNextId() {
return ++lastIdUsed;

}
}

Imagine que creamos una instancia X, establecemos el campo lastIdUsed
en 42 y después compartimos la instancia entre dos procesos. Imagine ahora que
esos dos procesos invocan el método getNextId(); hay tres resultados posibles:

e El primer proceso obtiene el valor 43, el segundo el valor 44 y lastIdUsed
es 44.

e El primer proceso obtiene el valor 44, el segundo el valor 43 y lastIdUsed
es 44.

e El primer proceso obtiene el valor 43, el segundo el valor 43 y lastIdused
es 43.

El sorprendente tercer resultado™ se produce cuando los dos procesos
coinciden. Se debe a que pueden adoptar varias rutas posibles en una linea de
codigo de Java y algunas generan resultados incorrectos. ; Cuantas rutas distintas
existen? Para responder, debemos entender lo que hace el compilador justo a
tiempo con el codigo de bytes generado, y lo que el modelo de memoria de Java
considera atomico.

Una rapida respuesta, con el codigo de bytes generado, es que existen 12

870 rutas de ejecucion diferentes”™ para los dos procesos ejecutados en el método
getNextId. Si el tipo de lastIdUsed cambia de int a long, el nimero de rutas
asciende a 2 704 156. Evidentemente, muchas generan resultados validos. El
problema es que algunas no lo hacen.

Principios de defensa de la concurrencia

A continuacion le mostramos una serie de principios y técnicas para proteger a
sus sistemas de los problemas del codigo concurrente.

Principio de responsabilidad inica (SRP)

SRP” establece que un método, clase o componente solo debe tener un motivo

para cambiar. El disefio de concurrencia es lo bastante complejo como para ser

un motivo de cambio con derecho propio y, por tanto, debe separarse del resto

del codigo. Desafortunadamente, es habitual incrustar los detalles de la

implementacion de concurrencia directamente en otro codigo de produccion.
Tenga en cuenta los siguientes aspectos:

e El codigo relacionado con la concurrencia tiene su propio ciclo de
desarrollo, cambios y ajustes.

e El codigo relacionado con la concurrencia tiene sus propios desdafios,
diferentes y mas complicados, que los del cédigo no relacionado con la
concurrencia.

e El nimero de formas en las que el cdédigo incorrecto basado en la
concurrencia puede fallar lo complica ya de por si, sin la carga afiadida del
codigo de aplicacion circundante.

Recomendacion: Separe el codigo de concurrencia del resto del codigo™.

Corolario: Limitar el ambito de los datos

Como hemos visto, dos procesos que modifican el mismo campo u objeto
compartido pueden interferir entre ellos y provocar un comportamiento
inesperado. Una solucion consiste en usar la palabra clave synchronized para
proteger una seccion importante del codigo que use el objeto compartido, aunque

conviene limitar la cantidad de estas secciones. Cuantos mas puntos actualicen
datos compartidos, es mas probable que:

e Se olvide de proteger uno o varios de esos puntos, y se dafie el codigo que
modifica los datos compartidos.

e Se duplique el esfuerzo necesario para garantizar la protecciéon de todos los
elementos (incumplimiento de DRY™).

e Resulta complicado determinar el origen de los fallos, que por naturaleza
son dificiles de detectar.

Recomendacion: Encapsule los datos y limite el acceso a los datos
compartidos.

Corolario: Usar copias de datos

Una forma de evitar datos compartidos es no compartirlos. En algunos casos se
pueden copiar objetos y procesarlos como si fueran de solo lectura. En otros, se
pueden copiar objetos, recopilar los resultados de varios procesos en las copias y
después combinar los resultados en un mismo proceso. Si existe una forma
sencilla de evitar los objetos compartidos, el codigo resultante tendra menos
problemas. Puede que le preocupe el coste de la creacion de objetos adicionales.
Merece la pena experimentar y comprobar si es un problema real. No obstante, si
el uso de copias de objetos permite al cédigo evitar la sincronizacion, las
ventajas de evitar el bloque compensan la creacion adicional y la sobrecarga de
la recoleccion de elementos sin usar.

Corolario: Los procesos deben ser independientes

Pruebe a crear el cdédigo de sus procesos de forma que cada uno sea
independiente y no comparta datos con otros. Cada uno procesa una solicitud
cliente y todos los datos necesarios provienen de un origen sin compartir y se
almacenan como variables locales. De este modo, los procesos se comportan
como si fueran los unicos del mundo y no existieran requisitos de
sincronizacion. Por ejemplo, las subclases de HttpServlet reciben toda su
informacién como parametros pasados en los métodos doGet y doPost. Esto
hace que cada servlet actie como si dispusiera de su propio equipo. Mientras el
codigo del servlet s6lo use variables locales, es imposible que cause problemas
de sincronizacion. Evidentemente, muchas aplicaciones que usan servlet se

topan con recursos compartidos como conexiones de base de datos.

Recomendacion: Intente dividir los datos en subconjuntos independientes
que se puedan procesar en procesos independientes, posiblemente en distintos
procesadores.

Conocer las bibliotecas

Java 5 ofrece muchas mejoras para el desarrollo concurrente con respecto a
versiones anteriores. Existen diversos aspectos que tener en cuenta a la hora de
crear codigo de procesos en Java 5:

Usar las colecciones compatibles con procesos proporcionadas.
Usar la estructura de ejecucion de tareas no relacionadas.

Usar soluciones antibloqueo siempre que sea posible.

Varias clases de bibliotecas no son compatibles con procesos.

Colecciones compatibles con procesos

En los albores de Java, Doug Lea escribi6o el conocido libro®! Concurrent
Programming in Java. Al mismo tiempo, desarroll6 varias colecciones
compatibles con procesos, que posteriormente pasaron a formar parte del JDK en
el paquete java.util.concurrent. Las colecciones de dicho paquete son
compatibles con casos de procesos muiltiples y tienen un rendimiento adecuado.
De hecho, la implementacion ConcurrentHashMap tiene mejor rendimiento que
HashMap en la mayoria de los casos. También permite lecturas y escrituras
simultaneas, y dispone de métodos que admiten operaciones de composicion
habituales que en caso contrario serian incompatibles con subprocesos. Si Java 5
es su entorno de desarrollo, comience con ConcurrentHashMap.

Existen otras clases afiadidas para admitir disefio avanzado de concurrencia.
Veamos algunos ejemplos:

ReentrantLock Bloqueo que se puede adquirir en un método y liberar en
otro.

semaphore Una implementacion del clasico semaforo, un bloqueo con
un contador.

CountDownLatch Bloqueo que espera un nimero de eventos antes de liberar

todos los subprocesos retenidos. De este modo todos tienen
la misma oportunidad de iniciarse al mismo tiempo.

Recomendacion: Revise las clases de las que disponga. En el caso de Java,
debe familiarizarse con java.util.concurrent, java.util.concurrent.atomic y
java.util.concurrent.locks.

Conocer los modelos de ejecucion

Existen diversas formas de dividir el comportamiento de una aplicacion
concurrente. Para describirlos debe conocer ciertas definiciones basicas.

Recursos Recursos de tamaifio o nimero fijo usados en un entorno
vinculados qncyrrente, como por ejemplo conexiones de base de datos y
bufer de lectura/escritura de tamafio fijo.

Exclusion Sélo un proceso puede acceder a datos o a un recurso compartido
mutua por vez.

Inanicién Se impide que un proceso o grupo de procesos contintien
demasiado tiempo o indefinidamente. Por ejemplo, si permite
primero la ejecucion de los procesos mas rapidos, los que se
ejecutan durante mas tiempo pueden perecer de inanicion si los
primeros no terminan nunca.

Bloqueo Dos 0 mas procesos esperan a que ambos terminen. Cada proceso
tiene un recurso y ninguno puede terminar hasta que obtenga el
otro recurso.

Bloqueo Procesos bloqueados, intentando realizar su labor pero
activo estorbandose unos a otros. Por motivos de resonancia, los
procesos siguen intentando avanzar pero no pueden durante
demasiado tiempo, o de forma indefinida.

Tras mostrar estas definiciones, ya podemos describir los distintos modelos
de ejecucion empleados en la programacion concurrente.

Productor-Consumidor2

Uno o varios procesos productores crean trabajo y lo afiaden a un bufer o a una
cola. Uno o varios procesos consumidores adquieren dicho trabajo de la cola y lo

completan. La cola entre productores y consumidores es un recurso vinculado, lo
que significa que los productores deben esperar a que se libere espacio en la cola
antes de escribir y los consumidores deben esperar hasta que haya algo que
consumir en la cola. La coordinacion entre productores y consumidores a través
de la cola hace que unos emitan sefiales a otros. Los productores escriben en la
cola e indican que ya no esta vacia. Los consumidores leen de la cola e indican
que ya no esta llena. Ambos esperan la notificacion para poder continuar.

Lectores-Escritores!&3!

Cuando un recurso compartido actia basicamente como fuente de informacion
para lectores pero ocasionalmente se actualiza por parte de escritores, la
produccion es un problema. El énfasis de la produccion puede provocar la
inaniciéon y la acumulacion de informacion caducada. Las actualizaciones
pueden afectar a la produccion. La coordinacién de lectores para que no lean
algo que un escritor esta actualizando y viceversa es complicada. Los escritores
tienden a bloquear a los lectores durante periodos prolongados, lo que genera
problemas de produccion.

El desafio consiste en equilibrar las necesidades de ambos para satisfacer
un funcionamiento correcto, proporcionar una produccion razonable y evitar la
inanicion. Una sencilla estrategia hace que los escritores esperen hasta que deje
de haber lectores antes de realizar una actualizacién. Si hay lectores continuos,
los escritores perecen de inanicion.

Por otra parte, si hay escritores frecuentes y se les asigna prioridad, la
produccion se ve afectada. Determinar el equilibrio y evitar problemas de
actualizacion concurrente es el objetivo de este modelo.

La cena de los filosofos!4

Imagine varios filosofos sentados alrededor de una mesa redonda. A la izquierda
de cada uno hay un tenedor. En el centro de la mesa, una gran fuente de
espaguetis. Los filosofos pasan el tiempo pensando a menos que tengan hambre.
Cuando tienen hambre, utilizan los tenedores situados a ambos lados para comer.
No pueden comer a menos que tengan dos tenedores. Si el filosofo situado a la
derecha o izquierda de otros ya tiene uno de los tenedores que necesita, tendra
que esperar a que termine de comer y deje los tenedores. Cuando un filosofo
termina de comer, vuelve a colocar los tenedores en la mesa hasta que vuelve a
tener hambre. Cambie los filosofos por procesos y los tenedores por recursos y

tendra un problema habitual en muchas aplicaciones en las que los procesos
compiten por recursos. A menos que se disefien correctamente, los sistemas que
compiten de esta forma experimentan problemas de bloqueo, bloqueo mutuo,
produccion y degradacion de la eficacia. La mayoria de problemas de
concurrencia que encontrara seran alguna variante de éstos. Analice los
algoritmos y cree soluciones propias para estar preparado cuando surjan
problemas de concurrencia.

Recomendacion: Aprenda estos algoritmos bdsicos y comprenda sus
soluciones.

Dependencias entre métodos sincronizados

Las dependencias entre métodos sincronizados generan sutiles errores en el
codigo concurrente. Java cuenta con synchronized, que protege métodos
individuales. No obstante, si hay mas de un método sincronizado en la misma
clase compartida, puede que su sistema sea incorrecto®.,
Recomendacion: Evite usar mds de un método en un objeto compartido.
En ocasiones tendra que usar mas de un método en un objeto compartido.
En ese caso, hay tres formas de crear codigo correcto:

¢ Bloqueo basado en clientes: El cliente debe bloquear al servidor antes de
invocar el primer método y asegurarse de que el alcance del bloque incluye
el codigo que invoque el ultimo método.

e Bloqueo basado en servidores: Debe crear un método en el servidor que
bloquee el servidor, invoque todos los métodos y después anule el bloqueo.
El cliente debe invocar el nuevo método.

e Servidor adaptado: Cree un intermediario que realice el bloque. Es un
ejemplo de bloqueo basado en servidores en el que el servidor original no
se puede modificar.

Reducir el tamano de las secciones sincronizadas

La palabra clave synchronized presenta un bloqueo. Todas las secciones de
codigo protegidas por el mismo bloque sélo tendran un proceso que las ejecute
en un momento dado. Los bloqueos son costosos ya que generan retrasos y
afladen sobrecarga. Por ello, no conviene colapsar el codigo con instrucciones

synchronized. Por otra parte, las secciones criticas® deben protegerse, de modo
que debemos disefiar nuestro codigo con el menor nimero posible de secciones
criticas.

Algunos programadores intentan lograrlo ampliando el tamafio de sus
secciones criticas. Sin embargo, al ampliar la sincronizacion mas alla de la
seccion critica minima aumentan los problemas y afecta negativamente al
rendimiento®.

Recomendacion: Reduzca al mdximo el tamafio de las secciones
synchronized.

Crear codigo de cierre correcto es complicado

Crear un sistema activo y que se ejecute indefinidamente es distinto a crear algo
que funcione de forma temporal y después se cierre correctamente. Entre los
problemas mas habituales destacan los bloqueos™, con procesos que esperan una
sefial para continuar que nunca se produce.

Imagine, por ejemplo, un sistema con un proceso principal que genera
varios procesos secundarios y que espera a que todos terminen antes de liberar
sus recursos y cerrarse. {Qué sucede si uno de los procesos secundarios esta
bloqueado? El principal esperara indefinidamente y el sistema nunca se cerrara.

Imagine ahora un sistema similar al que se le indica que se cierre. El
proceso principal indica a todos los secundarios que abandonen sus tareas y
terminen. Pero imagine que dos procesos secundarios funcionan como par
productor/consumidor y que el productor recibe una sefial del principal y se
cierra rapidamente. El consumidor espera un mensaje del productor y puede
quedar bloqueado en un estado en el que no recibe la sefial del principal, lo que
también impide que éste finalice.

Son situaciones habituales. Por tanto, si tiene que crear cédigo concurrente
con cierres correctos, tendra que dedicar tiempo a que el cierre se produzca de
forma correcta.

Recomendacion: Planifique con antelacion el proceso de cierre y pruébelo
hasta que funcione. Le llevara mas tiempo del que espera. Repase los algoritmos
existentes porque serda complicado.

Probar codigo con procesos

Demostrar que el cédigo es correcto no resulta practico. Las pruebas no

garantizan su correccion. Sin embargo, las pruebas adecuadas pueden minimizar
los riesgos, en especial en aplicaciones de un solo proceso. Cuando hay dos o
mas procesos que usan el mismo cédigo y trabajan con datos compartidos, la
situacion se vuelve mas compleja.

Recomendacion: Cree pruebas que puedan detectar problemas y
ejecttelas periodicamente, con distintas configuraciones de programacion y del
sistema, y cargas. Si las pruebas fallan, identifique el fallo. No lo ignore porque
las pruebas superen una ejecucion posterior.

Hay muchos factores que tener en cuenta. Veamos algunas
recomendaciones concretas:

Considere los fallos como posibles problemas de los procesos.
Consiga que primero funcione el codigo sin procesos.

El codigo con procesos se debe poder conectar a otros elementos.
El cédigo con procesos debe ser modificable.

Ejecute con mas procesos que procesadores.

Ejecute en diferentes plataformas.

Disefie el codigo para probar y forzar fallos.

Considerar los fallos como posibles problemas de los procesos

El cdédigo con procesos hace que fallen elementos que no deberian fallar.
Muchos desarrolladores desconocen como interactiian los procesos con otro tipo
de codigo. Los problemas del codigo con procesos pueden mostrar sus sintomas
una vez cada mil o un millén de ejecuciones.

Los intentos por repetir los sistemas pueden resultar frustrantes, lo que
suele provocar que los programadores consideren el fallo como algo aislado. Es
recomendable asumir que los fallos aislados no existen. Cuanto mas los ignore,
mayor sera la cantidad de codigo que se acumule sobre un enfoque defectuoso.

Recomendacion: No ignore los fallos del sistema como algo aislado.

Conseguir que primero funcione el codigo sin procesos

Puede parecer evidente pero no esta de mas recordarlo. Asegltirese de que el
codigo funciona fuera de sus procesos. Por lo general, esto significa crear
algunos POJO que los procesos deban invocar. Los POJO no son compatibles

con los procesos y por tanto se pueden probar fuera de su entorno. Conviene
incluir en los POJO la mayor cantidad posible del sistema.

Recomendacion: No intente identificar fallos de procesos y que no sean de
procesos al mismo tiempo. Asegurese de que su codigo funciona fuera de los
procesos.

El codigo con procesos se debe poder conectar a otros elementos

Cree el cédigo compatible con la concurrencia de forma que se pueda ejecutar en
distintas configuraciones:

Un proceso, varios procesos y variarlo durante la ejecucion.

El codigo con procesos interactia con algo que puede ser real o probado.
Ejecutar con pruebas dobles ejecutadas de forma rapida, lenta y variable.
Configurar pruebas que ejecutar en diferentes iteraciones.

Recomendacion: El codigo con procesos debe poder conectar a otros
elementos y ejecutar en distintas configuraciones.

El codigo con procesos debe ser modificable

La obtencion del equilibrio adecuado de procesos suele requerir operaciones de
ensayo y error. En las fases iniciales, compruebe el rendimiento del sistema bajo
diferentes configuraciones. Permita que se puedan modificar los distintos
procesos y también durante la ejecucion del sistema. También puede permitir la
modificacion automatica en funcion de la produccion y la utilizacion del sistema.

Ejecutar con mas procesos que procesadores

Cuando el sistema cambia de tarea, se producen reacciones. Para promover el
intercambio de tareas, realice la ejecucion con mas procesos que procesadores o
nucleos. Cuanto mayor sea la frecuencia de intercambio de las tareas, mas
probabilidades existen de que el cédigo carezca de una seccion critica o se
produzcan bloqueos.

Ejecutar en diferentes plataformas

En 2007 disefiamos un curso sobre programacion concurrente, principalmente en
OS X. La clase se present6 con Windows XP ejecutado en una MV. Se crearon
pruebas para ilustrar condiciones de fallo que fallaban con mas frecuencia en
OS X que en XP.

En todos los casos, el codigo probado era incorrecto. Esto refuerza el hecho
de que cada sistema operativo tiene una politica de procesos diferente que afecta
a la ejecucion del codigo. El cédigo con procesos multiples se comporta de
forma distinta en cada entorno®. Debe ejecutar sus pruebas en todos los entornos
de implementacion posibles.

Recomendacion: Ejecute el codigo con procesos en todas las plataformas
de destino con frecuencia y en las fases iniciales.

Diseiiar el codigo para probar y forzar fallos

Es habitual que los fallos del codigo concurrente se oculten. Las pruebas
sencillas no suelen mostrarlos. En realidad, suelen ocultarse durante el
procesamiento normal. Pueden aparecer horas, dias o semanas después.

La razon de que los problemas de procesos sean infrecuentes, esporadicos y
apenas se repitan es que solo fallan algunas de las miles de rutas posibles que
recorren una seccion vulnerable. Por tanto, la probabilidad de adoptar una ruta
fallida es realmente baja, lo que dificulta la deteccion y la depuracién.

Se preguntara como aumentar las posibilidades de capturar estos casos.
Puede disefiar el codigo y forzarle a que se ejecute en diferentes ordenes
afladiendo métodos como Object.wait(), Object.sleep(), Object.yield() y
Object.priority().

Estos métodos afectan al orden de ejecucién y, por tanto, aumentan las
posibilidades de detectar un error. Resulta mas adecuado que el cddigo
incorrecto falle lo antes posible y con frecuencia. Hay dos opciones de
instrumentacion de codigo:

e Manual.
e Automatica.

Manual

Puede afiadir invocaciones de wait(), sleep(), yield() y priority()
manualmente a su codigo, en especial si tiene que probar un fragmento

especialmente escabroso. Veamos un ejemplo:

public synchronized String nextUrlOrNull() {
if (hasNext()) {
String url = urlGenerator.next();
Thread.yield(); // se afiade para pruebas.
updateHasNext();
return url;

}

La invocacion de yield() cambia la ruta de ejecucion adoptada por el
codigo y posiblemente hace que el codigo falla donde no lo hacia antes. Si el
codigo falla, no se debe a la invocacion de yield() afiadida®. Se debe a que el

codigo es incorrecto y hemos hecho que el fallo sea mas evidente. Este enfoque
presenta varios problemas:

e Tendra que buscar manualmente los puntos adecuados donde hacerlo.

e ;Como sabe donde incluir la invocaciéon y qué tipo de invocacion usar?

e La presencia de este codigo en un entorno de produccién ralentiza
innecesariamente el codigo.

e Es un enfoque que puede o no detectar los fallos; de hecho, no las tiene
todas consigo.

Lo que necesitamos es una forma de hacerlo durante la fase de pruebas, no
de produccion. También debemos poder mezclar configuraciones entre
ejecuciones, lo que aumenta las probabilidades de detectar los errores.

Evidentemente, si dividimos el sistema POJO que no sepa nada los
procesos en clases que controlen los procesos, resultara mas sencillo ubicar los
puntos en los que instrumentar el cddigo. Es mas, podriamos crear diferentes
pruebas que invoquen los POJO bajo distintos regimenes de invocaciones a
sleep, yield y demas.

Automatica

Puede usar herramientas como la estructura orientada a aspectos, CGLIB o ASM
para instrumentar su codigo mediante programacion. Por ejemplo, podria usar
una clase con un tinico método:

public class ThreadJigglePoint {
public static void jiggle() {
}

}

Puede afiadir invocaciones en distintos puntos del codigo:

public synchronized String nextUrlOrNull() {
if(hasNext()) {
ThreadJigglePoint.jiggle();
String url = urlGenerator.next();
ThreadJigglePoint.jiggle();

updateHasNext();
ThreadJigglePoint.jiggle();
return url;

3eturn null;

Tras ello, use un sencillo aspecto que seleccione aleatoriamente entre no
hacer nada, pausar o generar un resultado.

Imagine que la clase ThreadJigglePoint tiene dos implementaciones. La
primera implementa jiggle para no hacer nada y se usa en produccion. La
segunda genera un numero aleatorio para elegir entre sleep, yield o nada. Si
ejecuta sus pruebas mil veces con jiggle de forma aleatoria, puede descubrir
algunos fallos. Si la prueba es satisfactoria, al menos puede felicitarse por haber
actuado correctamente. Aunque sea un tanto simple, puede resultar una opcion
razonable en lugar de recurrir a una herramienta mas sofisticada. La herramienta
ConTest*", desarrollada por IBM, tiene un funcionamiento similar pero es mas
sofisticada.

El objetivo es que los procesos del codigo se ejecuten en distinto orden en
momentos diferentes. La combinacion de pruebas bien escritas y ejecuciones
aleatorias puede aumentar considerablemente la capacidad de detectar errores.

Recomendacion: Use estas estrategias para detectar errores.

Conclusion

Es complicado conseguir codigo concurrente correcto. El codigo sencillo se
puede complicar al afiadir varios procesos y datos compartidos. Si tiene que
crear codigo concurrente, tendra que hacerlo con rigor o se enfrentara a sutiles y
esporadicos fallos.

En primer lugar, siga el principio de responsabilidad unica. Divida su
sistema en varios POJO que separen el cédigo compatible con procesos del
resto. Asegurese de probar uinicamente el cédigo compatible con procesos y nada
mas, por lo que este codigo debe ser de tamafio reducido y especifico.

Conozca los origenes de los problemas de concurrencia: varios procesos
que operen en datos compartidos o usen una agrupacion de recursos comun. Los
casos de limites, como el cierre correcto o la conclusion de la iteracién de un
bucle, pueden ser especialmente espinosos.

Conozca su biblioteca y los algoritmos fundamentales. Debe comprender
como las funciones de la biblioteca permiten resolver problemas similares a los
de los algoritmos fundamentales.

Aprenda a localizar regiones del coédigo que se puedan bloquear y
bloquéelas. No bloquee otras regiones que no lo necesiten. Evite invocar una

seccion bloqueada desde otra. Para ello debe saber si un elemento esta
compartido o no. Reduzca la cantidad de objetos compartidos y su ambito.
Cambie los disefios de los objetos con datos compartidos para acomodar clientes
en lugar de obligar a los clientes a gestionar el estado compartido.

Los problemas se acumularan. Los que no aparezcan inicialmente suelen
considerarse esporadicos y suelen producirse en la fase de carga o de modo
aparentemente aleatorio. Por tanto, debe poder ejecutar su codigo con procesos
en diferentes configuraciones y plataformas de forma repetida y continua. La
capacidad de prueba, algo natural si aplica las tres leyes de TDD, implica cierto
nivel de conectividad, lo que ofrece la compatibilidad necesaria para ejecutar
codigo en distintas configuraciones.

La probabilidad de detectar errores mejora si se toma el tiempo necesario
para instrumentar su codigo. Puede hacerlo manualmente o mediante tecnologias
automatizadas. Hagalo en las fases iniciales. Es aconsejable ejecutar el codigo
basado en procesos durante el mayor tiempo posible antes de pasarlo a
produccion.

Si adopta un enfoque limpio, aumentaran las probabilidades de hacerlo de
forma correcta.

Bibliografia

e [Lea99]: Concurrent Programming in Java: Design Principles and
Patterns, 2d. ed., Doug Lea, Prentice Hall, 1999.

e [PPP]: Agile Software Development: Principles, Patterns, and Practices,
Robert C. Martin, Prentice Hall, 2002.

e [PRAG]: The Pragmatic Programmer, Andrew Hunt, Dave Thomas,
Addison-Wesley, 2000.

14
Refinamiento sucesivo

Caso practico de un analizador de argumentos de linea de comandos

Este capitulo es un caso practico de refinamiento sucesivo. Veremos un modulo
que comienza correctamente pero no mantiene dicha correccion. Tras ello,
veremos como se refactoriza y se limpia. Muchos hemos tenido que analizar
argumentos de linea de comando. Si no disponemos de una utilidad para ello,
recorremos la matriz de cadenas pasadas a la funcion principal. Puede encontrar
utilidades de calidad pero ninguna hace exactamente lo que necesitamos. Por
ello, decidi crear una propia, a la que he denominado Args. Args es muy facil de

usar. Basta crearla con los argumentos de entrada y una cadena de formato, y
después consultar a la instancia de Args los valores de los argumentos. Fijese en

el siguiente ejemplo: Listado 14-1
Uso de Args

public static void main(String[] args) {
try {
Args arg = new Args(“l,p#,d*”, args);
boolean logging = arg.getBoolean(‘l’);
int port = arg.getInt(‘p’);
String directory = arg.getString(‘d’);
executeApplication(logging, port, directory);
} catch (ArgsException e) {
System.out.printf(“Argument error: %s\n”, e.errorMessage());
}
}

Comprobara lo sencillo que es. Creamos una instancia de la clase Args con
dos parametros. El primero es la cadena de formato o esquema: “1,p#,d*".
Define tres argumentos de linea de comandos. El primero, -1, es un argumento
booleano. El segundo, -p, es un argumento entero. El tercero, -d, es un
argumento de cadena. El segundo parametro del constructor Args es la matriz de
argumentos de linea de comandos pasada a main. Si el constructor no genera
ArgsException, la linea de comandos entrante se ha analizado y se puede
consultar la instancia Args. Se usan métodos como getBoolean, getInteger y
getString para acceder a los valores de los argumentos por sus nombres.

Si hay un problema, ya sea en la cadena de formato o en los argumentos de
linea de comandos, se genera ArgsException. La descripcion del error se puede
recuperar del método errorMessage de la excepcion.

Implementacion de Args

El Listado 14-2 es la implementacion de la clase Args. Examinela con atencion.
El estilo y la estructura se han trabajado concienzudamente y espero que los
imite.

Listado 14-2
Args.java

package com.objectmentor.utilities.args;

import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;
import java.util.*;

public class Args {
private Map<Character, ArgumentMarshaler> marshalers;
private Set<Character> argsFound;
private ListIterator<String> currentArgument;

public Args(String schema, String[] args) throws ArgsException {
marshalers = new HashMap<Character, ArgumentMarshaler>();

argsFound = new HashSet<Character>();

parseSchema(schema);
parseArgumentStrings(Arrays.asList(args));

private void parseSchema(String schema) throws ArgsException {
for (String element : schema.split(“,”))
if (element.length() > 0)
parseSchemaElement (element.trim());

private void parseSchemaElement(String element) throws ArgsException {

char elementId = element.charAt(0);
String elementTail = element.substring(1);
validateSchemaElementId(element Id);
if (elementTail.length() == 0)

marshalers.put(elementId, new BooleanArgumentMarshaler());
else if (elementTail.equals(“*"))

marshalers.put(elementId, new StringArgumentMarshaler());
else if (elementTail.equals(“#"))

marshalers.put(elementId, new IntegerArgumentMarshaler());
else if (elementTail.equals(“##"))

marshalers.put(elementId, new DoubleArgumentMarshaler());
else if (elementTail.equals(“[*]"))

marshalers.put(elementId, new StringArrayArgumentMarshaler());
else

throw new ArgsException(INVALID_ARGUMENT_FORMAT, elementId, elementTail);

private void validateSchemaElementId(char elementId) throws ArgsException {
if {!Character.isLetter(elementId))
throw new ArgsException(INVALID_ARGUMENT_NAME, elementId, null);

private void parseArgumentStrings(List<String> argsList) throws ArgsException
{
for (currentArgument = argsList.listIterator(); currentArgument.hasNext();)
{
String argString = currentArgument.next();
if (argString.startswith(“-")) {
parseArgumentCharacters(argString.substring(1));

} else {
currentArgument.previous();
break;

}

private void parseArgumentCharacters(String argChars) throws ArgsException {
for (int 1 = ©; i < argChars.length(); i++)
parseArgumentCharacter (argChars.charAt(1i));

private void parseArgumentCharacter(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (m == null) {
throw new ArgsException (UNEXPECTED_ARGUMENT, argChar, null);
} else {
argsFound.add(argChar);
try {
m.set(currentArgument);
} catch (ArgsException e) {
e.setErrorArgumentId(argChar);
throw e;

public boolean has(char arg) {
return argsFound.contains(arg);

}

public int nextArgument() {
return currentArgument.nextIndex();

}

public boolean getBoolean(char arg) {
return BooleanArgumentMarshaler.getValue(marshalers.get(arg));

}

public String getString(char arg) {
return StringArgumentMarshaler.getValue(marshalers.get(arg));

}

public int getInt(char arg) {
return IntegerArgumentMarshaler.getvalue (marshalers.get(arg));

}

public double getDouble(char arg) {
return DoubleArgumentMarshaler.getValue(marshalers.get(arg));

}

public String[] getStringArray(char arg) {
return StringArrayArgumentMarshaler.getvalue(marshalers.get(arg));

}

Puede leer el codigo de arriba a abajo sin necesidad de saltar de un punto a
otro ni buscar hacia adelante. Lo que seguramente busque es la definicién de
ArgumentMarshaler, que hemos omitido intencionadamente. Tras leer el codigo,
comprendera la interfaz ArgumentMarshaler y la funcion de sus variantes.
Veamos algunas de ellas (entre los listados 14-3 y 14-6).

Listado 14-3
ArgumentMarshaler.java

public interface ArgumentMarshaler {
void set(Iterator<String> currentArgument) throws ArgsException;

}

Listado 14-4
BooleanArgumentMarshaler.java

public class BooleanArgumentMarshaler implements ArgumentMarshaler {
private boolean booleanvalue = false;

public void set (Iterator<String> currentArgument) throws ArgsException {
booleanvalue = true;

}

public static boolean getValue(ArgumentMarshaler am) {
if (am != null && am instanceof BooleanArgumentMarshaler)
return ((BooleanArgumentMarshaler) am).booleanvalue;
else
return false;

}

Listado 14-5
StringArgumentMarshaler.java

import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class StringArgumentMarshaler implements ArgumentMarshaler {
private String stringvalue = “”;

public void set(Iterator<String> currentArgument) throws ArgsException {
try {
stringvValue = currentArgument.next();
} catch (NoSuchElementException e) {
throw new ArgsException(MISSING_STRING);
}

public static String getvalue(ArgumentMarshaler am) {
if (am != null && am instanceof StringArgumentMarshaler)
return ((StringArgumentMarshaler) am).stringvalue;
else
return “”;

Listado 14-6
IntegerArgumentMarshaler.java

import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class IntegerArgumentMarshaler implements ArgumentMarshaler {
private int intvalue = 0;

public void set(Iterator<String> currentArgument) throws ArgsException {
String parameter = null;
try {
parameter = currentArgument.next();
Intvalue = Integer.parselnt(parameter);
} catch (NoSuchElementException e) {
throw new ArgsException(MISSING_INTEGER);
} catch (NumberFormatException e) {
throw new ArgsException(INVALID_INTEGER, parameter);

}
}
public static int getvValue (ArgumentMarshaler am) {
if (am != null && am instanceof IntegerArgumentMarshaler)
return ((IntegerArgumentMarshaler) am).intVvalue;
else
return 0;

Las otras variantes de ArgumentMarshaler simplemente repiten este patron
en matrices double y String y sélo complicarian el capitulo. Puede consultarlas
como ejercicio. Otro fragmento que puede resultar complicado es la definicion
de las constantes de codigo de error, incluidas en la clase ArgsException (véase
el Listado 14-7).

Listado 14-7
ArgsException.java

import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class ArgsException extends Exception {
private char errorArgumentId = ‘\0’;
private String errorParameter = null;
private ErrorCode errorCode = OK;

public ArgstException() {3}
public ArgsException(String message) { super(message); }

public ArgsException(ErrorCode errorCode) {
this.errorCode = errorCode;

}

public ArgsException(ErrorCode errorCode, String errorParameter) {
this.errorCode = errorCode;
this.errorParameter = errorParameter;

public ArgsException(ErrorCode errorCode,
char errorArgumentId, String errorParameter) {

this.errorCode = errorCode;
this.errorParameter = errorParameter;
this.errorArgumentId = errorArgumentId;

public char getErrorArgumentId() {
return errorArgumentId;

}

public void setErrorArgumentId(char errorArgumentId) {
this.errorArgumentId = errorArgumentId;

}

public String getErrorParameter() {
return errorParameter;

}

public void setErrorParameter(String errorParameter) {
this.errorParameter = errorParameter;

}

public ErrorCode getErrorCode() {
return errorCode;

}

public void setErrorCode(ErrorCode errorCode) {
this.errorCode = errorCode;

}

public String errorMessage() {
switch (errorCode) {
case OK:
return “TILT: Should not get here.”;
case UNEXPECTED_ARGUMENT:
return String.format(“Argument -%c unexpected.”, errorArgumentId);
case MISSING_STRING:
return String.format(“Could not find string parameter for -%c.”,
errorArgumentId);
case INVALID INTEGER:
return String.format(“Argument -%c expects an integer but was ‘%s’.”,
errorArgumentId, errorParameter);
case MISSING_INTEGER:
return String.format(“Could not find integer parameter for -%c.”,
errorArgumentId);
case INVALID_DOUBLE:
return String.format(“Argument -%c expects a double but was ‘%s’.”,
errorArgumentId, errorParameter);
case MISSING_DOUBLE:
return String.format(“Could not find double parameter for -%c.”,
errorArgumentId);
case INVALID_ARGUMENT_NAME:
return String.format(“‘%c’ is not a valid argument name.”
errorArgumentId);
case INVALID_ARGUMENT_FORMAT:
return String.format(“‘%s’ is not a valid argument format.”,
errorParameter);
}

return “”;

public enum ErrorCode {
OK, INVALID_ARGUMENT_FORMAT, UNEXPECTED_ARGUMENT, INVALID_ARGUMENT_NAME
MISSING_STRING,
MISSING_INTEGER, INVALID_INTEGER,
MISSING_DOUBLE, INVALID_DOUBLE }

Es sorprendente la cantidad de cédigo necesario para detallar este sencillo
concepto. Uno de los motivos es el uso de un lenguaje especialmente profuso.
Java, al ser un lenguaje de tipos estaticos, requiere muchas palabras para
satisfacer el sistema de tipos. En lenguajes como Ruby, Python o Smalltalk, este
programa es mucho mas reducido”.

Vuelva a leer el cédigo. Fijese especialmente en los nombres de los
elementos, el tamafio de las funciones y el formato. Si tiene experiencia como
programador, partes del estilo o la estructura no le convenceran, pero espero que,

desde un punto de vista global, considere que el programa esta bien escrito y
tiene una estructura limpia.

Por ejemplo, deberia ser evidente como afiadir un nuevo tipo de argumento,
como una fecha o un nimero complejo, y que dicha inclusion apenas requeriria
codigo. En definitiva, bastaria con una nueva variante de ArgumentMarshaler,
una nueva funcién getxXX y una nueva instruccion case en la funcion
parseSchemaElement. También habria un nuevo codigo
ArgsException.ErrorCode y un nuevo mensaje de error.

Como se ha realizado

No disefié este programa de principio a fin en su forma actual y, sobre todo, no
espero que pueda crear programas limpios y elegantes a la primera. Si algo
hemos aprendido en las dos ultimas décadas es que la programacion es un arte
mas que una ciencia. Para escribir codigo limpio, primero debe crear codigo
imperfecto y después limpiarlo. No deberia sorprenderle. Ya lo aprendimos en el
colegio cuando los profesores (normalmente en vano) nos obligaban a crear
borradores de nuestras redacciones. El proceso, nos decian, era escribir un
primer borrador, después otro, y después otros muchos hasta lograr una version
definitiva. Para escribir redacciones limpias, el refinamiento debia ser
continuado.

Muchos programadores noveles (como sucede con los alumnos) no siguen
este consejo. Creen que el objetivo principal es que el programa funcione. Una
vez que lo consiguen, pasan a la siguiente tarea, y conservan el estado funcional
del programa, sea cual sea. Los programadores experimentados saben que esto
es un suicidio profesional.

Args: El primer borrador

El Listado 14-8 muestra una version inicial de la clase Args. Funciona, pero es
un desastre.

Listado 14-8
Args.java (primer borrador)

import java.text.ParseException;
import java.util.*;

public class Args {
private String schema;

private String[] args;
private boolean valid = true;
private Set<Character> unexpectedArguments = new TreeSet<Character>();
private Map<Character, Boolean> booleanArgs =
new HashMap<Character, Boolean>();
private Map<Character, String> stringArgs =
new HashMap<Character, String>();
private Map<Character, Integer> intArgs =
new HashMap<Character, Integer>();
private Set<Character> argsFound = new HashSet<Character>();
private int currentArgument;
private char errorArgumentId = ‘\0’;
private String errorParameter = “TILT”;
private ErrorCode errorCode = ErrorCode.OK;

private enum ErrorCode {
OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT}

public Args(String schema. String[] args) throws ParseException {
this.schema = schema;
this.args = args;
valid = parse();

private boolean parse() throws ParseException {

if (schema.length() == 0 && args.length == 0)
return true;

parseSchema();

try {
parseArguments();

} catch (ArgsException e) {

}

return valid;

private boolean parseSchema() throws ParseException {
for (String element : schema.split(“,”)) {
if (element.length() > 0) {
String trimmedElement = element.trim();
parseSchemaElement (trimmedElement);
}
}

return true;

private void parseSchemaElement(String element) throws ParseException {

char elementId = element.charAt(0);

String elemenTail = element.substring(1);

validateSchemaElementId(elementId);

if (isBooleanSchemaElement(elementTail));
parseBooleanSchemaElement (elementId);

else if (isStringSchemaElement(elementTail))
parseStringSchemaElement (elementId);

else if (isIntegerSchemaElement(elementTail)) {
parseIntegerSchemaElement (elementId);

} else {
throw new ParseException(

String.format(“Argument: %c has invalid format: %s.”,
elementId, elementTail), 0);

private void validateSchemaElementId(char elementId) throws ParseException {
if (!Character.isLetter(elementId)) {
throw new ParseException(
“Bad character:” + elementId + “in Args format: ” + schema, 0);

private void parseBooleanSchemaElement(char elementId) {
booleanArgs.put(elementId, false);

}

private void parselIntegerSchemaElement(char elementId) {
intArgs.put(elementId, 0);
}

private void parseStringSchemaElement(char elementId) {
stringArgs.put(elementId, “”);
}

private boolean isStringSchemaElement(String elementTail) {
return elementTail.equals(“*");

}

private boolean isBooleanSchemaElement(String elementTail) {
return elementTail.length() == 0;

}

private boolean isIntegerSchemaElement(String elementTail) {
return elementTail.equals(“#");

}

private boolean parseArguments() throws ArgsException {
for (currentArgument = 0; currentArgument < args.length; currentArgument++)
{
String arg = args[currentArgument];
parseArgument(arg);
}

return true;

private void parseArgument(String arg) throws ArgsException {
if (arg.startswith(”-"))
parseElements(arg);

private void parseElements(String arg) throws ArgsException {
for (int i = 1; i < arg.length(); i++)
parseElement(arg.charAt(i));

private void parseElement(char argChar) throws ArgsException {
if (setArgument(argChar))
argsFound.add(argChar);
else {
unexpectedArguments.add(argChar);
errorCode = ErrorCode.UNEXPECTED_ARGUMENT;
valid = false;

private boolean setArgument(char argChar) throws ArgsException {
if (isBooleanArg(argChar))
setBooleanArg(argChar, true);
else if (isStringArg(argChar))
setStringArg(argChar);
else if (isIntArg(argChar))
setIntArg(argChar);
else
return false;

return true;

private boolean isIntArg(char argChar) {
return intArgs.containsKey(argChar);

}

private void setIntArg(char argChar) throws ArgstException {
currentArgument++;
String parameter = null;
try {

parameter = args[currentArgument];
intArgs.put(argChar, new Integer(parameter));
} catch (ArrayIndexOutOfBoundsException e) {
valid = false;
errorArgumentId = argChar;
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgsgException();
} catch (NumberFormatException e) {
valid = false;
errorArgumentId = argChar;
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;
throw new ArgsgException();

}

}

private void setStringArg(char argChar) throws ArgsException {
currentArgument++;
try {

stringArgs.put(argChar, args[currentArgument]);
} catch (ArrayIndexOutOfBoundsException e) {

valid = false;

errorArgumentId = argChar;

errorCode = ErrorCode.MISSING_STRING;

throw new ArgstException();

private boolean isStringArg(char argChar) {
return stringArgs.containsKey(argChar);

}

private void setBooleanArg(char argChar, boolean value) {
booleanArgs.put(argChar, value);

}

private boolean isBooleanArg(char argChar) {
return booleanArgs.containsKey(argChar);

}

public int cardinality() {
return argsFound.size();

}

public String usage() {
if (schema.length() > 0)
return "-[" + schema + “]”;

else

return “”;

public String errorMessage() throws Exception {
switch (errorCode) {

}

case OK:
throw new Exception(“TILT: Should not get here.”);
case UNEXPECTED_ARGUMENT:
return unexpectedArgumentMessage();
case MISSING_STRING:
return String.format(“Could not find string parameter for -%c.”,
errorArgumentId);
case INVALID_INTEGER:
return String.format(“Argument - %c expects an integer but was ‘%s’.
errorArgumentId, errorParameter);
case MISSING_INTEGER:
return String.format(“Could not find integer parameter for -%c.”,
errorArgumentId);

return “”;

private String unexpectedArgumentMessage() {
StringBuffer message = new StringBuffer(“Arguments(s) -");
for (char c : unexpectedArguments) {

}

message.append(c);

message.append(“ unexpected.”);

return message.toString();

private boolean falseIfNull(Boolean b) {
return b !'= null && b;

}

private int zeroIfNull(Integer i) {
return i == null ? 0 : i;

}

private String blankIfNull(String s) {
return s = null ? “” : s;

}

public String getString(char arg) {
return blankIfNull(stringArgs.get(arg));

}

public int getInt(char arg) {
return zeroIfNull(intArgs.get(arg));

}

public boolean getBoolean(char arg) {
return falseIfNull(booleanArgs.get(arg));

}

public boolean has(char arg) (

return argsFound.contains(arg);

}

public boolean isvalid() {
return valid;

}

private class ArgsException extends Exception {

}

Espero que su reaccion inicial ante tal cantidad de codigo es alegrarse por
no haberlo conservado tal cual. Si ha sido su reaccion, recuerde que sera la que
tengan otros que lean un borrador de su cédigo.

En realidad, primer borrador es lo mejor que se puede decir sobre este
codigo. Evidentemente es un trabajo en progreso. La cantidad de variables de
instancia es apabullante. Cadenas extrafias como «TILT», HashSet y TreeSet, y
los bloques try-catch-catch aumentan el desastre.

No era mi intencién crear este desastre. En realidad, intentaba mantener
cierta organizacion, como demuestra la eleccion de nombres de funciones y
variables, y la estructura del programa. Pero es evidente que el problema se me
fue de las manos.

El desastre aument6 gradualmente. Las versiones anteriores no fueron tan
malas. Por ejemplo, el Listado 14-9 muestra una version inicial en la que sélo
funcionaban los argumentos booleanos.

Listado 14-9
Args.java (s6lo argumentos booleanos)

package com.objectmentor.utilities.getopts;
import java.util.*;

public class Args {
private String schema;
private String[] args;
private boolean valid;
private Set<Character> unexpectedArguments = new TreeSet<Character>();
private Map<Character, Boolean> booleanArgs =
new HashMap<Character, Boolean>();
private int numberOfArguments = 0;

public Args(String schema, String[] args) {
this.schema = schema;
this.args = args;
valid = parse();

}

public boolean isvalid() {
return valid;

}

private boolean parse() {
if (schema.length() == 0 && args.length == 0)
return true;
parseSchema();
parseArguments();
return unexpectedArguments.size() == 0;

}

private boolean parseSchema() {

for (String element : schema.split(“,”)) {
parseSchemaElement (element);

}

return true;

private void parseSchemaElement(String element) {
if (element.length() == 1) {
parseBooleanSchemaElement (element);

}

private void parseBooleanSchemaElement(String element) {
char c = element.charAt(0);
if (Character.isLetter(c)) {
booleanArgs.put(c, false);

}

private boolean parseArguments() {
for (String arg : args)
parseArgument(arg);
return true;

private void parseArgument(String arg) {
if (arg.startswith(”-"))
parseElement(arg);

private void parseElements(String arg) {
for (int i = 1; i < arg.length(); i++)
parseElement(arg.charAt(i));

private void parseElement(char argChar) {
if (isBoolean(argChar)) {
numberOfArguments++;
setBooleanArg(argChar, true);
} else
unexpectedArguments.add(argChar);

private void setBooleanArg(char argChar, boolean value) {
booleanArgs.put(argChar, value);

}

private boolean isBoolean(char argChar) {
return booleanArgs.containsKey(argChar);

}

public int cardinality() {
return numberOfArguments;

}

public String usage() {
if (schema.length() > 0)
return “-[”+schema+"“]";
else
return “”;

public String errorMessage() {
if (unexpectedArguments.size() > 0) {
return unexpectedArgumentMessage();
} else
return “”;

private String unexpectedArgumentMessage() {
StringBuffer message = new StringBuffer(“Argument(s) -");
for (char c : unexpectedArguments) {
message.append(c);
}

message.append(“ unexpected.”);

return message.toString();

public boolean getBoolean(char arg) {
return booleanArgs.get(arg);

}

Aunque hay motivos para quejarse del codigo, no es tan malo. Es compacto
y sencillo, y facil de entender. Sin embargo, en este codigo se aprecia la semilla
del desastre posterior y resulta evidente porqué.

La version posterior s6lo tiene dos tipos de argumentos mas que ésta:
String e integer. La inclusion de s6lo dos tipos mas tiene un tremendo impacto
negativo en el codigo. Lo convierte de algo que seria razonablemente mantenible
en algo que seguramente esté plagado de errores.

Afadi los dos tipos de argumento de forma incremental. Primero, el
argumento String, que genera lo siguiente:

Listado 14-10
Args.java (booleano y String)

package com.objectmentor.utilities.getopts;

import java.text.ParseException;
import java.util.*;

public class Args {
private String schema;
private String[] args;
private boolean valid = true;
private Set<Character> unexpectedArguments = new TreeSet<Character>();
private Map<Character, Boolean> booleanArgs =
new HashMap<Character, Boolean>();
private Map<Character, String> stringArgs =
new HashMap<Character, String>();
private Set<Character> argsFound = new HashSet<Character>();
private int currentArgument;
private char errorArgument = ‘\0’;

enum ErrorCode { OK, MISSING_STRING }
private ErrorCode errorCode = ErrorCode.OK;

public Args(String schema, String[] args) throws ParseException {
this.schema = schema;
this.args = args;
valid = parse();

}

private boolean parse() throws ParseException {
if (schema.length() == 0 && args.length == 0)
return true;
parseSchema();
parseArguments();
return valid;

}

private boolean parseSchema() throws ParseException {
for (String element : schema.split(“,”)) {
if (element.length() > 0) {
String trimmedElement = element.trim();
parseSchemaElement (trimmedElement);
}
}
return true;

}

private void parseSchemaElement(String element) throws ParseException {
char elementId = element.charAt(0);
String elementTail = element.substring(1);
validateSchemaElementId(elementId);
if (isBooleanSchemaElement(elementTail))
parseBooleanSchemaElement (elementId);

else if (isStringSchemaElement(elementTail))
parseStringSchemaElement (elementId);

private void validateSchemaElementId(char elementId) throws ParseException {
if (!Character.isLetter(elementId)) {
throw new ParseException(
“Bad character:” + elementId + “in Args format: ” + schema, 0);

private void parseStringSchemaElement(char elementId) {
stringArgs.put(elementId, “");
}

private boolean isStringSchemaElement(String elementTail) {
return elementTail.equals(“*");

}

private boolean isBooleanSchemaElement(String elementTail) {
return elementTail.length() == 0;

}

private void parseBooleanSchemaElement(char elementId) {
booleanArgs.put(elementId, false);
}

private boolean parseArguments() {
for (currentArgument = 0; currentArgument < args.length; currentArgument++)
{
String arg = args[currentArgument];
parseArgument(arg);
}

return true;

private void parseArgument(String arg) {
if (arg.startswith(”-"))
parseElements(arg);

private void parseElements(String arg) {
for (int i = 1; i < arg.length(); i++)
parseElement(arg.charAt(i));

private void parseElement(char argChar) {
if (setArgument(argChar))
argsFound.add(argChar);
else {
unexpectedArguments.add(argChar);
valid = false;

private boolean setArgument(char argChar) {

boolean set = true;

if (isBoolean(argChar))
setBooleanArg(argChar, true);

else if (isString(argChar))
setStringArg (argChar, “");

else
set = false;

return set;

}

private void setStringArg(char argChar, String s) {
currentArgument++;
try {

stringArgs.put(argChar, args[currentArgument]);
} catch (ArrayIndexOutOfBoundsException e) {

valid = false;

errorArgument = argChar;

errorCode = ErrorCode.MISSING_STRING;

private boolean isString(char argChar) {
return stringArgs.containsKey(argChar);

}

private void setBooleanArg(char argChar, boolean value) {
booleanArgs.put(argChar, value);

}

private boolean isBoolean(char argChar) {
return booleanArgs.containsKey(argChar);

}

public int cardinality() {
return argsFound.size();

}

public String usage() {
if (schema.length() > 0)
return “-[” + schema + “]”;
else
return “”;

public String errorMessage() throws Exception {
if (unexpectedArguments.size() > 0) {
return unexpectedArgumentMessage();
} else
switch (errorCode) {
case MISSING_STRING:
return String.format (“Could not find string parameter for -%c.”,
errorArgument);
case OK:
throw new Exception(“TILT: Should not get here.”);

return “”;

private String unexpectedArgumentMessage() {
StringBuffer message = new StringBuffer(“Argument(s) -");
for (char c : unexpectedArguments) {
message.append(c);

}

message.append(“ unexpected.”);

return message.toString();

public boolean getBoolean(char arg) {
return falseIfNull(booleanArgs.get(arg));
}

private boolean falseIfNull(Boolean b) {
return b == null ? false : b;

}

public String getString(char arg) {
return blankIfNull(stringArgs.get(arg));
}

private String blankIfNull(String s) {

return s == null ? “” : s;

}

public boolean has(char arg) {
return argsFound.contains(arg);

}

public boolean isvalid() {
return valid;

}

Comprobara que empieza a desbocarse. No es terrible pero el desastre se
esta gestando. Basta con incluir el tipo de argumento integer para que resulte
fatidico.

Entonces me detuve

Todavia tenia que afiadir otros dos tipos de argumentos y sabia que empeorarian
las cosas. Si los forzaba, seguramente funcionarian pero provocaria un desastre
demasiado complicado de arreglar. Si la estructura del cédigo tenia que poder
mantenerse, era el momento de corregirla.

Por ello dejé de afiadir elementos y comencé la refactorizacion. Tras afiadir
los argumentos String e integer, sabia que cada uno necesitaria nuevo codigo
en tres puntos principales. En primer lugar, cada tipo de argumento necesita una
forma de analizar su elemento de esquema para poder seleccionar el HashMap de
ese tipo. Tras ello, seria necesario analizar cada tipo de argumento en las
cadenas de linea de comandos y convertirlos en su tipo correcto. Por ultimo,
cada tipo de argumento necesitaria un método getXxxx para poder devolverlo al
invocador como su tipo correcto.

Muchos tipos diferentes y todos con métodos similares, lo que en realidad
era una clase. Y de este modo naci6 el concepto de ArgumentMarshaler.

Sobre el incrementalismo

Una de las mejores formas de acabar con un programa es realizar cambios
masivos con la intencion de mejorarlo. Algunos programas nunca se recuperan
de estas mejoras. El problema es lo complicado que resulta conseguir que el
programa funcione de la misma forma que antes de la mejora.

Para evitarlo, recurro a la disciplina TDD (Test-Driven Development o
Desarrollo guiado por pruebas). Una de las doctrinas centrales de este enfoque es
mantener la ejecucién del sistema en todo momento. Es decir, con TDD no
puedo realizar cambios que afecten al funcionamiento del sistema. Todos los
cambios deben mantenerlo como antes de los cambios. Para lograrlo, necesito
una serie de pruebas automatizadas que ejecutar rapidamente y que verifiquen
que el comportamiento del sistema no ha variado. Para la clase Args, creé una
serie de pruebas de unidad y aceptaciéon. Las pruebas de unidad se crearon en
Java y se administraron con JUnit. Las pruebas de aceptacion se crearon como
paginas wiki en FitNesse. Podria haber ejecutado estas pruebas en cualquier
momento y, si eran satisfactorias, sabria que el sistema funcionaba de la forma
especificada.

Asi pues, comencé a realizar pequefios cambios. Cada uno desplazaba la
estructura del sistema hacia el concepto ArgumentMarshaler, y cada cambio
mantenia el funcionamiento del sistema. El primer cambio realizado fue afiadir
el esqueleto de ArgumentMarshaller al final del desastre anterior (véase el
Listado 14-11).

Listado 14-11
ArgumentMarshaller afiadido a Args.java

private class ArgumentMarshaler {
private boolean booleanvalue = false;

public void setBoolean(boolean value) {
booleanvalue = value;

}
public boolean getBoolean() { return booleanvalue; }

private class BooleanArgumentMarshaler extends ArgumentMarshaler {

}

private class StringArgumentMarshaler extends ArgumentMarshaler {

}

private class IntegerArgumentMarshaler extends ArgumentMarshaler {

}

Evidentemente, esto no afectaria a nada, por lo que realicé la modificacion
mas sencilla posible que afectara a la minima cantidad de codigo. Cambié
HashMap para que los argumentos Boolean aceptaran ArgumentMarshaler.

private Map<Character, ArgumentMarshaler> booleanArgs =
new HashMap<Character, ArgumentMarshaler>();

Esto afectaba a varias instrucciones que corregi rapidamente.

private void parseBooleanSchemaElement(char elementId) {
booleanArgs.put(elementId, new BooleanArgumentMarshaler());

}

private void setBooleanArg(char argChar, boolean value) {
booleanArgs.get(argChar) .setBoolean(value);

}

public boolean getBoolean(char arg) {
return falseIfNull (booleanArgs.get(arg).getBoolean());
}

Estos cambios se aplican a las zonas que mencionamos antes: parse, set y
get para el tipo de argumento. Desafortunadamente, aunque sean cambios
menores, algunas de las pruebas comenzaron a fallar. Si se fija atentamente en
getBoolean, comprobara que se puede invocar con y pero no existe un
argumento y, por lo que booleanArgs.get(‘y’) devolvera null y la funcion
generara NullPointerException. La funcion falseIfNull se usa como
proteccion ante este hecho pero el cambio aplicado hace que la funcion sea
irrelevante.

El incrementalismo exigia que esto funcionara antes de realizar otros
cambios. La solucion no era demasiado complicada; bastaba con cambiar la
comprobacion de null. Ya no era necesario comprobar null en boolean, sino en
ArgumentMarshaller.

Primero, eliminé la invocacién de falseIfNull en la funcién getBoolean.
Ya no servia de nada, por lo que eliminé directamente la funcion. Las pruebas
seguian fallando igual, lo que suponia que no habia nuevos errores.

public boolean getBoolean(char arg) {
return booleanArgs.get(arg).getBoolean();

}

Tras ello, dividi la funcion en dos lineas y afiadi ArgumentMarshaller a una
variable propia: argumentMarshaller. No me preocupaba el extenso nombre de
la variable; era redundante y estorbaba a la funcién, por lo que lo reduje a am
[N5].

P ge Araumentiarshaler am = boblaanargs .get(arg)

return am.getBoolean();

}

Y tras ello afiadi la l6gica de deteccion de null.

public boolean getBoolean(char arg) {
Args.ArgumentMarshaler am = booleanArgs.get(arg);
return am!=null && am.getBoolean();

}

Argumentos de cadena

La inclusion de los argumentos String fue similar a la de los argumentos
boolean. Tuve que cambiar HashMap y conseguir que funcionaran parse, set y
get. No deberian producirse sorpresas posteriores a excepcion de que la
implementacion completa se incluia en la clase ArgumentMarshaller en lugar de
distribuirla en variantes.

private Map<Character, ArgumentMarshaler> stringArgs =
new HashMap<Character, ArgumentMarshaler>();

private void parseStringSchemaElement(char elementId) {
stringArgs.put(elementId, new StringArgumentMarshaler());

}

private void setStringArg(char argChar) throws ArgsException {
currentArgument++;
try {

stringArgs.get(argChar) .setString(args[currentArgument]);
} catch (ArrayIndexOutOfBoundsException e) {
valid = false;
errorArgumentId = argChar;
errorCode = ErrorCode.MISSING_STRING;
throw new ArgsgException();
}
}

public String getString (char arg) {
Args.ArgumentMarshaler am = stringArgs.get(arg);
return am==null? “” : am.getString();

}

private class ArgumentMarshaler {
private boolean booleanvalue = false;
private String stringValue;

public void setBoolean(boolean value) {
booleanvalue = value;

}

public boolean getBoolean() {
return booleanvalue;

}

public void setString(String s) {
stringValue = s;

}

De nuevo, estos cambios se realizaron individualmente para conservar las
pruebas, aunque fallaran. Si una prueba fallaba, me aseguraba de que fuera
correcta antes de continuar con el siguiente cambio.

Ya deberia reconocer mi intencion. Tras incluir el comportamiento de
sefalizacion en la clase base ArgumentMarshaler, comencé a transferirlo a las
variantes, para de esta forma mantener el funcionamiento mientras cambiaba

public String getString() {

return stringValue == null ? «”

: stringValue;

gradualmente la forma del programa.

El siguiente paso consistia en transferir la funcionalidad del argumento int
a ArgumentMarshaler. De nuevo, no hubo sorpresas.

private Map<Character, ArgumentMarshaler> intArgs =
new HashMap<Character, ArgumentMarshaler>();

private void parselIntegerSchemaElement(char elementId) {

}

intArgs.put(elementId, new IntegerArgumentMarshaler());

private void setIntArg(char argChar) throws ArgsException {

}

currentArgument++;
String parameter = null;
try {
parameter = args[currentArgument];
intArgs.get(argChar) .setInteger(Integer.parselInt(parameter));
} catch (ArrayIndexOutOfBoundsException e) {
valid = false;
errorArgumentId = argChar;
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgsgException();
} catch (NumberFormatException e) {
valid = false;
errorArgumentId = argChar;
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;
throw new ArgstException();

}

public int getInt(char arg) {

}

Args.ArgumentMarshaler am = intArgs.get(arg);
return am==null?0 : am.getInteger();

private class ArgumentMarshaler {

private boolean booleanvalue = false;
private String stringvalue;
private int integerValue;

public void setBoolean(boolean value) {
booleanvalue = value;

}

public boolean getBoolean() {
return booleanvalue;

}

public void setString(String s) {
stringvalue = s;

}

public String getString() {
return stringvalue == null ? “” : stringValue;

}

public void setInteger(int i) {
integerValue = i;

public int getInteger() {
return integerValue;

}

Tras transferir la sefializacién a ArgumentMarshaler, comencé a transferir
la funcionalidad a las variantes. El primer paso fue pasar la funcion setBoolean
a BooleanArgumentMarshaller y garantizar su correcta invocacién. Para ello
creé un método set abstracto.

private abstract class ArgumentMarshaler {
protected boolean booleanvalue = false;
private String stringvalue;
private int integervalue;

public void setBoolean(boolean value) {
booleanvalue = value;

}

public boolean getBoolean() {
return booleanvalue;

}

public void setString(String s) {
stringvalue = s;

}

public String getString() {
return stringvalue == null ? “” : stringValue;

}

public void set Integer(int i) {
integervalue = i;

}

public int getInteger() {
return integervalue;

}

public abstract void set(String s);

Tras ello, implementé el método set en BooleanArgumentMarshaller.

private class BooleanArgumentMarshaler extends ArgumentMarshaler {
public void set(String s) {
booleanValue = true;

Y por ultimo cambié la invocacion de setBoolean por la de set.

private void setBooleanArg(char argChar, boolean value) {
booleanArgs.get(argChar).set(“true”);

}

Las pruebas seguian siendo satisfactorias. Como este cambio hacia que set
se implementara en BooleanArgumentMarshaler, eliminé el método setBoolean
de la clase base ArgumentMarshaler.

La funcion abstracta set acepta un argumento String pero la
implementacion de BooleanArgumentMarshaler no lo usa. He incluido el
argumento porque sabia que StringArgumentMarshaler e
IntegerArgumentMarshaler lo utilizarian.

Tras ello, el objetivo era implementar el método get en
BooleanArgumentMarshaler. La implementacion de funciones get siempre es
escabrosa ya que el tipo devuelto tiene que ser Object y en este caso debe
convertirse a Boolean.

public boolean getBoolean(char arg) {
Args.ArgumentMarshaler am = booleanArgs.get(arg);
return am != null && (Boolean)am.get();

}

Para compilarlo, afiadi la funcion get a ArgumentMarshaler.

private abstract class ArgumentMarshaler {

public Object get() {
return null;

Se compila y las pruebas fallan. Para que vuelvan a funcionar, basta con
convertir get en abstracto e implementarlo en BooleanArgumentMarshaler.

private abstract class ArgumentMarshaler {
protected boolean booleanvalue = false;

public abstract Object get();
}

private class BooleanArgumentMarshaler extends ArgumentMarshaler {
public void set (String s) {
booleanvalue = true;

}

public Object get() {
return booleanValue;

De nuevo, las pruebas son satisfactorias. Ahora tanto get como set se
implementan en BooleanArgumentMarshaler. Esto me permite eliminar la
antigua funcién getBoolean de ArgumentMarshaler, cambiar la variable
protegida booleanvalue a BooleanArgumentMarshaler y convertirla en privada.

Repeti el mismo patrén de cambios con las cadenas. Implementé set y get,

eliminé las funciones sin usar y desplacé las variables.

private void setStringArg(char argChar) throws ArgsException {
currentArgument++;
try {
stringArgs.get(argChar).set(args[currentArgument]);
} catch (ArrayIndexOutOfBoundsException e) {
valid = false;
errorArgumentId = argChar;
errorCode = ErrorCode.MISSING_STRING;
throw new ArgstException();

public String getString(char arg) {
Args.ArgumentMarshaler am = stringArgs.get(arg);
return am == null ? “” : (String) am.get();

private abstract class ArgumentMarshaler {
private int integervalue;

public void setInteger(int i) {
integervalue = i;

}

public int getInteger() {
return integervalue;

}
public abstract void set(String s);

public abstract Object get();

private class BooleanArgumentMarshaler extends ArgumentMarshaler {
private boolean booleanValue = false;

public void set(String s) {
booleanvalue = true;

}

public Object get() {
return booleanvalue;

}

private class StringArgumentMarshaler extends ArgumentMarshaler {
private String stringValue = “”;
public void set(String s) {

stringValue = s;

public Object get() {
return stringValue;

}

private class IntegerArgumentMarshaler extends ArgumentMarshaler {

public void set(String s){

public Object get() {
return null;

}

Por ultimo, repeti el proceso con los enteros. Resulta mas complicado ya
que los enteros deben analizarse y la operacion de analisis puede generar una

excepcion, pero el resultado es mas indicado ya que el concepto de
NumberFormatException se oculta totalmente en IntegerArgumentMarshaler.

private boolean isIntArg(char argChar) { return intArgs.containsKey(argChar); }

private void setIntArg(char argChar) throws ArgsException {
currentArgument++;
String parameter = null;

try {
parameter = args[currentArgument];
intArgs.get(argChar).set(parameter);

} catch (ArrayIndexOutOfBoundsException e) {
valid = false;
errorArgumentId = argChar;
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgstException();

} catch (ArgsException e) {
valid = false;
errorArgumentId = argChar;
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;
throw e;

}

}

private void setBooleanArg(char argChar) {
ry {
booleanArgs.get(argChar).set(“true”);
} catch (ArgsException e) {

}

public int getInt(char arg) {
Args.ArgumentMarshaler am = intArgs.get(arg);
return am == null ? © : (Integer) am.get();
}
private abstract class ArgumentMarshaler {
public abstract void set(String s) throws ArgsException;

public abstract Object get();
}

private class IntegerArgumentMarshaler extends ArgumentMarshaler {
private int intValue = 0;

public void set(String s) throws ArgsException {
try {
intValue = Integer.parselnt(s);
} catch (NumberFormatException s) {
throw new ArgsException();

}

public Object get() {
return intValue;

}
}

Evidentemente, las pruebas seguian funcionando. Tras ello, me deshice de
las distintas asignaciones de la parte superior del algoritmo, lo que hace que el
sistema sea mucho mas genérico. Sin embargo, no las puede eliminar ya que
afectaria a la integridad del sistema. En su lugar, afiadi un nuevo Map para
ArgumentMarshaler y, tras ello, cambié uno a uno los métodos para que usaran
la nueva asignacion en lugar de las originales.

public class Args {

private Map<Character, ArgumentMarshaler> booleanArgs =
new HashMap<Character, ArgumentMarshaler>();
private Map<Character, ArgumentMarshaler> stringArgs =
new HashMap<Character, ArgumentMarshaler>();
private Map<Character, ArgumentMarshaler> intArgs =
new HashMap<Character, ArgumentMarshaler>();
private Map<Character, ArgumentMarshaler> marshalers =
new HashMap<Character, ArgumentMarshaler>();

private void parseBooleanSchemaElement(char elementId) {

ArgumentMarshaler m = new BooleanArgumentMarshaler();
booleanArgs.put(elementId, m);

marshalers.put(elementId, m);

private void parselIntegerSchemaElement(char elementId) {

ArgumentMarshaler m = new IntegerArgumentMarshaler();
intArgs.put(elementId, m);

marshalers.put(elementId, m);

private void parseStringSchemaElement(char elementId) {
ArgumentMarshaler m = new StringArgumentMarshaler();
stringArgs.put(elementId, m);
marshalers.put(elementId, m);

}

Las pruebas seguian funcionando. Tras ello, cambié isBooleanArg de esto:

private boolean isBooleanArg(char argChar) {
return booleanArgs.containsKey(argChar);

a este otro:

private boolean isBooleanArg(char argChar) {
ArgumentMarshaler m = marshalers.get(argChar);
return m instanceof BooleanArgumentMarshaler;

Las pruebas funcionaban, por lo que apliqué el mismo cambio en isIntArg
e isStringArg.

private boolean isIntArg(char argChar) {
ArgumentMarshaler m = marshalers.get(argChar);
return m instanceof IntegerArgumentMarshaler;

private boolean isStringArg(char argChar) {
ArgumentMarshaler m = marshalers.get(argChar);
return m instanceof StringArgumentMarshaler;

Las pruebas eran correctas, por lo que eliminé las invocaciones duplicadas
de marshalers.get:

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (isBooleanArg(m))
setBooleanArg(argChar);
else if (isStringArg(m))
setStringArg(argChar)
else if (isIntArg(m))
setIntArg(argChar);
else
return false;

return true;

private boolean isIntArg (ArgumentMarshalerm) {
return m instanceof IntegerArgumentMarshaler;

}

private boolean isStringArg (ArgumentMarshalerm) {
return m instanceof StringArgumentMarshaler;

}

private boolean isBooleanArg (ArgumentMarshalerm) {
return m instanceof BooleanArgumentMarshaler;

}

Los tres argumentos isxxxArg ya no tenian sentido, de modo que los
reubiqué:

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (m instanceof BooleanArgumentMarshaler)
setBooleanArg(argChar);
else if (m instanceof StringArgumentMarshaler)
setStringArg(argChar)
else if (m instanceof IntegerArgumentMarshaler)
setIntArg(argChar);
else
return false;

return true;

Tras ello, empecé a usar la asignacion marshalers en las funciones set,
dividiendo el uso de las otras tres asignaciones. Comencé por los elementos
boolean.

private boolean setArgument(char argChar) throws ArgsException {

ArgumentMarshaler m = marshalers.get(argChar);

if (m instanceof BooleanArgumentMarshaler)
setBooleanArg(m);

else if (m instanceof StringArgumentMarshaler)
setStringArg(argChar)

else if (m instanceof IntegerArgumentMarshaler)
setIntArg(argChar);

else
return false;

return true;

private void setBooleanArg(ArgumentMarshaler m) {
try {
m.set(”“true”); // era: booleanArgs.get(argChar).set(“true”);
} catch (ArgsException e) {
}
}

Las pruebas seguian siendo correctas de modo que repeti la operacion con
las cadenas y los enteros. De esta manera se puede integrar parte del
desagradable codigo de gestion de excepciones en la funcion setArgument.

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
ry {
if (m instanceof BooleanArgumentMarshaler)
setBooleanArg(m);
else if (m instanceof StringArgumentMarshaler)
setStringArg(m);
else if (m instanceof IntegerArgumentMarshaler)
setIntArg(m);
else
return false;
} catch (ArgsException e) {
valid = false;
errorArgumentld = argChar;
throw e;

return true;

private void setIntArg(ArgumentMarshalerm) throws ArgsException {
currentArgument++;
String parameter = null;

try {
parameter = args[currentArgument];
m.set(parameter);

} catch (ArrayIndexOutOfBoundsException e) {
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgsgException();

} catch (ArgsException e) {
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;

throw e;
}
}
private void setStringArg(ArgumentMarshalerm) throws ArgsException {
currentArgument++;
try {

m.set(args[currentArgument]);

} catch (ArrayIndexOutOfBoundsException e) {
errorCode = ErrorCode.MISSING_STRING;
throw new ArgsgException();

}

}

Ya podia eliminar las tres asignaciones antiguas. Primero, debia cambiar la
funcién getBoolean de:

public boolean getBoolean(char arg) {
Args.ArgumentMarshaler am = booleanArgs.get(arg);
return am != null && (Boolean) am.get();

}

d.
public boolean getBoolean(char arg) {
Args.ArgumentMarshaler am = marshalers.get(arg);
boolean b = false;
try {
b = am != null && (Boolean) am.get();

} catch (ClassCastException e) {
b = false;

return b;

Este tultimo cambio puede parecer sorprendente. ;Por qué de repente decidi
enfrentarme a ClassCastException? Por tener una serie de pruebas de unidad y
otra serie independiente de pruebas de aceptacion creadas en FitNesse. Las
pruebas de FitNesse garantizan que si se invoca getBoolean en un argumento no
Booleano, se obtiene false. No sucede lo mismo con las pruebas de unidad.
Hasta el momento, solo habia ejecutado las pruebas de unidad.

Este dltimo cambio me permitid extraer otro uso de la asignacion boolean:

private void parseBooleanSchemaElement(char elementId) {
ArgumentMarshaler m = new BooleanArgumentMarshaler();

marshalers.put(elementId, m);

Y ahora ya podemos eliminar la asignacion boolean.

public class Args {

I s 1
newI aracter; ArgmentMarshaler

har 5 5
private Map<Character, ArgumentMar;%aler> stringArgs =
new HashMap<Character, ArgumentMarshaler>();

private Map<Character, ArgumentMarshaler> intArgs =
new HashMap<Character, ArgumentMarshaler>();

private Map<Character, ArgumentMarshaler> marshalers =
new HashMap<Character, ArgumentMarshaler>();

Tras ello, cambié los argumentos String e Integer de
limpié los valores boolean.

private void parseBooleanSchemaElement(char elementId) {
marshalers.put(elementId, new BooleanArgumentMarshaler());

}

private void parselIntegerSchemaElement(char elementId) {
marshalers.put(elementId, new IntegerArgumentMarshaler());

}

private void parseStringSchemaElement(char elementId) {
marshalers.put(elementId, new StringArgumentMarshaler());

}

public String getString(char arg) {
Args.ArgumentMarshaler am = marshalers.get(arg);
ry {
return am null ? “” : (String) am.get();
} catch (ClassCastException e) {
return “”;

public int getInt(char arg) {
Args.ArgumentMarshaler am = marshalers.get(arg);
ry {
return am == null ? @ : (Integer) am.get();
} catch (Exception e) {
return 0;

}

public class Args {

5 5
private Map<Character, ArgumentMarshaler> marshalers =
new HashMap<Character, ArgumentMarshaler>();

la misma forma y

Seguidamente, dispuse en linea los tres métodos parse ya que no servian

para mucho:

private void parseSchemaElement(String element) throws ParseException {
char elementId = element.charAt(0);
String elementTail = element.substring(1);
validateSchemaElementId(elementId);
if (isBooleanSchemaElement(elementTail))
marshaler:] 1d, new BooleanArgumentMarshaler());
else if (isStringSchemaElement(elementTail))
marshalers.put(elementld, new StringArgumentMarshaler());
else if (isIntegerSchemaElement(elementTail)) {
marshalers.put(elementld, new IntegerArgumentMarshaler());
} else {
throw new ParseException(String.format(
“Argument: %c has invalid format: %s.”, elementId, elementTail), 0);

Es el momento de ver la estructura completa. El Listado 14-12 muestra la

clase Args actual.

Listado 14-12
Args.java (tras la primera refactorizacion)

package com.objectmentor.utilities.getopts;

import java.text.ParseException;
import java.util.*;

public class Args {
private String schema;
private String[] args;
private boolean valid = true;
private Set<Character> unexpectedArguments = new TreeSet<Character>();
private Map<Character, ArgumentMarshaler> marshalers =
new HashMap<Character, ArgumentMarshaler>();
private Set<Character> argsFound = new HashSet<Character>();
private int currentArgument;
private char errorArgumentId = ‘\0’;
private String errorParameter = “TILT”;
private ErrorCode errorCode = ErrorCode.OK;

private enum ErrorCode {
OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT}

public Args(String schema, String[] args) throws ParseException {
this.schema = schema;
this.args = args;
valid = parse();

private boolean parse() throws ParseException {

if (schema.length() == 0 && args.length == 0)
return true;

parseSchema();

try {
parseArguments();

} catch (ArgsException e) {

}

return valid;

private boolean parseSchema() throws ParseException {
for (String element : schema.split(“,”)) {
if (element.length() > 0) {
String trimmedElement = element.trim();
parseSchemaElement (trimmedElement);
}
}

return true;

private void parseSchemaElement(String element) throws ParseException {
char elementId = element.charAt(0);
String elementTail = element.substring(1);
validateSchemaElementId(elementId);
if (isBooleanSchemaElement(elementTail))
marshalers.put(elementId, new BooleanArgumentMarshaler());
else if (isStringSchemaElement(elementTail))
marshalers.put(elementId, new StringArgumentWarshaler());
else if (isIntegerSchemaElement(elementTail)) {
marshalers.put(elementId, new IntegerArgumentMarshaler());
} else {
throw new ParseException(String.format(
“Argument: %c has invalid format: %s.”, elementId, elementTail), 0);

private void validateSchemaElementId(char elementId) throws ParseException {
if (!Character.isLetter(elementId)) {
throw new ParseException(
“Bad character:” + elementId + “in Args format: ” + schema, 0);

private boolean isStringSchemaElement(String elementTail) {
return elementTail.equals(“*");

}

private boolean isBooleanSchemaElement(String elementTail) {
return elementTail.length() == 0;
}

private boolean isIntegerSchemaElement(String elementTail) {
return elementTail.equals(“#");

}

private boolean parseArguments() throws ArgsException {
for (currentArgument=0; currentArgument<args.length; currentArgument++) {
String arg = args[currentArgument];
parseArgument(arg);
}

return true;

private void parseArgument(String arg) throws ArgsException {
if (arg.startswith(”-"))
parseElements(arg);

private void parseElements(String arg) throws ArgsException {
for (int i = 1; i < arg.length(); i++)
parseElement(arg.charAt(i));

private void parseElement(char argChar) throws ArgsException {
if (setArgument(argChar))
argsFound.add(argChar);
else {
unexpectedArguments.add(argChar);
errorCode = ErrorCode.UNEXPECTED_ARGUMENT;
valid = false;

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
try {
if (m instanceof BooleanArgumentMarshaler)
setBooleanArg(m);
else if (m instanceof StringArgumentMarshaler)
setStringArg(m);
else if (m instanceof IntegerArgumentMarshaler)
setIntArg(m);
else
return false;
} catch (ArgsException e) {
valid = false;
errorArgumentId = argChar;
throw e;
}

return true;

private void setIntArg(ArgumentMarshaler m) throws ArgsException {
currentArgument++;

String parameter = null;

try {
parameter = args[currentArgument];
m.set(parameter);

} catch (ArrayIndexOutOfBoundsException e)
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgsgException();

} catch (ArgsException e) {
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;

-~

throw e;
}
}
private void setStringArg(ArgumentMarshaler m) throws ArgsException {
currentArgument++;
try {

m.set (args[currentArgument]);

} catch (ArrayIndexOutOfBoundsException e) {
errorCode = ErrorCode.MISSING_STRING;
throw new ArgsgException();

private void setBooleanArg(ArgumentMarshaler m) {
try {
m.set(“true”);
} catch (ArgsException e) {
}

public int cardinality() {
return argsFound.size();

}

public String usage() {
if (schema.length() > 0)
return = “-[” + schema + “]”;
else
return “”;

public String errorMessage() throws Exception {
switch (errorCode) {

case OK:
throw new Exception(“TILT: Should not get here.”);

case UNEXPECTED_ARGUMENT:
return unexpectedArgumentMessage();

case MISSING_STRING:
return String.format(“Could not find string parameter for -%c.”,

errorArgumentId);
case INVALID_INTEGER:

return String.format(“Argument -%c expects an integer but was ‘%s’.

errorArgumentId, errorParameter);
case MISSING_INTEGER:
return String.format(“Could not find integer parameter for -%c.”,
errorArgumentId);

}

return “”;

private String unexpectedArgumentMessage() {
StringBuffer message = new StringBuffer(“Argument(s) -");
for {char c : unexpectedArguments) {
message.append(c);
}

message.append(“ unexpected.”);

return message.toString();

public boolean getBoolean(char arg) {
Args.ArgumentMarshaler am = marshalers.get(arg);
boolean b = false;
try {
b = am != null && (Boolean) am.get();
} catch (ClassCastException e) {
b = false;
}

return b;

public String getString(char arg) {
Args.ArgumentMarshaler am = marshalers.get (arg);
try {
return am == null ? “” : (String) am.get();
} catch (ClassCastException e) {
return “”;

}

public int getInt(char arg) {
Args.ArgumentMarshaler am = marshalers.get(arg);

try {

return am == null ? @ : (Integer) am.get();
} catch (Exception e) {

return 0;
}

public boolean has(char arg) {
return argsFound.contains(arg);

}

public boolean isvalid() {
return valid;

}

private class ArgsException extends Exception {

}

private abstract class ArgumentMarshaler {
public abstract void set(String s) throws ArgsException;
public abstract Object get();

}

private class BooleanArgumentMarshaler extends ArgumentMarshaler {
private boolean booleanvalue = false;

public void set(String s) {
booleanvalue = true;

}

public Object get() {
return booleanvalue;
}
}

private class StringArgumentMarshaler extends ArgumentMarshaler {
private String stringvalue = “”

public void set(String s) {
stringvalue = s;

}

public Object get() {
return stringvalue;
}
}

private class IntegerArgumentMarshaler extends ArgumentMarshaler {
private int intvalue = 0;

public void set(String s) throws ArgsException {
try {
intvalue = Integer.parseInt(s);
} catch (NumberFormatException e) {
throw new ArgsgException();
}
}

public Object get() {
return intvalue;
}
}
}

Tras todo este esfuerzo, es un tanto decepcionante. La estructura ha
mejorado pero todavia hay demasiadas variables en la parte superior; se
mantiene un terrible caso de tipos en setArgument; y todas las funciones set.
Sin mencionar el procesamiento de errores. Todavia nos queda mucho trabajo
por hacer.

Mi intencién es eliminar el caso de tipos de setArgument [G23] y que s6lo
incluya una invocacion a ArgumentMarshaler.set. Para ello, debo desplazar
setIntArg, setStringArg y setBooleanArg a las correspondientes variantes de
ArgumentMarshaler. Pero hay un problema.

Si se fija atentamente en setIntArg, comprobara que usa dos variables de
instancia: args 'y currentArg. Para desplazar setIntArg hasta
BooleanArgumentMarshaler, tengo que pasar args Yy currentArgs COmo
argumentos de funcion. Muy desagradable [F1]. Resultaria mas indicado pasar
un argumento y no dos. Afortunadamente, la solucion es sencilla. Podemos
convertir la matriz args en list y pasar Iterator a las funciones set. Para el
siguiente cambio necesité diez pasos, y superar todas las pruebas tras cada uno.
Pero s6lo mostraremos el resultado. Deberia determinar la mayoria de estos
pequenos pasos.

public class Args {
private String schema;

5
private boolean valid = true;

private Set<Character> unexpectedArguments = new TreeSet<Character>();
private Map<Character, ArgumentMarshaler> marshalers =

new HashMap<Character, ArgumentMarshaler>();

private Set<Character> argsFound = new HashSet<Character>();

private Iterator<String> currentArgument;

private char errorArgumentId = ‘\0’;

private String errorParameter = “TILT”;

private ErrorCode errorCode = ErrorCode.OK;

private List<String> argsList;

private enum ErrorCode {
OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT }

public Args(String schema. String[] args) throws ParseException {
this.schema = schema;
argsList = Arrays.asList(args);
valid = parse();

private boolean parse() throws ParseException {

if (schema.length() == 0 && argsList.size() == 0)
return true;

parseSchema();

try {
parseArguments();

} catch (ArgsException e) {

}

return valid;

}

private boolean parseArguments() throws ArgsException {
for (currentArgument = argsList.iterator(); currentArgument.hasNext();) {
String arg = currentArgument.next();
parseArgument(arg);

return true;

}

private void setIntArg(ArgumentMarshaler m) throws ArgsException {

String parameter = null;

try {
parameter = currentArgument.next();
m.set(parameter);

} catch (NoSuchElementException e) {
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgsgException();

} catch (ArgsException e) {
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;
throw e;

private void setStringArg(ArgumentMarshaler m) throws ArgsException {
try {
m.set (currentArgument.next());
} catch (NoSuchElementException e) {
errorCode = ErrorCode.MISSING_STRING;
throw new ArgstException();

}

Son pequefios cambios que conservan el funcionamiento de las pruebas.
Ahora podemos empezar a desplazar las funciones set a las correspondientes
variantes. Primero, debemos realizar el siguiente cambio en setArgument:

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (m == null)
return false;
try {
if (m instanceof BooleanArgumentMarshaler)
setBooleanArg(m);
else if (m instanceof StringArgumentMarshaler)
setStringArg(m);
else if (m instanceof IntegerArgumentMarshaler)
setIntArg(m);

else

return-false;
} catch (ArgsException e) {
valid = false;
errorArgumentId = argChar;
throw e;

}

return true;

Es un cambio importante ya que queremos eliminar totalmente la cadena
if-else. Por tanto, debemos excluir la condicién de error.

Ya podemos empezar a desplazar las funciones set. La funcion
setBooleanArg es trivial, de modo que la prepararemos en primer lugar. El
objetivo es cambiar la funcion setBooleanArg para redirigirla a
BooleanArgumentMarshaler.

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (m == null)
return false;

try {
if (m instanceof BooleanArgumentMarshaler)
setBooleanArg(m, currentArgument);
else if (m instanceof StringArgumentMarshaler)
setStringArg(m);
else if (m instanceof IntegerArgumentMarshaler)
setIntArg(m);

} catch (ArgsException e) {
valid = false;
errorArgumentId = argChar;
throw e;

}

return true;

}

private void setBooleanArg (ArgumentMarshaler m,

Iterator<String> currentArgument)
throws ArgsException {

m.set(“true”);

catch-(ArgsExceptione){
¥
}

¢No acabamos de incluir el procesamiento de excepciones? Afadir
elementos para después excluirlos es habitual en los procesos de refactorizacion.
Los pasos reducidos y la necesidad de que las pruebas sigan siendo correctas
implican que los elementos cambien de posicion. La refactorizacién es como
resolver el cubo de Rubik. Se necesitan muchos pasos pequefios para lograr un
objetivo mayor. Cada paso habilita el siguiente.

Se preguntara por qué pasamos iterator si setBooleanArg no lo necesita.
Pues porque setIntArg y setStringArg si. Y como el objetivo es implementar
las tres funciones a través de un método abstracto en ArgumentMarshaller, es
necesario pasarlo a setBooleanArg.

Ahora setBooleanArg no sirve de nada. Si hubiera una funcién set en
ArgumentMarshaler, podriamos invocarla directamente. Es el momento de crear
dicha funcion. El primer paso consiste en afiadir el nuevo método abstracto a
ArgumentMarshaler.

private abstract class ArgumentMarshaler {
public abstract void set(Iterator<String> currentArgument)
throws ArgsException;

public abstract void set (String s) throws ArgsException;
public abstract Object get();

Evidentemente, esto afecta a todas las
implementamos el nuevo método en cada una.

private class BooleanArgumentMarshaler extends ArgumentMarshaler {
private boolean booleanvalue = false;

public void set(Iterator<String> currentArgument) throws ArgsException {
booleanValue = true;

public void set(String s) {
‘booleanValue=-true;
}

public Object get() {
return booleanvalue;

}

private class StringArgumentMarshaler extends ArgumentMarshaler {
private String stringvalue = “”;

public void set(Iterator<String> currentArgument) throws ArgsException {

public void set(String s) {
stringvalue = s;

}

public Object get() {
return stringvalue;

}

private class IntegerArgumentMarshaler extends ArgumentMarshaler {
private int intvalue = 0;

public void set(Iterator<String> currentArgument) throws ArgsException {

public void set(String s) throws ArgsException {
try {
intvalue = Integer.parseInt(s);
} catch (NumberFormatException e) {
throw new ArgsgException();

}

public Object get() {
return intvalue;

}

Y ahora ya podemos eliminar setBooleanArg:

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (m == null)
return false;
try {
if (m instanceof BooleanArgumentMarshaler)
m.set(currentArgument);
else if (m instanceof StringArgumentMarshaler)
setStringArg(m);
else if (m instanceof IntegerArgumentMarshaler)
setIntArg(m);

} catch (ArgsException e) {

variantes,

de

modo que

valid = false;
errorArgumentId = argChar;
throw e;

}

return true;

Las pruebas siguen siendo satisfactorias y la funcion set se implementa en
Boolean ArgumentMarshaler. Podemos repetir la operacién con las cadenas y
los enteros.

private boolean setArgument(char argChar) throws ArgsException {

ArgumentMarshaler m = marshalers.get(argChar);

if (m == null)
return false;

try {
if (m instanceof BooleanArgumentMarshaler)
m.set(currentArgument);
else if (m instanceof StringArgumentMarshaler)
m.set(currentArgument);
else if (m instanceof IntegerArgumentMarshaler)
m.set(currentArgument);

} catch (ArgsException e) {
valid = false;
errorArgumentId = argChar;
throw e;

}

return true;

}

private class StringArgumentMarshaler extends ArgumentMarshaler {
private String stringvalue = “”;

public void set(Iterator<String> currentArgument) throws ArgsException {
try {
stringValue = currentArgument.next();
} catch (NoSuchElementException e) {
errorCode = ErrorCode.MISSING_STRING;
throw new ArgsException();

public void set(String s){
}

public Object get() {
return stringvalue;

}

private class IntegerArgumentMarshaler extends ArgumentMarshaler {
private int intvalue = 0;

public void set(Iterator<String> currentArgument) throws ArgsException {

String parameter = null;

try {
parameter = currentArgument.next();
set(parameter);

} catch (NoSuchElementException e) {
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgsException();

} catch (ArgsException e) {
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;
throw e;

public void set(String s) throws ArgsException
try {

~

intvalue = Integer.parseInt(s);
} catch (NumberFormatException e) {
throw new ArgsgException();
}
}

public Object get() {
return intvalue;
}
}

Y el golpe de gracia: se elimina el caso de tipos.

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (m == null)
return false;

try {
m.set(currentArgument);
return true;

} catch (ArgsException e) {
valid = false;
errorArgumentId = argChar;
throw e;

}

Ya podemos deshacernos de las funciones de IntegerArgumentMarshaler
y limpiar el resto.

private class IntegerArgumentMarshaler extends ArgumentMarshaler {
private int intvalue = 0

public void set (Iterator<String> currentArgument) throws ArgsException {

String parameter = null;

try {
parameter = currentArgument.next();
intValue = Integer.parselnt(parameter);

} catch (NoSuchElementException e) {
errorCode = ErrorCode.MISSING_INTEGER;
throw new ArgstException();

} catch (NumberFormatException e) {
errorParameter = parameter;
errorCode = ErrorCode.INVALID_INTEGER;
throw new ArgsgException();

}

}

public Object get() {
return intvalue;

}

También podemos convertir ArgumentMarshaler en una interfaz.

private interface ArgumentMarshaler {
void set (Iterator<String> currentArgument) throws ArgsException;
Object get();

}

Veamos ahora lo sencillo que resulta afiadir un nuevo tipo de argumento a
la estructura. Apenas necesitaremos cambios y los que apliquemos tendran que
ser aislados. En primer lugar, afiadimos un nuevo caso de prueba para comprobar
que el argumento double funciona correctamente: puwiic vois testsimpievoulepresent() throws

Exception {
Args args = new Args(“x##"”, new String[] {“-x","“42.3"});
assertTrue(args.isvalid());
assertEquals(1l, args.cardinality());
assertTrue(args.has(‘x"));
assertEquals(42.3, args.getDouble(’‘x’), .001);

Limpiamos el codigo de analisis de esquemas y afiadimos la deteccion ##
para el tipo de argumento double.

private void parseSchemaElement(String element) throws ParseException {

char elementId = element.charAt(0);
String elementTail = element.substring(1);
validateSchemaElementId(elementId);
if (elementTail.length()==0)

marshalers.put(elementId, new BooleanArgumentMarshaler());
else if (elementTail.equals(“*”))

marshalers.put(elementId, new StringArgumentMarshaler());
else if (elementTail.equals(“#”))

marshalers.put(elementId, new IntegerArgumentMarshaler());
else if (elementTail.equals(“##”))

marshalers.put(elementId, new DoubleArgumentMarshaler());
else

throw new ParseException(String.format(
“Argument: %c has invalid format: %s.”, elementId, elementTail), 0);

Seguidamente, creamos la clase DoubleArgumentMarshaler.

private class DoubleArgumentMarshaler implements ArgumentMarshaler {
private double doubleValue = 0;

public void set(Iterator<String> currentArgument) throws ArgsException {

String parameter = null;

try {
parameter = currentArgument.next();
doubleValue = Double.parseDouble(parameter);

} catch (NoSuchElementException e) {
errorCode = ErrorCode.MISSING_DOUBLE;
throw new ArgsException();

} catch (NumberFormatException e) {
errorParameter = parameter;
errorCode = ErrorCode.INVALID_DOUBLE;
throw new ArgsException();

public Object get() {
return doubleValue;

Esto nos obliga a afiadir un nuevo cédigo de error (ErrorcCode).

private enum ErrorCode {
OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT,
MISSING_DOUBLE, INVALID_DOUBLE}

Y necesitamos una funcién getDouble.

public double getDouble(char arg) {
Args.ArgumentMarshaler am = marshalers.get(arg);
try {
return am = null ? 0 : (Double) am.get();
} catch (Exception e) {
return 0.0;

Y todas las pruebas son correctas. Ha sido sencillo. A continuacion

comprobamos que el procesamiento de errores funciona correctamente. El
siguiente caso de prueba comprueba que se declare un error si se proporciona
una cadena que no se puede analizar a un argumento ##.

public void testInvalidDouble() throws Exception {

Args args = new Args(“x##"”, new String[] {“-x", “Forty two”});

assertFalse(args.isvalid());

assertEquals(0, args.cardinality());

assertFalse(args.has(‘x"));

assertEquals(0, args.getInt(‘x’));

assertEquals(”Argument -x expects a double but was ‘Forty two’.”,
args.errorMessage());

}

public String errorMessage() throws Exception {
switch (errorCode) {
case OK:
throw new Exception(“TILT: Should not get here.”);
case UNEXPECTED_ARGUMENT:
return unexpectedArgumentMessage();
case MISSING_STRING:
return String.format(“Could not find string parameter for -%c.”,
errorArgumentId);
case INVALID_INTEGER:
return String.format(“Argument -%c expects an integer but was ‘%s’.”,
errorArgumentId, errorParameter);
case MISSING_INTEGER:
return String.format(“Could not find integer parameter for -%c.”,
errorArgumentId);
case INVALID_DOUBLE:
return String.format(“Argument -%c expects a double but was ‘%s’.”,
errorArgumentld, errorParameter);
case MISSING_DOUBLE:
return String.format(“Could not find double parameter for -%c”,
errorArgumentld);

return “”;

Y las pruebas son satisfactorias. La siguiente prueba garantiza que se
detecte correctamente la ausencia de un argumento double.

public void testMissingDouble() throws Exception {
Args args = new Args(“x##”, new String[I{"-x"});
assertFalse (args.isValid());
assertEquals(0, args.cardinality());
assertFalse(args.has(‘x’));
assertEquals(0.0, args.getDouble(‘x’), 0.01);
assertEquals(“Could not find double parameter for -x.”,

args.errorMessage());

Es correcto. La incluimos para que el ejemplo resulte mas completo.

El codigo de excepciones no es atractivo y no pertenece realmente a la clase
Args. También generamos ParseException, que no nos pertenece. Por ello,
combinamos todas las excepciones en una unica clase ArgsException y la
incluimos en su propio maddulo.

public class ArgsException extends Exception {
private char errorArgumentld = \0’;
private String errorParameter = “TILT”;
private ErrorCode errorCode = ErrorCode.OK;

public ArgsException() {}
public ArgsException(String message) { super(message); }

public enum ErrorCode {
OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT,
MISSING_DOUBLE, INVALID_DOUBLE }

public class Args {

private char errorArgumentId = ‘\0’;

private String errorParameter = “TILT”;

private ArgsException.ErrorCode errorCode = ArgsException.ErrorCode.OK;
private List<String> argsList;

public Args(String schema, String[] args) throws ArgsException {
this.schema = schema;
argsList = Arrays.asList(args);
valid = parse();

private boolean parse() throws ArgstException {

if (schema.length() == 0 && argsList.size() == 0)
return true;

parseSchema();

try {
parseArguments();

} catch (ArgsException e) {

}

return valid;

private boolean parseSchema() throws ArgsException {

}

private void parseSchemaElement(String element) throws ArgsException {

else
throw new ArgsException(
String.format(“Argument: %c has invalid format: %s.”,
elementId, elementTail));

private void validateSchemaElementId(char elementId) throws ArgsException {
if (!Character.isLetter(elementId)) {
throw new ArgsException(
“Bad character:” + elementId + “in Args format: ” + schema);

private void parseElement(char argChar) throws ArgsException {
if (setArgument(argChar))
argsFound.add(argChar);
else {
unexpectedArguments.add(argChar);
errorCode = ArgsException.ErrorCode.UNEXPECTED_ARGUMENT;
valid = false;

private class StringArgumentMarshaler implements ArgumentMarshaler {
private String stringvalue = “”;

public void set(Iterator<String> currentArgument) throws ArgsException {
try {
stringvValue = currentArgument.next();
} catch (NoSuchElementException e) {
errorCode = ArgsException.ErrorCode.MISSING_STRING;
throw new ArgstException();

public Object get() {
return stringvalue;

}

private class IntegerArgumentMarshaler implements ArgumentMarshaler {
private int intvalue = 0;

public void set (Iterator<String> currentArgument) throws ArgsException {
String parameter = null;
try {
parameter = currentArgument.next();
intvalue = Integer.parseInt(parameter);
} catch (NoSuchElementException e) {
errorCode = ArgsException.ErrorCode.MISSING_INTEGER;
throw new ArgsException();
} catch (NumberFormatException e) {
errorParameter = parameter;
errorCode = ArgsException.ErrorCode.INVALID_INTEGER;
throw new ArgsException();

}

public Object get() {
return intvalue;
}
}

private class DoubleArgumentMarshaler implements ArgumentMarshaler {
private double doublevalue = 0;

public void set(Iterator<String> currentArgument) throws ArgsException {
String parameter = null;
try {
parameter = currentArgument.next();
doublevalue = Double.parseDouble(parameter);
} catch (NoSuchElementException e) {
errorCode = ArgsException.ErrorCode.MISSING_DOUBLE;
throw new ArgstException();
} catch (NumberFormatException e) {
errorParameter = parameter;
errorCode = ArgsException.ErrorCode.INVALID_DOUBLE;
throw new ArgsgException);

}

public Object get() {
return doublevalue;

}

Muy bien. Ahora, Args solamente genera ArgsException. Al desplazar
ArgsException a un modulo propio, podemos afiadir a dicho médulo gran parte
del codigo de error y extraerlo del mddulo Args. Es una posicion natural y
evidente para incluir todo el codigo y nos permitira limpiar posteriormente el
modulo Args.

Ya hemos separado el cédigo de excepciones y de error del médulo Args
(véanse los listados del 14-13 al 14-16). Para ello realizamos una serie de 30
pasos minimos y las pruebas fueron satisfactorias entre todos ellos.

Listado 14-13
ArgsTest.java.

package com.objectmentor.utilities.args;
import junit.framework.TestCase;

public class ArgsTest extends TestCase {
public void testCreatewithNoSchemaOrArguments() throws Exception {
Args args = new Args(“”, new String[0]);
assertEquals(0, args.cardinality());

}

public void testWithNoSchemaButWithOneArgument() throws Exception {

try {
new Args(“”, new String[]{“-x"});

fail();
} catch (ArgsException e) {

assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,

e.getErrorCode());
assertEquals(‘x’, e.getErrorArgumentId());

}
}
public void testWithNoSchemaButWithMultipleArguments() throws Exception {
try {
new Args(“”, new String[]{“-x", “-y"});
fail();

} catch (ArgsException e) {

assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,

e.getErrorcCode());
assertEquals(‘x’, e.getErrorArgumentId());

public void testNonLetterSchema() throws Exception {

try {
new Args(“*”, new String[]1{});

fail(“Args constructor should have thrown exception”);

} catch (ArgsException e) {

assertEquals(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME,

e.getErrorCode());
assertEquals(‘*’, e.getErrorArgumentId());

public void testInvalidArgumentFormat() throws Exception {

try {
new Args(“f~", new String[]{});

fail(“Args constructor should have throws exception”);

} catch (ArgsException e) {

assertEquals(ArgsException.ErrorCode.INVALID_FORMAT, e.getErrorCode());

assertEquals(‘f’, e.getErrorArgumentId());

public void testSimpleBooleanPresent() throws Exception {
Args args = new Args(“x”, new String []{“-x"});
assertEquals(1l, args.cardinality());
assertEquals(true, args.getBoolean(‘x’));

public void testSimpleStringPresent() throws Exception {

Args args = new Args(“x*”, new String[]{”-x", “param”});

assertEquals(1l, args.cardinality());
assertTrue(args.has(‘x"));
assertEquals(“param”, args.getString(‘x’));

}
public void testMissingStringArgument() throws Exception {
try {
new Args(“x*”, new String[]{"-x"});
fail();

} catch (ArgsException e) {

assertEquals(ArgsException.ErrorCode.MISSING_STRING, e.getErrorCode());

assertEquals(‘x’, e.getErrorArgumentId());

public void testSpacesInFormat() throws Exception {
Args args = new Args(“x, y”, new String[]{“-xy"});
assertEquals(2, args.cardinality());
assertTrue(args.has(‘x"));
assertTrue(args.has(‘y’));

public void testSimpleIntPresent() throws Exception {
Args args = new Args(“x#”, new String[]{“-x", “42"});
assertEquals(1l, args.cardinality());
assertTrue(args.has(‘x"));
assertEquals(42, args.getInt(’x’));

}
public void testInvalidInteger() throws Exception {
try {
new Args(“x#”, new String[] {“-x", “Forty two”});
fail();

} catch (ArgsException e) {

assertEquals(ArgsException.ErrorCode.INVALID_INTEGER,

e.getErrorCode());

assertEquals(‘x’, e.getErrorArgumentId());
assertEquals(“Forty two”, e.getErrorParameter());

}
}
public void testMissingInteger() throws Exception {
try {
new Args(“x#”, new String[]{"”-x"});
fail();

} catch (ArgsException e) {
assertEquals(ArgsException.ErrorCode.MISSING_INTEGER, e.getErrorCode());
assertEquals(‘x’, e.getErrorArgumentId());

public void testSimpleDoublePresent() throws Exception {
Args args = new Args(“x##"”, new String[](“-x", “42.3"});
assertEquals(1l, args.cardinality());
assertTrue(args.has(‘x"));
assertEquals(42.3, args.getDouble(’‘x’), .001);

}
public void testInvalidDouble() throws Exception {
try {
new Args(“x##"”, new String []{“-x", “Forty two”});
fail();

} catch (ArgsException e) {
assertEquals(ArgsException.ErrorCode.INVALID_DOUBLE, e.getErrorCode());
assertEquals(‘x’, e.getErrorArgumentId());
assertEquals(“Forty two”, e.getErrorParameter());

}
}
public void testMissingDouble() throws Exception {
try {
new Args(“x##"”, new String[]{“-x"});
fail();

} catch (ArgsException e) {
assertEquals(ArgsException.ErrorCode.MISSING_DOUBLE, e.getErrorCode());
assertEquals(‘x’, e.getErrorArgumentId());

Listado 14-14
ArgsExceptionTest.java.

public class ArgsExceptionTest extends TestCase {

public void testUnexpectedMessage() throws Exception {
ArgsException e =
new ArgsException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,
‘x", null);
assertEquals(”Argument -x unexpected.”, e.errorMessage());

public void testMissingStringMessage() throws Exception {
ArgsException e = new ArgsException(ArgsException.ErrorCode.MISSING_STRING,
‘x", null);
assertEquals(“Could not find string parameter for -x.”, e.errorMessage());

public void testInvalidIntegerMessage() throws Exception {
ArgsException e =
new ArgsException(ArgsException.ErrorCode.INVALID_INTEGER,
‘x", “Forty two”);
assertEquals(”“Argument -x expects an integer but was ‘Forty two’.”,
e.errorMessage());

public void testMissingIntegerMessage() throws Exception {
ArgsException e =
new ArgsException(ArgsException.ErrorCode.MISSING_INTEGER, ‘x’, null)
assertEquals(“Could not find integer parameter for -x.”, e.errorMessage());

public void testInvalidDoubleMessage() throws Exception {
ArgsException e = new ArgsException(ArgsException.ErrorCode.INVALID_DOUBLE,
‘x", “Forty two");
assertEquals(”Argument -x expects a double but was ‘Forty two’.”,

e.errorMessage());

public void testMissingDoubleMessage() throws Exception {
ArgsException e = new ArgsException(ArgsException.ErrorCode.MISSING_DOUBLE,
‘x", null);
assertEquals(“Could not find double parameter for -x.”, e.errorMessage());

Listado 14-15
ArgsException.java.

public class ArgsException extends Exception {
private char errorArgumentId = ‘\0’;
private String errorParameter = “TILT”;
private ErrorCode errorCode = ErrorCode.OK;

public ArgstException() {3}
public ArgsException(String message) {super(message);}

public ArgsException(ErrorCode errorCode) {
this.errorCode = errorCode;

}

public ArgsException(ErrorCode errorCode, String errorParameter) {
this.errorCode = errorCode;
this.errorParameter = errorParameter;

public ArgsException(ErrorCode errorCode, char errorArgumentId,
String errorParameter) {
this.errorCode = errorCode;
this.errorParameter = errorParameter;
this.errorArgumentId = errorArgumentId;

public char getErrorArgumentId() {
return errorArgumentId;

}

public void setErrorArgumentId(char errorArgumentId) {
this.errorArgumentId = errorArgumentId;

}

public String getErrorParameter() {
return errorParameter;

}

public void setErrorParameter(String errorParameter) {
this.errorParameter = errorParameter;

}

public ErrorCode getErrorCode() {
return errorCode;

}

public void setErrorCode(ErrorCode errorCode) {
this.errorCode = errorCode;

}

public String errorMessage() throws Exception {
switch (errorCode) {
case OK:
throw new Exception(“TILT: Should not get here.”);
case UNEXPECTED_ARGUMENT:
return String.format(“Argument -%c unexpected.”, errorArgumentId);
case MISSING_STRING:
return String.format(“Could not find string parameter for -%c.”,
errorArgumentId);
case INVALID_INTEGER:
return String.format(“Argument -%c expects an integer but was ‘%s’.”,
errorArgumentId, errorParameter);
case MISSING_INTEGER:
return String.format(“Could not find integer parameter for -%c.”,

errorArgumentId);
case INVALID_DOUBLE:
return String.format(“Argument -%c expects a double but was ‘%s’.”,
errorArgumentId, errorParameter);
case MISSING_DOUBLE:
return String.format(“Could not find double parameter for -%c.”,
errorArgumentId);

}

return “”;

public enum ErrorCode {
OK, INVALID_FORMAT, UNEXPECTED_ARGUMENT, INVALID_ARGUMENT_NAME,
MISSING_STRING,
MISSING_INTEGER, INVALID_INTEGER,
MISSING_DOUBLE, INVALID_DOUBLE}

Listado 14-16
Args.java.

public class Args {
private String schema;
private Map<Character, ArgumentMarshaler> marshalers =
new HashMap<Character, ArgumentMarshaler>();
private Set<Character> argsFound = new HashSet<Character>();
private Iterator<String> currentArgument;
private List<String> argsList;

public Args(String schema, String[] args) throws ArgsException {
this.schema = schema;
argsList = Arrays.asList(args);
parse();

private void parse() throws ArgsException {
parseSchema();
parseArguments();

private boolean parseSchema() throws ArgsException {
for (String element : schema.split(“,”)) {
if (element.length() > 0) {
parseSchemaElement (element.trim());
}
}

return true;

private void parseSchemaElement(String element) throws ArgsException {

char elementId = element.charAt(0);
String elementTail = element.substring(1);
validateSchemaElementId(elementId);
if (elementTail.length() == 0)

marshalers.put(elementId, new BooleanArgumentMarshaler());
else if (elementTail.equals(“*"))

marshalers.put(elementId, new StringArgumentMarshaler());
else if (elementTail.equals(“#"))

marshalers.put(elementId, new IntegerArgumentMarshaler());
else if (elementTail.equals(“##"))

marshalers.put(elementId, new DoubleArgumentMarshaler());
else

throw new ArgsgException(ArgsException.ErrorCode.INVALID_FORMAT,

elementId, elementTail)

private void validateSchemaElementId(char elementId) throws ArgsException {
if (!Character.isLetter(elementId)) {
throw new ArgsgException(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME,
elementId, null);

private void parseArguments() throws ArgsException {
for (currentArgument = argsList.iterator(); currentArgument.hasNext();) {
String arg = currentArgument.next();
parseArgument(arg);

private void parseArgument(String arg) throws ArgsException {
if (arg.startswith(”-"))
parseElements(arg);

private void parseElements(String arg) throws ArgsException {
for (int i = 1; i < arg.length(); i++)
parseElement(arg.charAt(i));

private void parseElement(char argChar) throws ArgsException {
if (setArgument(argChar))
argsFound.add(argChar);
else {
throw new ArgsgException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,
argChar, null);

private boolean setArgument(char argChar) throws ArgsException {
ArgumentMarshaler m = marshalers.get(argChar);
if (m == null)
return false;
try {
m.set(currentArgument);
return true;
} catch (ArgsException e) {
e.setErrorArgumentId(argChar);
throw e;

public int cardinality() {
return argsFound.size();

}

public String usage() {
if (schema.length() > 0)
return "-[" + schema + “]”;
else
return “”;

public boolean getBoolean(char arg) {
ArgumentMarshaler am = marshalers.get(arg);
boolean b = false;
try {
b = am != null && (Boolean) am.get();
} catch (ClassCastException e) {
b = false;
}

return b;

public String getString(char arg) {
ArgumentMarshaler am = marshalers.get(arg);
try {
return am == null ? “” : (String) am.get();
} catch (ClassCastException e) {
return “”;

}

public int getInt(char arg) {
ArgumentMarshaler am = marshalers.get(arg);

try {

return am == null ? @ : (Integer) am.get();
} catch (Exception e) {

return 0;
}

public double getDouble(char arg) {
ArgumentMarshaler am = marshalers.get(arg);
try {
return am == null ? @ : (Double) am.get();
} catch (Exception e) {
return 0.0;

}

public boolean has(char arg) {
return argsFound.contains(arg);

}

La mayoria de los cambios realizados en la clase Args han sido
eliminaciones. Gran parte del codigo se extrajo de Args y se afiadio a
Argsexception. Perfecto. También cambiamos todos los elementos
ArgumentMarshaller a sus propios archivos. Mejor todavia.

El disefio de software correcto se basa gran parte en las particiones, en crear
zonas adecuadas para incluir distintos tipos de codigo. Esta separacion hace que
el codigo sea mas facil de entender y mantener.

Especialmente interesante es el método errorMessage de ArgsException.
Incumple claramente el SRP al incluir el formato de mensajes de error en Args.
Args debe centrarse en el procesamiento de argumentos, no en el formato de los
mensajes de error. Sin embargo, srealmente tiene sentido incluir el codigo de
formato de mensajes de error en ArgsException?

Francamente es un compromiso. L.os usuarios que no deseen los mensajes
de error proporcionados por ArgsException tendran que crear los suyos propios,
pero la utilidad de mensajes de error ya preparados es evidente.

Ya deberia haberse dado cuenta de la distancia recorrida con respecto a la
solucion mostrada al inicio del capitulo. Las transformaciones finales puede
examinarlas por su cuenta.

Conclusion

No basta con que el codigo funcione. El codigo que funciona suele ser
incorrecto. Los programadores que se conforman con cddigo funcional no se
comportan de forma profesional. Puede que teman que no tienen tiempo para
mejorar la estructura y el disefio del codigo, pero discrepo. No hay nada que
afecte mas negativamente a un proyecto de desarrollo que el codigo incorrecto.
Los plazos incorrectos se pueden rehacer y los requisitos equivocados se pueden
volver a definir. La dinamica incorrecta de un equipo se puede reparar pero el
cédigo incorrecto se corrompe y se convierte en una carga que arrastra al equipo
completo. He visto equipos dominados por el desastre que han generado y que
han dominado su destino.

Evidentemente, el c6digo incorrecto se puede limpiar pero resulta muy
costoso. Cuando el codigo se corrompe los mddulos se insindan unos a otros y
generan multitud de dependencias ocultas y entrelazadas. La localizacion y
division de dependencias antiguas es una tarea larga y complicada. Por otra
parte, resulta relativamente sencillo mantener cédigo limpio. Si comete un error

en un moédulo, es mas facil limpiarlo directamente. Mejor todavia, si cometi6 un
error hace cinco minutos, es muy facil limpiarlo ahora.

Por tanto, la solucion consiste en mantener el codigo limpio y sencillo
siempre que se pueda y no dejar que llegue a corromperse.

B I.||.I.I||.” L S e ; N O f"_

0
b
e

RN

e
e e
e, T
el T e -
i i T S

15
internos de JUnit

Aspectos

JUnit es una de las estructuras de Java mas conocidas. De concepcién sencilla,
definicion precisa y documentacién elegante. ;Y su codigo? En este capitulo

analizaremos un ejemplo extraido de la estructura JUnit.

La estructura JUnit

JUnit ha tenido muchos autores, comenzando por Kent Beck y Eric Gamma en
un vuelo a Atlanta. Kent queria aprender Java y Eric queria saber mas sobre la
estructura de pruebas Smalltalk de Kent. “¢Hay algo mas natural que dos
fanaticos enciendan sus portatiles y empiecen a escribir codigo?”*" Tras tres
horas de trabajo de altura, habian creado los fundamentos de JUnit.

El modulo que analizaremos es un inteligente fragmento de cédigo que
permite identificar errores de comparacion de cadenas. El nombre del médulo es
ComparisonCompactor. Dadas dos cadenas diferentes, como ABCDE y ABXDE,
muestra la diferencia entre ambas generando una cadena como <..B[X]D...>.

Podriamos explicarlo mas, pero los casos de prueba son mejores. Fijese en
el Listado 15-1 para comprender los requisitos de este mddulo. Analice la
estructura de las pruebas. ;Podrian ser mas simples o mas evidentes?

Listado 15-1
ComparisonCompactorTest.java.

package junit.tests.framework;

import junit.framework.ComparisonCompactor;
import junit.framework.TestCase;

public class ComparisonCompactorTest extends TestCase {

public void testMessage() {
String failure= new ComparisonCompactor (0, “b”, “c”).compact(“a”);
assertTrue(“a expected:<[b]> but was:<[c]>".equals(failure));

}

public void testStartSame() {
String failure= new ComparisonCompactor (1, “ba”, “bc”).compact(null);
assertEquals(“expected:<b[a]> but was:<b[c]>", failure);

}

public void testEndSame() {
String failure= new ComparisonCompactor (1, “ab”, “cb”).compact(null);
assertEquals(“expected:<[a]b> but was:<[c]b>", failure);

}

public void testSame() {
String failure= new ComparisonCompactor (1, “ab”, “ab”).compact(null);
assertEquals(“expected:<ab> but was:<ab>", failure);

}

public void testNoContextStartAndEndSame() {
String failure= new ComparisonCompactor (0, *“abc”, “adc”).compact(null);
assertEquals(“expected:<..[b]..> but was:<..[d]..>”, failure);

}

public void testStartAndEndContext() {
String failure= new ComparisonCompactor (1, *“abc”, “adc”).compact(null);
assertEquals(“expected:<a[b]c> but was:<a[d]c>", failure);

}

public void testStartAndEndContextwWithEllipses() {
String failure=
new ComparisonCompactor(l, “abcde”, “abfde”).compact(null);
assertEquals(“expected:<.b[c]d..> but was:<.b[f]d.>", failure);

}

public void testComparisonErrorStartSameComplete() {
String failure= new ComparisonCompactor (2, “ab”, “abc”).compact(null)
assertEquals(“expected:<ab[]> but was:<ab[c]>", failure);

public void testComparisonErrorEndSameComplete() {
String failure= new ComparisonCompactor (0, “bc”, “abc”).compact(null)
assertEquals(“expected:<[]..> but was:<[a].>", failure);

public void testComparisonErrorEndSameCompleteContext() {
String failure= new ComparisonCompactor (2, “bc”, “abc”).compact(null)
assertEquals(“expected:<[]bc> but was:<[a]bc>", failure);

public void testComparisonErrorOverlapingMatches() {
String failure= new ComparisonCompactor (0, *“abc”, “abbc”).compact(null);
assertEquals(“expected:<..[]..> but was:<..[b].>", failure);

public void testComparisonErrorOverlapingMatchesContext() {
String failure= new ComparisonCompactor (2, “abc”, “abbc”).compact(null);
assertEquals(“expected:<ab[]c> but was:<ab[b]c>", failure);
}
public void testComparisonErrorOverlapingMatches2() {
String failure= new ComparisonCompactor (0, “abcdde”,
“abcde”).compact(null);
assertEquals(“expected:<..[d]..> but was:<.[].>", failure);

public void testComparisonErrorOverlapingMatches2Context() {
String failure=
new ComparisonCompactor(2, “abcdde”, “abcde”).compact(null)
assertEquals(“expected:<..cd[d]e> but was:<.cd[]e>", failure);

public void testComparisonErrorWithActualNull() {
String failure= new ComparisonCompactor(®, “a”, null).compact(null);
assertEquals(“expected:<a> but was:<null>"”, failure);

public void testComparisonErrorWithActualNullContext() {
String failure= new ComparisonCompactor(2, “a”, null).compact(null);
assertEquals(“expected:<a> but was:<null>"”, failure);

public void testComparisonErrorWithExpectedNull() {
String failure= new ComparisonCompactor(®, null, “a”).compact(null);
assertEquals(“expected:<null> but was:<a>", failure);

public void testComparisonErrorWithExpectedNullContext() {
String failure= new ComparisonCompactor(2, null, “a”).compact(null);
assertEquals(“expected:<null> but was:<a>", failure);

public void testBug609972() {
String failure= new ComparisonCompactor (10, “S&P500”, “0"”).compact(null)
assertEquals(“expected:<[S&P50]0> but was:<[]0>", failure);

Realicé un analisis de alcance de codigo en ComparisonCompactor con
estas pruebas. El cédigo se cubre en un 100 por 100. Cada linea, cada
instruccion if y cada bucle for se ejecuta con las pruebas. De este modo sé que
el codigo funciona y sus autores me merecen el mayor de los respetos.

El cédigo comparisonCompactor se reproduce en el Listado 15-2.
Examinelo. Creo que lo encontrara bien distribuido, razonablemente expresivo y
estructuralmente sencillo. Cuando termine, lo diseccionaremos.

Listado 15-2

ComparisonCompactor.java (Original).
package junit.framework;
public class ComparisonCompactor {

private static final String ELLIPSIS = “.”;
private static final String DELTA_END = “]”;
private static final String DELTA_START = “[”;

private int fContextLength;
private String fExpected;
private String fActual;
private int fPrefix;
private int fsuffix;

public ComparisonCompactor(int contextLength,

String expected,

String actual) {
fContextLength = contextLength;
fExpected = expected;
fActual = actual;

public String compact(String message) {
if (feExpected == null || fActual == null || areStringsEqual())
return Assert.format(message, fExpected, fActual);

findCommonPrefix();

findCommonSuffix();

String expected = compactString(fExpected);
String actual = compactString(fActual);

return Assert.format(message, expected, actual);

private String compactString(String source) {
String result = DELTA_START +
source.substring(fPrefix, source.length() -
fSuffix + 1) + DELTA_END;
if (fPrefix > 0)
result = computeCommonPrefix() + result;
if (fsuffix > @)
result = result + computeCommonSuffix();
return result;

private void findCommonPrefix() {
fPrefix = 0;
int end = Math.min(fExpected.length(), fActual.length());
for (; fPrefix < end; fPrefix++) {
if (fExpected.charAt(fPrefix) != fActual.charAt(fPrefix))
break;

private void findCommonSuffix() {
int expectedsuffix = fExpected.length() - 1;
int actualSuffix = fActual.length() - 1;
for (;
actualSuffix >= fPrefix && expectedSuffix >= fPrefix;
actualsuffix--, expectedSuffix--) {

if (fExpected.charAt(expectedsuffix) != fActual.charAt(actualSuffix))

break;

}
fSuffix = fExpected.length() - expectedSuffix;

private String computeCommonPrefix() {
return (fPrefix > fContextLength ? ELLIPSIS : “”) +
fExpected.substring(Math.max(®, fPrefix - fContextLength)
fPrefix);

private String computeCommonSuffix() {
int end = Math.min(fExpected.length() - fSuffix + 1 + fContextLength
fExpected.length());
return fExpected.substring(fExpected.length() - fSuffix + 1, end) +

(fExpected.length() - fSuffix + 1 < fExpected.length() -

fContextLength ? ELLIPSIS : “");

private boolean areStringsEqual() {
return fExpected.equals(fActual);
}
}

Puede que tenga varias quejas sobre el modulo. Incluye expresiones
extensas y extrafios elementos +1. Pero en general, esta bastante bien. Después
de todo, podria haber sido como el Listado 15-3.

Listado 15-3
ComparisonCompator.java (defactorizado)

package junit.framework;

public class ComparisonCompactor {
private int ctxt;
private String si;
private String s2;
private int pfx;
private int sfx;

public ComparisonCompactor(int ctxt, String si, String s2) {
this.ctxt = ctxt;
this.s1 = s1;
this.s2 = s2;

}

public String compact(String msg) {
if (s1 == null || s2 == null || sl.equals(s2))
return Assert.format(msg, si, s2);

pfx = 0;
for (; pfx < Math.min(s1.length(), s2.length()); pfx++) {
if (si.charAt(pfx) != s2.charAt(pfx))
break;
}
int sfx1 = si.length() - 1;
int sfx2 = s2.length() - 1;
for (; sfx2 >= pfx && sfx1 >= pfx; sfx2--, sfxi--) {
if (si.charAt(sfx1) != s2.charAt(sfx2))
break;
}
sfx = si.length() - sfx1;
String cmpl = compactString(s1);
String cmp2 = compactString(s2);
return Assert.format(msg, cmpl, cmp2);

}

private String compactString(String s) {
String result =
“[" + s.substring(pfx, s.length() - sfx + 1) + “1”;
if (pfx > 0)
result = (pfx > ctxt ? “.” : “") +
sl.substring(Math.max(®, pfx - ctxt), pfx) + result;
if (sfx > 0) {
int end = Math.min(s1.length() - sfx + 1 + ctxt, si.length());
result = result + (s1.substring(sil.length() - sfx + 1, end) +
(s1.length() - sfx + 1 < si.length() - ctxt 2 “.” : “"));
}

return result;

Aunque los autores hicieron un buen trabajo con este modulo, la Regla del
Boy Scout” muestra que podrian haberlo dejado mas limpio de lo que se
encontro. ;Como podemos mejorar el codigo original del Listado 15-2? Lo
primero que no necesitamos es el prefijo f de las variables miembro [N6]. Los
entornos actuales hacen que este tipo de codigo de ambito sea redundante, por lo

que eliminaremos todas las f.

private int contextLength;
private String expected;
private String actual;
private int prefix;
private int suffix;

Tras ello, tenemos una condicional sin encapsular al inicio de la funcion
compact [G28].

public String compact(String message) {

if (expected == null || actual == null || areStringsEqual())
return Assert.format(message, expected, actual);

findCommonPrefix();

findCommonSuffix();

String expected = compactString(this.expected);
String actual = compactString(this.actual);
return Assert.format(message, expected, actual);

Es necesario encapsular esta condicional para que nuestra intencion sea mas
clara. Por tanto, extraemos un método que la explique.

public String compact(String message) {
if (shouldNotCompact())
return Assert.format(message, expected, actual);

findCommonPrefix();

findCommonSuffix();

String expected = compactString(this.expected);
String actual = compactString(this.actual);
return Assert.format(message, expected, actual);

}

private boolean shouldNotCompact() {
return expected == null || actual == null || areStringsEqual();

En la funcion compact, this.expected y this.actual no son demasiado
relevantes. Sucede al cambiar el nombre de fExpected por expected. ¢Por qué
esta funcion tiene variables con los mismos nombres que las variables miembro?
:INo representan cosas diferentes?[N4]. Los nombres deben ser exclusivos.

String compactExpected = compactString(expected);
String compactActual = compactString(actual);

Los negativos son mas dificiles de entender que los positivos [G29]. Por
ello, invertimos esa instruccion if para cambiar el sentido de la condicional.

public String compact(String message) {
if (canBeCompacted()) {
findCommonPrefix();
findCommonSuffix();
String compactExpected = compactString(expected);
String compactActual = compactString(actual);
return Assert.format(message, compactExpected, compactActual)
} else {
return Assert.format(message, expected, actual);
}
}

private boolean canBeCompacted() {
return expected != null && actual != null && !areStringsEqual();
}

El nombre de la funcién es extrafio [N7]. Aunque compacta las cadenas,

puede que lo haga si canBeCompacted devuelve false. Al asignar el nombre
compact a esta funcién se oculta el efecto secundario de la comprobacion de
errores. Ademas, la funcion devuelve un mensaje con formato, no sélo las
cadenas compactadas. Por tanto, el nombre de la funcién deberia ser
formatCompactedComparison. De esta forma, se lee mejor junto al argumento de

.7
la fUIlClOIlZ public String formatCompactedComparison(String message) {

El cuerpo de la instruccion if es donde se realiza la verdadera
compactacion de las cadenas. Debemos extraerlo como método con el nombre
compactExpectedAndActual. Sin embargo, queremos que la funcion
formatCompactedComparison realice todo el formato. La funcién compact...
so0lo debe realizar la compactacién [G30], de modo que la dividimos de esta
forma: .

private String compactExpected;
private String compactActual;

public String formatCompactedComparison(String message) {
if (canBeCompacted()) {
compactExpectedAndActual();
return Assert.format(message, compactExpected, compactActual);
} else {
return Assert.format(message, expected, actual);
}
}

private void compactExpectedAndActual() {
findCommonPrefix();
findCommonSuffix();
compactExpected = compactString(expected);
compactActual = compactString(actual);

}

Para ello, hemos tenido que ascender compactExpected y compactActual a
variables miembro. No me gusta la forma en que las dos tultimas lineas de la
nueva funcion devuelven variables pero las dos primeras no lo hacen. No
utilizan convenciones coherentes [G11]. Debemos cambiar findCommonPrefix y
findCommonSuffix para que devuelvan los valores de prefijo y sufijo.

private void compactExpectedAndActual() {
prefixIndex = findCommonPrefix();
suffixIndex = findCommonSuffix();
compactExpected = compactString(expected);
compactActual = compactString(actual);

}

private int findCommonPrefix() {
int prefixIndex = 0;
int end = Math.min(expected.length(), actual.length());
for (; prefixIndex < end; prefixIndex++) {
if (expected.charAt(prefixIndex) != actual.charAt(prefixIndex))
break;
}

return prefixIndex;

private int findCommonSuffix() {

int expectedSuffix = expected.length() - 1;

int actualSuffix = actual.length() - 1;

for (; actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;

actualsuffix--, expectedSuffix--) {

if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
break;

}

return expected.length() - expectedSuffix;

También debemos cambiar los nombres de las variables miembro para que
sean mas preciosas [N1], ya que en el fondo son indices.

Al examinar findCommonSuffix vemos una conexion temporal oculta
[G31]; depende de que prefixIndex se calcule por findCommonPrefix. Si estas
dos funcione se invocan de forma desordenada, la sesion de depuracion posterior
seria complicada. Por ello, para mostrar esta combinacion temporal, haremos
que findCommonSuffix acepte prefixIndex cOmo argumento.

private void compactExpectedAndActual() {
prefixIndex = findCommonPrefix();
suffixIndex = findCommonSuffix(prefixIndex);
compactExpected = compactString(expected);
compactActual = compactString(actual);

}

private int findCommonSuffix (int prefixIndex) {
int expectedSuffix = expected.length() - 1;
int actualSuffix = actual.length() - 1;
for (; actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;
actualsuffix--, expectedSuffix--) {
if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
break;

}

return expected.length() - expectedSuffix;

No me convence del todo. El hecho de pasar prefixIndex como argumento
es un tanto arbitrario [G32]. Permite establecer el orden pero no explica la
necesidad del mismo. Otro programador podria deshacer esta operacion ya que
no se indica en ningun momento para qué sirve el parametro. Adoptemos un
enfoque diferente.

private void compactExpectedAndActual() {
findCommonPrefixAndSuffix();
compactExpected = compactString(expected);
compactActual = compactString(actual);

}

private void findCommonPrefixAndSuffix() {
findCommonPrefix();
int expectedSuffix = expected.length() - 1;
int actualSuffix = actual.length() - 1;

for (;
actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;
actualsuffix--, expectedSuffix--
) {
if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
break;

suffixIndex = expected.length() - expectedSuffix;
}

private void findCommonPrefix() {
prefixIndex = 0;
int end = Math.min(expected.length(), actual.length());
for (; prefixIndex < end; prefixIndex++)
if (expected.charAt(prefixIndex) != actual.charAt(prefixIndex))
break;

Devolvemos findCommonPrefix y findCommonSuffix a su posicion
original, cambiamos el nombre de findCommonSuffix por
findCommonPrefixAndSuffix y hacemos que invoque findCommonPrefix antes
de hacer nada mas. De ese modo se establece la naturaleza temporal de ambas

funciones de forma mas evidente que antes. Ademas, se muestra el minimo
atractivo de findCommonPrefixAndSuffix, que limpiaremos a continuacion: private

void findCommonPrefixAndSuffix() {
findCommonPrefix();
int suffixLength = 1;
for (; !suffixOverlapsPrefix(suffixLength); suffixLength++) {
if (charFromEnd(expected, suffixLength) !=
charFromend(actual, suffixLength))
break;

suffixIndex = suffixLength;

}

private char charFromeEnd(String s, int i) {
return s.charAt(s.length()-1i);}

private boolean suffixOverlapsPrefix(int suffixLength) {
return actual.length() - suffixLength < prefixLength ||
expected.length() - suffixLength < prefixLength;

}

Mucho mejor. Muestra que suffixIndex es en realidad la longitud del
sufijo y que su nombre no es correcto. Lo mismo sucede con prefixIndex,
aunque en ese caso indice y longitud son sinonimos. Incluso asi, es mas
coherente usar length. El problema es que la variable suffixIndex no es de
base cero, sino de base 1 y no es una verdadera longitud. Este es el motivo de la
abundancia de +1 en computeCommonsuffix [G33]. Lo corregimos. En el
Listado 15-4 puede ver el resultado.

Listado 15-4
ComparisonCompactor.java (versién intermedia).

public class ComparisonCompactor {
private int suffixLength;

private void findCommonPrefixAndSuffix() {
findCommonPrefix();
suffixLength = 0;
for (; !suffixOverlapsPrefix(suffixLength); suffixLength++) {
if (charFromend(expected, suffixLength) !=
charFromend(actual, suffixLength))
break;
}
}

private char charFromeEnd(String s, int i) {
return s.charAt(s.length() - i -1);
}

private boolean suffixOverlapsPrefix(int suffixLength) {
return actual.length() - suffixLength <= prefixLength ||
expected.length() - suffixLength <= prefixLength;

private String compactString(String source) {

String result =
DELTA_START +
source.substring(prefixLength, source.length() - suffixLength) +
DELTA_END;

if (prefixLength > 0)
result = computeCommonPrefix() + result;

if (suffixLength > 0)
result = result + computeCommonSuffix();

return result;

private String computeCommonSuffix() {
int end = Math.min(expected.length() - suffixLength +
contextLength, expected.length()
)i
return
expected.substring(expected.length() - suffixLength, end) +
(expected.length() - suffixLength <
expected.length() - contextLength ?
ELLIPSIS : “");
}

Cambiamos +1 en computeCommonSuffix por un -1 en charFromEnd,
donde tiene sentido, y dos operadores <= en suffixOverlapsPrefix, totalmente
correctos. De este modo podemos cambiar el nombre de suffixIndex por
suffixLength, lo que mejora considerablemente la legibilidad del codigo.

Pero hay un problema. Al comenzar a eliminar los +1, me fijé en la
siguiente linea de compactstring:

if (suffixLength > 0)

Busquela en el Listado 15-4. Como ahora suffixLength es una unidad
menos que antes, debemos cambiar el operador > por >=. Pero eso no tiene
sentido. Ahora si. Significa que no tenia sentido antes y que seguramente fuera
un error. Bueno, no del todo. Tras un analisis detallado, vemos que ahora la
instruccion if impide que se afiada un sufijo de longitud cero. Antes de realizar
el cambio, la instruccion if no funcionaba ya que suffixIndex nunca podia ser
menos de uno.

Esto cuestiona ambas instrucciones if en compactString. Parece como si
se pudieran eliminar. Por ello, las comentamos y ejecutamos las pruebas.
Satisfactorias. Reestructuremos compactString para eliminar las instrucciones
if sobrantes y simplificar la funcion [G9].

private String compactString(String source) {
return
computeCommonPrefix() +
DELTA_START +
source.substring(prefixLength, source.length() - suffixLength) +
DELTA_END +
computeCommonSuffix();

Mucho mejor. Ahora vemos que la funcién compactString simplemente
combina los fragmentos. Probablemente lo podriamos limpiar mas, en pequefias
operaciones, pero en lugar de desarrollar el resto de los cambios, mostraremos el
resultado final en el Listado 15-5.

Listado 15-5
ComparisonCompactor.java (version definitiva).

package junit.framework;
public class ComparisonCompactor {

private static final String ELLIPSIS = “.”;
private static final String DELTA_END = “]”;

private static final String DELTA_START = “[”;

private int contextLength;
private String expected;
private String actual;
private int prefixLength;
private int suffixLength;

public ComparisonCompactor (
int contextLength, String expected, String actual

) {
this.contextLength = contextLength;
this.expected = expected;
this.actual = actual;

}

public String formatCompactedComparison(String message) {

String compactExpected = expected;

String compactActual = actual;

if (shouldBeCompacted()) {
findCommonPrefixAndSuffix();
compactExpected = compact(expected);
compactActual = compact(actual);

}

return Assert.format(message, compactExpected, compactActual);

private boolean shouldBeCompacted() {
return !shouldNotBeCompacted();

}
private boolean shouldNotBeCompacted() {
return expected == null ||
actual == null ||

expected.equals(actual);

private void findCommonPrefixAndSuffix() {
findCommonPrefix();
suffixLength = 0;
for (; !suffixOverlapsPrefix(); suffixLength++) {
if (charFromEnd(expected, suffixLength) !=
charFromend(actual, suffixLength)
)

break;

private char charFromeEnd(String s, int i) {
return s.charAt(s.length() - i - 1);
}

private boolean suffixOverlapsPrefix() {
return actual.length() - suffixLength <= prefixLength ||
expected.length() - suffixLength <= prefixLength;

private void findCommonPrefix() {
prefixLength = 0;
int end = Math.min(expected.length(), actual.length());
for (; prefixLength < end; prefixLength++)
if (expected.charAt(prefixLength) != actual.charAt(prefixLength))
break;

private String compact(String s) {
return new StringBuilder ()

.append(startingEllipsis())
.append(startingContext())
.append(DELTA_START)
.append(delta(s))
.append(DELTA_END)
.append(endingContext())
.append(endingEllipsis())
.toString();

private String startingEllipsis() {
return prefixLength > contextLength ? ELLIPSIS : “”;
}

private String startingContext() {

int contextStart = Math.max(0, prefixLength - contextLength);
int contextEnd = prefixLength;
return expected.substring(contextStart, contextEnd);

}

private String delta(String s) {
int deltaStart = prefixLength;
int deltaEnd = s.length() - suffixLength;
return s.substring(deltaStart, deltaEnd);
}

private String endingContext() {
int contextStart = expected.length() - suffixLength;
int contextEnd =
Math.min(contextStart + contextLength, expected.length());
return expected.substring(contextStart, contextEnd);

}

private String endingEllipsis() {
return (suffixLength > contextLength ? ELLIPSIS : “”);
}

Bastante atractivo. El médulo se separa en un grupo de funciones de
analisis y otro grupo de funciones de sintesis. Se ordenan topologicamente para
que la definicion de cada funcion aparezca donde realmente se usa. Primero se
muestran las funciones de analisis y después las de sintesis. Si se fija
atentamente, vera que he invertido algunas de las decisiones adoptadas
inicialmente. Por ejemplo, he afadido algunos métodos extraidos a
formatCompactedComparison y he modificado el sentido de la expresion
shouldNotBeCompacted. Es algo habitual. A menudo, un cambio de
refactorizacion lleva a otro que a su vez lleva a deshacer el primero. La
refactorizacion es un proceso iterativo de ensayo y error, e inevitablemente
converge en algo que consideramos digno de un profesional.

Conclusion

Hemos cumplido la Regla del Boy Scout. Hemos dejado este modulo mas limpio
de como lo encontramos. No es que no estuviera limpio originalmente, ya que el
trabajo de sus autores es excelente, pero cualquier modulo se puede mejorar y es
nuestra responsabilidad dejar el cdigo mas limpio de lo que lo encontramos.

16
Refactorizacion de SerialDate

eGP

Si visita http://www.jfree.org/jcommon/index.php, encontrard la biblioteca
JCommon. En su interior incluye el paquete org.jfree.date y, dentro de éste,
la clase serialbate. Vamos a analizar esta clase.

El autor de Serialbate es David Gilbert. David es un programador
experimentado y competente. Como veremos, muestra un elevado grado de
profesionalidad y disciplina en su codigo. En lo que a éste respecta, se puede
considerar de calidad. Y voy a despedazarlo.

No es un acto de malicia, ni tampoco me creo mejor que David y con el
derecho de juzgar su cédigo. De hecho, si leyera algin cédigo que he creado,
seguramente tendria que objetar muchos aspectos del mismo. No es un acto de
arrogancia. Lo que voy a hacer no es mas que una revision profesional, algo con
lo que todos deberiamos sentirnos comodos y algo que deberiamos agradecer si
alguien lo hace. A través de las criticas es como podemos aprender, como hacen

médicos, pilotos o abogados. Y nosotros, como programadores, también tenemos
que aprender a hacerlo.

Otra cosa mas sobre David Gilbert: es mas que un buen programador.
David ha tenido el valor y la buena voluntad de ofrecer este codigo al publico
gratuitamente, para que cualquiera pueda usarlo y examinarlo. jBien hecho!

SerialDate (véase el Listado B-1) es una clase que representa una fecha en
Java. ¢Para qué se necesita una clase que represente una fecha si Java ya cuenta
con java.util.Date y java.util.Calendar, entre otras? El autor cre6 esta
clase como respuesta a un problema que yo también he padecido. El comentario
de su Javadoc inicial (linea 67) lo explica. Podriamos cuestionar su intencion,
pero yo también he sufrido este problema y se agradece una clase sobre fechas
en lugar de horas.

Primero, conseguir que funcione

Hay varias pruebas de unidad en la clase SerialDateTests (véase el Listado B-
2). Todas son satisfactorias. Desafortunadamente, un rapido examen demuestra
que no comprueban todos los aspectos [T1]. Por ejemplo, al realizar una
busqueda de usos en el método MonthCodeToQuarter (linea 334) se indica que
no se usa [F4]. Por lo tanto, las pruebas de unidad no lo comprueban. Por ello,
recurri a Clover para ver el alcance de las pruebas de unidad. Clover indic6 que
las pruebas sélo ejecutan 91 de las 185 instrucciones ejecutables de SerialDate
(aproximadamente el 50 por 100) [T2]. El mapa de alcance muestra grandes
fragmentos de codigo sin ejecutar desperdigados por la clase.

Mi objetivo era comprender la clase y refactorizarla, algo que no podia
lograr sin una cobertura mayor de las pruebas. Por ello disefié mi propia suite de
pruebas de unidad independientes (véase el Listado B-4).

Si se fija en las pruebas, comprobara que muchas estan comentadas, ya que
no se superaron. Representan un comportamiento que considero deberia incluirse
en SerialDate. Por tanto, al refactorizar SerialDate, intentaré que estas pruebas
funcionen.

Incluso con algunas de las pruebas comentadas, el informe de Clover indica
que ahora ejecutan 170 (el 92 por ciento) de las 185 instrucciones ejecutables.
Un gran resultado que creo que puedo mejorar.

Las primeras pruebas comentadas (lineas 23-63) son un tanto pretenciosas.
El programa no fue disefiado para superar estas pruebas, pero el comportamiento
me parecia evidente [G2]. Desconozco por qué se ha creado el método
testWeekdayCodeToString pero ya que esta ahi, parece obvio que no debe

distinguir entre mayusculas y minusculas. El disefio de las pruebas fue sencillo
[T3] y mas todavia que fueran satisfactorias; simplemente cambié las lineas 259
y 263 para usar equalsIgnoreCase.

Comenté las pruebas de las lineas 32 y 45 ya que no estaba seguro de si las
abreviaturas tues y thurs se admitian o no. Las pruebas de las lineas 153 y 154
no se superaron, aunque deberian haberlo hecho [G2]. Podemos corregirlas,
junto a las pruebas de las lineas 163 a la 213, si realizamos los siguientes
cambios en la funcién stringToMonthCode.

457 if ((result < 1) || (result > 12)) { result = -1;
458 for (int 1 = 0; i < monthNames.length; i++) {
459 if (s.equalsIgnoreCase(shortMonthNames[i])) {
460 result = i + 1;

461 break;

462 }

463 1if (s.equalsIgnoreCase(monthNames[i])) {

464 result = i + 1;

465 break;

466 }

467 }

468 }

La prueba comentada de la linea 318 descubre un error en el método
getFollowingDayOfWeek (linea 672). El 25 de diciembre de 2004 fue sabado y el
siguiente sabado fue el 1 de enero de 2005. Sin embargo, al ejecutar la prueba,
vemos que getFollowingDayOfWeek devuelve el 25 de diciembre como siguiente
sabado después del 25 de diciembre, un error evidente [G3], [T1]. Vemos el
problema en la linea 685. Es un error de condicion de limite tipico [T5]. Deberia
ser 1o siguiente: sus ir (naseoow >= targetweekday) ¢

Conviene destacar que esta funcion sufrio una reparacion anterior. El
historial de cambios (linea 43) muestra que se corrigieron los errores en
getPreviousDayOfWeek, getFollowingDayOfWeek y getNearestDayOfWeek
[T6].

La prueba de unidad testGetNearestDayOfWeek (linea 329), que prueba el
método getNearestDayOfWeek (linea 705), inicialmente no era tan extensa y
completa. Afiadi multitud de casos de prueba ya que los iniciales no se
superaban [T6]. Puede ver el patron de fallos si se fija en los casos de prueba
comentados. El patrén es revelador [T7]. Muestra que el algoritmo falla si el dia
mas préoximo es de una fecha futura. Evidentemente se trata de algun tipo de
error de condicion de limite [T5].

El patron de alcance de las pruebas generado por Clover también es
interesante [T8]. La linea 719 nunca se ejecuta, lo que significa que la
instruccion if de la linea 718 siempre es false, pero si nos fijamos en el cédigo,
indica que debe ser true. La variable adjust siempre es negativa y no puede ser
mayor o igual a 4, por lo que el algoritmo es incorrecto.

A continuacion se muestra el algoritmo correcto:

int delta = targetDOW - base.getDayOfWeek();
int positiveDelta = delta + 7;
int adjust = positiveDelta % 7;
if (adjust > 3)
adjust -= 7;
return SerialDate.addDays (adjust, base);

Por ultimo, las pruebas de la lineas 417 y 429 se pueden superar si se
genera IllegalArgumentException en lugar de devolver una cadena de error
desde weekInMonthToString y relativeToString. Con estos cambios, todas las
pruebas de unidad se superan y creo que ahora SerialDate funciona. Llega el
momento de hacer que sea correcta.

Hacer que sea correcta

Describiremos Serialbate de arriba a abajo para mejorarla en nuestro recorrido.
Aunque no lo veamos en este analisis, ejecutaré todas las pruebas de unidad de
Jcommon, incluida mi prueba de unidad mejorada para SerialDate, con todos los
cambios efectuados. Por ello, tenga la seguridad de que todos los cambios que
vea funcionan para JCommon.

En la linea 1 vemos abundantes comentarios sobre informacién de licencia,
derechos de autor, autores e historial de cambios. Asumo que hay ciertos
aspectos legales que mostrar, por lo que los derechos de autor y las licencias
deben conservarse. Por otra parte, el historial de cambios es una rémora de la
década de 1960. Ahora tenemos herramientas de control de codigo fuente que se
encargan de ello. Hay que eliminar este historial [C1].

La lista de importacion que comienza en la linea 61 se puede reducir por
medio de java.text.*y java.util.*. [J1]

No me convence el formato HTML del Javadoc (linea 67). Un archivo
fuente con mas de un lenguaje me parece un problema. Este comentario tiene
cuatro lenguajes: Java, espafiol, Javadoc y html [G1]. Con tantos lenguajes se
hace dificil mantener la coherencia. Por ejemplo, la ubicacion de las lineas 71 y
72 se pierde al generar el Javadoc y ademas, ;quién quiere ver y <1i> en el
codigo fuente? Una estrategia mas acertada consiste en rodear el comentario con
<pre> para que el formato del codigo fuente se conserve en el Javadoc™.

La linea 86 es la declaracion de la clase. ¢Por qué se le asigna el nombre
SerialDate? ¢Qué sentido tiene la palabra serial? ;Es porque la clase se deriva
de Sserializable? Parece improbable.

Basta de adivinanzas. Sé por qué (o al menos eso creo) se usa la palabra
serial. La clave se encuentra en las constantes SERIAL_LOWER_BOUND Yy

SERIAL_UPPER_BOUND de las lineas 98 y 101. Y una clave todavia mejor es el
comentario de la linea 830. El nombre de la clase es SerialDate ya que se
implementa con un numero de serie, que parece ser el nimero de dias desde el
30 de diciembre de 1899.

Pero esto supone un problema. Por un lado, el término «numero de serie»
no es realmente correcto. Puede ser un detalle menor pero la representacion es
mas un desplazamiento relativo que un nimero de serie. El término «numero de
serie» tiene que ver mas con marcadores de identificacion de productos que con
fechas. Por ello, no lo considero especialmente descriptivo [N1]. Un término
mas descriptivo seria «ordinal».

El segundo problema es mas significativo. El nombre Serialbate implica
una implementacion. Esta clase es abstracta. No es necesario que implique nada
sobre la implementacion; de hecho, es aconsejable ocultarla. Por ello, creo que el
nombre se encuentra en un nivel de abstraccién incorrecto [N2]. En mi opinion,
el nombre de esta clase deberia ser simplemente Date.

Desafortunadamente, hay demasiadas clases con el nombre Date en la
biblioteca de Java, de modo que no es el mas adecuado. Como esta clase trabaja
con dias y no horas, podriamos usar Day, pero ya se usa en otros muchos puntos.
Al final, opté por bayDate como mejor opcion.

A partir de ahora, usaremos DayDate. Recuerde que los listados que va a
leer siguen usando SerialDate.

Entiendo porque DayDate se hereda de Comparable y Serializable. ;Pero
de MonthConstants? La clase MonthConstants (véase el Listado B-3) es una
serie de constantes finales estaticas que definen los meses. Heredar de clases con
constantes es un viejo truco que los programadores de Java usan para evitar
expresiones como MonthConstants.January, pero es una mala idea [J2].
MonthConstants deberia ser una enumeracion.

public abstract class DayDate implements Comparable,
Serializable {
public static enum Month {
JANUARY (1),
FEBRUARY(2),
MARCH(3),
APRIL(4),
MAY(5),
JUNE(6),
JULY(7),
AUGUST(8),
SEPTEMBER(9),
OCTOBER(10),
NOVEMBER(11),
DECEMBER(12);

Month(int index) {
this.index = index;

}

public static Month make(int monthIndex) {
for (Month m : Month.values()) {
if (m.index == monthIndex)
return m;

}

throw new IllegalArgumentException(“Invalid month index ” + monthIndex);

}

public final int index;

}

Al cambiar MonthConstants por esta enumeracion se modifica la clase
DayDate y todos sus usuarios. Tardé una hora en realizar todos los cambios. Sin
embargo, las funciones que antes aceptaban un valor int para el mes, ahora
aceptan un enumerador Month. Esto significa que podemos deshacernos del
método isvalidMonthCode (linea 326) y de la comprobacion de errores del
codigo de los meses como en monthCodeToQuarter (linea 356) [G5]. Tras ello,
en la linea 91, tenemos serialVersionUID. Esta variable se usa para controlar el
sefializador. Si la cambiamos, con lo que todos los elementos DayDate escritos
con una version antigua del software seran ilegibles y se generara
InvalidClassException. Si no declara la variable serialversionuUID, el
compilador genera una automaticamente y sera diferente cada vez que modifique
el modulo. Ya sé que todos los documentos recomiendan el control manual de
esta variable, pero creo que el control automatico de la sefializacién es mas
seguro [G4]. Después de todo, prefiero depurar una InvalidClassException
que el extrafio comportamiento que se produciria si me olvido de cambiar
serialVersionUID. Por ello, eliminaré la variable, al menos por ahora™”.

Creo que el comentario de la linea 93 es redundante. Los comentarios
redundantes solo sirven para acumular mentiras y desinformacion [C2]. Por ello
los eliminareé.

Los comentarios de las lineas 97 y 100 hablan sobre niimeros de serie, que
ya hemos mencionado antes [C1]. Las variables que describen son la primera y
ultima fecha posible que DayDate puede describir. Podriamos hacer que fuera
mas claro [N1].

public static final int EARLIEST_DATE_ORDINAL = 2; // 1/1/1900
public static final int LATEST_DATE_ORDINAL = 2958465; // 12/31/9999

Desconozco por qué EARLIEST DATE_ORDINAL es 2 en lugar de 0. El
comentario de la linea 829 sugiere que tiene que ver con la forma de representar
fechas en Microsoft Excel. Hay informacion mucho mas completa en una
variante de DayDate: SpreadsheetDate (véase el Listado B-5). El comentario de
la linea 71 describe este problema.

El problema parece relacionado con la implementacion de
SpreadsheetDate 'y no con DayDate. Mi conclusibn es que
EARLIEST_DATE_ORDINAL y LATEST_DATE_ORDINAL no pertenecen a DayDate y
deberian cambiarse a SpreadsheetbDate [G6].

De hecho, una busqueda en el codigo demuestra que estas variables solo se
usan en SpreadsheetDate. Ni en DayDate, ni en otras clases de la estructura
JCommon. Por lo tanto, las cambio por SpreadsheetDate.

Las siguientes variables, MINIMUM_YEAR_SUPPORTED y
MAXIMUM_YEAR_SUPPORTED (lineas 104 y 107), constituyen un dilema. Parece
evidente que si DayDate es una clase abstracta que no dice nada sobre
implementacion, no deberia informarnos de un afio minimo o maximo. De
nuevo, siento la necesidad de cambiar las variables a SpreadsheetbDate [G6].
Pero una busqueda rapida de los usuarios de estas variables muestra que otra
clase las utiliza: RelativeDayOfWeekRule (véase el Listado B-6), Vemos dicho
uso en las lineas 177 y 178, en la funcion getDate, donde se usan para
comprobar que el argumento de getDate sea un afio valido. El dilema es que un
usuario de una clase abstracta necesita informacion sobre su implementacion.

Tendremos que proporcionar esta informacion sin contaminar DayDate. Por
lo general, obtendriamos la informacion de implementaciéon de una instancia de
una variante. Sin embargo, la funcion getDate no recibe una instancia de
DayDate, aunque si la devuelve, lo que significa que debe crearla en alguna
parte. La solucion esta en las lineas 187-205. La instancia DayDate se crea por
medio de una de estas tres funciones: getPreviousDayOfWeek,
getNearestDayOfWeek 0 getFollowingDayOfWeek. Si nos fijamos en el listado
DayDate, vemos que estas funciones (lineas 638-724) devuelven una fecha
creada por addDays (linea 571), que invoca createInstance (linea 808), que
crea SpreadsheetDate [G7].

No es recomendable que las clases base conozcan sus variantes. Para

corregirlo, debemos usar el patrén de factoria abstracta” 'y crear
DayDateFactory. Esta factoria creara las instancias de DayDate que necesitamos
y también respondera a preguntas sobre la implementacion, como las fechas
maxima y minima.

public abstract class DayDateFactory {
private static DayDateFactory factory = new SpreadsheetDateFactory();
public static void set Instance(DayDateFactory factory) {
DayDateFactory.factory = factory;
}

protected abstract DayDate _makeDate(int ordinal);

protected abstract DayDate _makeDate(int day, DayDate.Month month, int year);
protected abstract DayDate _makeDate(int day, int month, int year);
protected abstract DayDate _makeDate(java.util.Date date);

protected abstract int _getMinimumYear();

protected abstract int _getMaximumYear();

public static DayDate makeDate(int ordinal) {
return factory._makeDate(ordinal);

}

public static DayDate makeDate(int day, DayDate.Month month, int year) {
return factory._makeDate(day, month, year);

}

public static DayDate makeDate(int day, int month, int year) {
return factory._makeDate(day, month, year);

}

public static DayDate makeDate(java.util.Date date) {
return factory._makeDate(date);

}

public static int getMinimumYear () {
return factory._getMinimumYear();

}

public static int getMaximumYear () {
return factory._getMaximumYear();
}
}

Esta clase de factoria sustituye los métodos createInstance por métodos
makeDate, lo que mejora ligeramente los nombres [N1]. De forma
predeterminada es SpreadsheetDateFactory pero se puede cambiar por otra
factoria. Los métodos estaticos delegados en métodos abstractos usan una
combinaciéon de los patrones de instancia unica™, decorador™ vy factoria
abstracta que considero muy util. SpreadsheetDateFactory tiene este aspecto:
e ublic baybate makebate(int ordinal) ¢

return new SpreadsheetDate(ordinal);

}

public DayDate _makeDate(int day, DayDate.Month month, int year) {
return new SpreadsheetDate(day, month, year);

}

public DayDate _makeDate(int day, int month, int year) {
return new SpreadsheetDate(day, month, year);

}

public DayDate _makeDate(Date date) {
final GregorianCalendar calendar = new GregorianCalendar();
calendar.setTime(date);
return new SpreadsheetDate(
calendar.get(Calendar.DATE),
DayDate.Month.make(calendar.get(Calendar .MONTH) + 1),
calendar.get(Calendar.YEAR));
}

protected int _getMinimumYear() {
return SpreadsheetDate.MINIMUM_YEAR_SUPPORTED;
}

protected int _getMaximumYear() {
return SpreadsheetDate.MAXIMUM_YEAR_SUPPORTED;
}

Como puede apreciar, hemos enviado las variables
MINIMUM_YEAR_SUPPORTED y MAXIMUM_YEAR_SUPPORTED a SpreadsheetDate,
donde pertenecen [G6].

El siguiente problema de DayDate son las constantes de dias, comenzando
en la linea 109. Deberian ser otra enumeracion [J3]. Ya hemos visto este patron,
de modo que no lo repetiremos. Se incluye en los listados definitivos.

Seguidamente, vemos una serie de tablas que comienzan en
LAST_DAY_OF_MONTH (linea 140). El primer problema con estas tablas es que los
comentarios que las describen son redundantes [C3]. Basta con sus nombres, de
modo que eliminamos los comentarios.

No hay motivos para que la tabla no sea privada [G8], ya que existe una
funcion estatica lastbayOfMonth que proporciona los mismos datos.

La siguiente tabla, AGGREGATE_DAYS_TO_END_OF_MONTH, es mas misteriosa,
ya que no se usa en ninguna parte de la estructura JCommon [G9], de modo que

la elimino.

Lo mismo sucede con LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.

La siguiente tabla, AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH, sOlo se
usa en SpreadsheetDate (lineas 434 y 473), lo que me hace dudar si transferirla
a SpreadsheetDate. La razon de no cambiarla es que la tabla no es especifica de
ninguna implementacién concreta [G6]. Por otra parte, solo existe la
implementacion SpreadsheetDate, de modo que la tabla debe acercarse a donde
se vaya a usar [G10], Para zanjar la duda y ser coherentes [G11], deberiamos
privatizar la tabla y mostrarla a través de wuna funcion como
julianDateOfLastDayOfMonth. Pero nadie parece que la necesita. Es mas, la
tabla se puede cambiar a DayDate si una nueva implementacién de DayDate la
necesita. Asi que la cambiamos.

Lo mismo sucede con LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.

Tras ello, vemos tres grupos de constantes que se pueden convertir en
enumeraciones (lineas 162-205). La primera selecciona una semana de un mes.
La transformo en la enumeracion weekInMonth.

public enum WeekInMonth {
FIRST(1), SECOND(2), THIRD(3), FOURTH(4), LAST(@);
public final int index;

WeekInMonth(int index) {
this.index = index;

}

El segundo grupo de constantes (lineas 177-187) es mas complicado. Las
constantes INCLUDE_NONE, INCLUDE_FIRST, INCLUDE_SECOND e INCLUDE_BOTH
se usan para describir si las fechas finales de un intervalo deben incluirse en el
mismo. Matematicamente, se describe como intervalo abierto, intervalo a medio
abrir e intervalo cerrado. Creo que resulta mas claro con la nomenclatura
matematica [N3], de modo que lo cambio por la enumeracion DateInterval con
los enumeradores CLOSED, CLOSED_LEFT, CLOSED_RIGHTy OPEN.

El tercer grupo de constantes (lineas 18-205) describen si la busqueda de un
dia concreto de la semana devuelve la tultima instancia, la siguiente o la mas
proxima. Decidir un nombre adecuado es complicado. Al final, opté por
weekdayRange con los enumeradores LAST, NEXT y NEAREST.

Puede que no esté de acuerdo con los nombres elegidos. Para mi tienen
sentido. Lo importante es que ahora son mas faciles de cambiar [J3]. Ya no se
pasan como enteros, sino como simbolos. Puedo usar la funcion de cambio de
nombre de mi IDE para cambiar los nombres o los tipos sin preocuparme de
haberme olvidado de un -1 o un 2 en alguna parte del codigo o de que la
declaracion de un argumento int no estén bien descrita.

El campo de descripcién de la linea 208 no parece que se use en ninguna

parte. Lo elimino junto a sus elementos de acceso y mutacion [G9]. También
elimino el constructor predeterminado de la linea 213 [G12]. El compilador se
encargara de generarlo.

Podemos ignorar el método isvalidweekdayCode (lineas 216-238) ya que
lo eliminamos al crear la enumeracién Day.

Llegamos al método stringToweekdayCode (lineas 242-270). Los Javadoc
que no suponen demasiado para la firma del método sobran [C3], [G12]. El
unico valor de este Javadoc es la descripcion del valor devuelto -1. Sin embargo,
como cambiamos a la enumeracion Day, el comentario es en realidad incorrecto
[C2]. Ahora el método genera IllegalArgumentException. Por ello,
eliminamos el Javadoc.

También elimino las palabras clave final de argumentos y declaraciones
de variables, ya que no parecen servir de mucho [G12]. La eliminacién de final
no goza de gran aceptacion. Por ejemplo, Robert Simmons"* recomienda «...
diseminar final por la totalidad del cédigo». No estoy de acuerdo. Creo que
existen casos para usar final, por ejemplo como constante ocasional, pero en
general, esta palabra clave apenas afiade valor y suele ser un estorbo. Puede que
lo piense porque el tipo de errores que puede capturar final ya se capturan en
las pruebas de unidad que he creado.

Las instrucciones if duplicadas [G5] del bucle for (lineas 259 y 263) son
irrelevantes, de modo que las conecté en una unica instruccién if con el
operador | |. También usé la enumeracion Day para dirigir el bucle for y realicé
otros cambios estéticos.

Este método no pertenece realmente a DayDate. En realidad es la funcion de
analisis de Day. Por lo tanto, lo cambié a la enumeracién Day, lo que hizo que
aumentara considerablemente de tamafio. Como el concepto de Day no depende
de DayDate, extraje la enumeracion Day de la clase DayDate a un archivo propio
[G13].

También cambié la siguiente funcion, weekdayCodeToString (lineas 272-
286) a la enumeracion Day y le asigné el nombre toString.

public enum Day {
MONDAY (Calendar .MONDAY),
TUESDAY (Calendar . TUESDAY),
WEDNESDAY (Calendar .WEDNESDAY),
THURSDAY (Calendar . THURSDAY),
FRIDAY(Calendar.FRIDAY),
SATURDAY (Calendar .SATURDAY),
SUNDAY (Calendar .SUNDAY) ;

public final int index;
private static DateFormatSymbols dateSymbols = new DateFormatSymbols();

Day(int day) {
index = day;

}

public static Day make(int index) throws IllegalArgumentException {
for (Day d : Day.values())

if (d.index == index)
return d;
throw new IllegalArgumentException(
String.format(“Illegal day index: %d.”, index));
}

public static Day parse(String s) throws IllegalArgumentException {
String[] shortwWeekdayNames =
dateSymbols.getShortwWeekdays();
String[] weekDayNames =
dateSymbols.getWeekdays();

s = s.trim();
for (Day day : Day.values()) {
if (s.equalsIgnoreCase(shortWeekdayNames[day.index]) ||
s.equalsIgnoreCase(weekDayNames[day.index])) {
return day;
}
}
throw new IllegalArgumentException(
String.format(“%s is not a valid weekday string”, s));

}

public String toString() {
return dateSymbols.getWeekdays()[index];
}

Hay dos funciones getMonths (lineas 288-316). La primera invoca la
segunda. La segunda solamente se invoca desde la primera. Por ello, las he
combinado en una y las he simplificado considerablemente [G9], [G12], [F4].
Por tltimo, he cambiado el nombre por otro mas descriptivo [IN1].

public static String[] getMonthNames() {
return dateFormatSymbols.getMonths();
}

La funcién isvalidMonthCode (lineas 326-346) es ahora irrelevante gracias
a la enumeracién Month, de modo que la elimino [G9].

La funcion monthCodeToQuarter (lineas 356-375) parece sufrir envidia de
las caracteristicas™ [G14] y seguramente pertenezca a la enumeracion Month
como método quarter, motivo por el que la sustituyo.

public int quarter() {
return 1 + (index-1)/3;

}

De este modo, la enumeracion Month tiene tamafio suficiente como para
estar en una clase propia. La extraigo de DayDate para mantener la coherencia
con la enumeracion pay [G11], [G13].

Los dos siguientes métodos tienen el nombre monthCodeToString (lineas
377-426). Vemos de nuevo que uno invoca al otro con un indicador. No es
recomendable pasar un indicador como argumento de una funcion, en especial si
dicho indicador sélo selecciona el formato del resultado [G15]. Por tanto,
cambio de nombre, simplifico y reestructuro estas funciones y las incluyo en la
enumeracion Month [N1], [N3], [C3], [G14].

public String toString() {
return dateFormatSymbols.getMonths()[index - 1];
}

public String toShortString() {
return dateFormatSymbols.getShortMonths()[index - 1];
}

El siguiente método es stringToMonthCode (lineas 428-472). Lo cambio de
nombre, lo paso a la enumeracion Month y lo simplifico [N1], [N3], [C3], [G14],
[G12].

public static Month parse(String s) {
s = s.trim();
for (Month m : Month.values())
if (m.matches(s))
return m;
try {
return make(Integer.parselInt(s));
}
catch (NumberFormatException e) {}
throw new IllegalArgumentException(“Invalid month ” + s);

}

private boolean matches(String a) {
return s.equalsIgnoreCase(toString()) ||
s.equalsIgnoreCase(toShortString());
}

El método isLeapYear (lineas 495-517) se puede modificar para que sea
mas expresivo [G16].

public static boolean isLeapYear(int year) {
boolean fourth = year % 4 == 0;
boolean hundredth = year % 100 == 0;
boolean fourHundredth = year % 400 == 0;
return fourth && ('hundredth || fourHundredth)
}

La siguiente funcion, leapYearCount (lineas 519-536) no pertenece
realmente a DayDate. Nadie la invoca, excepto los dos métodos de
SpreadsheetDate, de modo que la desplazo hacia abajo [G6].

La funciébn lastbDayofMonth (lineas 538-560) wusa la matriz
LAST_DAY_OF_MONTH, que en realidad pertenece a la enumeracion Month [G17],
por lo que la cambio de ubicacion. También simplifico la funcién y aumento su
expresividad [G16].

public static int lastDayOfMonth(Month month, int year) {
if (month == Month.FEBRUARY && isLeapYear(year))
return month.lastDay() + 1;
else
return month.lastDay();

Ahora empieza a ponerse interesante. La siguiente funcion es addbDays
(lineas 562-576). En primer lugar, como opera en las variables de DayDate, no
deberia ser estatica [G18]. La cambio por un método de instancia. Por otra parte,
invoca la funcion toSerial, cuyo nombre deberiamos cambiar por toOrdinal
[N1]. Por ultimo, el método se puede simplificar.

public DayDate addDays(int days) {
return DayDateFactory.makeDate(toOrdinal() + days);

}

Lo mismo sucede con addMonths (lineas 578-602). Deberia ser un método
de instancia [G18]. El algoritmo es un tanto complicado, de modo que recurro a
la explicacion de variables temporales"™ [G19] para que sea mas transparente.
También cambio el nombre del método getYYY por getYear [N1].

public DayDate addMonths(int months) {
int thisMonthAsOrdinal = 12 * getYear() + getMonth().index - 1;

int resultMonthAsOrdinal = thisMonthAsOrdinal + months;

int resultYear = resultMonthAsOrdinal / 12;

Month resultMonth = Month.make(resultMonthAsOrdinal % 12 + 1);

int lastDayOfResultMonth = lastDayOfMonth(resultMonth, resultYear);
int resultDay = Math.min(getDayOfMonth(), lastDayOfResultMonth);
return DayDateFactory.makeDate(resultDay, resultMonth, resultYear);

La funcién addYears (lineas 604-626) es similar al resto.

public DayDate plusYears(int years) {
int resultYear = getYear() + years;
int lastDayOfMonthInResultYear = lastDayOfMonth(getMonth(), resultYear);
int resultDay = Math.min(getDayOfMonth(), lastDayOfMonthInResultYear);
return DayDateFactory.makeDate(resultDay, getMonth(), resultYear)

Hay algo que me preocupa sobre el cambio de estos métodos de estaticos a
métodos de instancia. ¢L.a expresion date.addDays(5) aclara que el objeto date
no cambia y que se devuelve una nueva instancia de DayDate 0O se supone,
equivocadamente, que se afiaden cinco dias al objeto date? Pensara que no es un
gran problema, pero un fragmento de codigo como el siguiente puede ser muy
engafioso [G20].

DayDate date = DateFactory.makeDate(5, Month.DECEMBER, 1952);
date.addDays(7); // desplazar la fecha una semana

Un lector de este codigo podria aceptar que addbDays cambia el objeto date,
de modo que necesitamos un nombre que acabe con la ambigiiedad [N4]:
plusDays y plusMonths. Creo que la intencion del método se captura
correctamente por medio de veypate date = o1avate. prusvays(s);

mientras que el siguiente no transmite con fluidez al lector que el objeto
date ha cambiado:

date.plusDays(5);

Los algoritmos son cada vez mas interesantes. getPreviousDayOfWeek
(lineas 628-660) funciona pero es complicado. Tras meditar en lo que sucedia
[G21], pude simplificarlo y aplicar la explicacion de variables temporales [G19]
para aclarar su significado. También lo cambié de método estatico a método de
instancia [G18] y me deshice del método de instancia duplicado [G5] (lineas
997-1008).

public DayDate getPreviousDayOfWeek(Day targetDayOfwWeek) {
int offsetToTarget = targetDayOfWeek.index = getDayOfWeek().index;
if (offsetToTarget >= 0)
offsetToTarget - 7;
return plusDays(offsetToTarget);
}

Sucede exactamente lo mismo con getFollowingDayOfWeek (lineas 662-
693).

public DayDate getFollowingDayOfWeek(Day targetDayOfWeek) {
int offsetToTarget = targetDayOfWeek.index - getDayOfWeek().index;
if (offsetToTarget <= 0)
offsetToTarget += 7;
return plusDays(offsetToTarget);
}

La siguiente funcion es getNearestDayOfwWeek (lineas 695-726), que

corregimos en un apartado anterior. Pero esos cambios no son coherentes con el
patron actual de las dos ultimas funciones [G11]. Por ello, recurro a la
explicacion de variables temporales [G19] para aclarar el algoritmo.

public DayDate getNearestDayOfWeek(final Day targetDay) {
int offsetToThisWeeksTarget = targetDay.index - getDayOfWeek().index;
int offsetToFutureTarget = (offsetToThisWeeksTarget + 7) % 7;
int offsetToPreviousTarget = offsetToFutureTarget - 7;

if (offsetToFutureTarget > 3)

return plusDays(offsetToPreviousTarget);
else

return plusDays(offsetToFutureTarget);

El método getEndofcurrentMonth (lineas 728-740) es un tanto extrafio ya
que es un método de instancia que envidia [G14] a su propia clase aceptado un
argumento DayDate. Lo convierto en un verdadero método de instancia y
clarifico algunos de los nombres.

public DayDate getEndOfMonth() {
Month month = getMonth();
int year = getYear();
int lastDay = lastDayOfMonth(month, year);
return DayDateFactory.makeDate(lastDay, month, year);

}

La refactorizacion de weekInMonthToString (lineas 742-761) resulté ser
muy interesante. Mediante las herramientas de refactorizacion de mi IDE,
primero cambié el método a la enumeracion weekInMonth creada antes y después
cambié el nombre por toString. Tras ello, lo converti en método de instancia.
Todas las pruebas fueron correctas (;adivina hacia dénde nos dirigimos?).

Seguidamente, eliminé el método. Fallaron cinco afirmaciones (lineas 411-
415 del Listado B-4). Cambié estas lineas para usar los nombres de los
enumeradores (FIRST, SECOND, etc.). Las pruebas fueron correctas. ; Ve por qué?
¢Puede ver también por qué son necesarios estos pasos? La herramienta de
refactorizacion se encargd de que los invocadores anteriores de
weekInMonthToString invocaran ahora toString en el enumerador
weekInMonth ya que todos los enumeradores implementan toString para
devolver sus nombres...

Desafortunadamente, me pasé de listo. A pesar de la elegancia de la cadena
de refactorizacion, comprobé que los unicos usuarios de esta funcién eran las
pruebas que acababa de modificar, de modo que las eliminé. Asi pues, tras
determinar que solo las pruebas invocaban relativeToString (lineas 765-781),
eliminé directamente la funcién y sus pruebas.

Hemos llegado a los métodos abstractos de esta clase abstracta. Y el
primero es toSerial (lineas 838-844). En un apartado anterior cambié el nombre
por toOrdinal. Al verlo en este contexto, decidi que el cambio de nombre
deberia ser por getordinalbDay. El siguiente método abstracto es tobate (lineas
838-844). Convierte DayDate en java.util.Date. jPor qué es abstracto? Si

analizamos su implementacion en SpreadsheetDate (lineas 198-207 del Listado
B-5), vemos que no depende de la implementacion de esa clase [G6]. Por tanto,
lo desplazo hacia arriba.

Los métodos getYYYY, getMonth y getDayOfMonth son evidentemente
abstractos. Sin embargo, getDayOfweek deberia ascender desde
SpreadSheetDate ya que no depende de nada de lo que encontremos en DayDate
[G6]. ;O si?

Si se fija atentamente (linea 247 del Listado B-5), vera que el algoritmo
depende implicitamente del origen del dia ordinal (es decir, el dia de la semana
del dia 0). Por ello, aunque esta funcion carezca de dependencias fisicas que no
se puedan cambiar a DayDate, cuenta con una dependencia logica. Este tipo de
dependencias l6gicas me molestan [G22]. Si algo légico depende de la
implementacion, también deberia haber algo fisico. Ademas, me parece que el
propio algoritmo podria ser genérico y que deberia depender en menor medida
de la implementacion [G6]. Por tanto, creé un método abstracto en DayDate con
el nombre getDayOfWeekForOrdinalZero y lo implementé en SpreadsheetDate
para devolver Day.SATURDAY. Tras ello, envié el método getDayOfweek a
DayDate y lo cambié para que invocara getOrdinalDay y
getDayOfWeekForOrdinalZero.

public Day getDayOfweek() {
Day startingDay = getDayOfWeekForOrdinalZero();
int startingOffset = startingDay.index - Day.SUNDAY.index;

return Day.make((getOrdinalDay() + startingOffset) % 7 + 1);
}

Fijese en el comentario de las lineas 895-899. ; Necesitamos realmente esta
repeticion? Como de costumbre, eliminé este comentario junto a los demas.

El siguiente método es compare (lineas 902-913). De nuevo, es
incorrectamente abstracto [G6], por lo que cambio la implementacion a DayDate.
Ademas, el nombre no es descriptivo [N1]. En realidad, este método devuelve la
diferencia en dias desde el argumento, por lo que cambié el nombre por
daysSince. Tampoco existian pruebas para este método, de modo que las creé.

Las seis siguientes funciones (lineas 915-980) son métodos abstractos que
deben implementarse en DayDate, por lo que las extraje de SpreadsheetDate.

La ultima funcién, isInRange (lineas 982-995), también debe extraerse y
refactorizarse. La instruccién switch no es agradable [G23] y se puede
modificar si enviamos los casos a la enumeracion DateInterval.

public enum DateInterval {
OPEN {
public boolean isIn(int d, int left, int right) {
return d > left && d < right;
}

i
CLOSED_LEFT {
public boolean isIn(int d, int left, int right) {
return d >= left && d < right;
}
i

CLOSED_RIGHT {
public boolean isIn(int d, int left, int right) {
return d > left && d <= right;

}

i
CLOSED {
public boolean isIn(int d, int left, int right) {
return d >= left && d <= right;

}
3

public abstract boolean isIn(int d, int left, int right);

}

public boolean isInRange(DayDate d1, DayDate d2, DateInterval interval) {
int left = Math.min(d1.getOrdinalDay(), d2.getOrdinalDay());
int right = Math.max(d1.getOrdinalDay(), d2.getOrdinalDay());
return interval.isIn(getOrdinalDay(), left, right);

}

Con esto llegamos al final de bayDate. Realizaremos una nueva pasada por
la clase completa para comprobar como fluye. Primero, el comentario inicial esta
desfasado, de modo que lo reduzco y lo mejoro [C2].

Tras ello, desplazo las enumeraciones restantes a sus propios archivos
[G12].

Seguidamente, desplazo la variable estatica (dateFormatSymbols) y tres
métodos estaticos (getMonthNames, isLeapYear, lastDayOfMonth) a una nueva
clase con el nombre Dateutil [G6].

Cambio los métodos abstractos a una posicion superior, donde pertenecen
[G24].

Cambio Month.make por Month.fromInt [N1] y repito la operacion con las
demas enumeraciones. También creo un método de acceso toInt() para todas
las enumeraciones y convierto en privado el campo index.

Se produce una interesante duplicacion [G5] en plusYears y plusMonths
que consegui eliminar extrayendo un nuevo método con el nombre
correctLastDayOfMonth, lo que aclaraba el significado de los tres métodos.

Me deshice del numero magico 1 [G25] y lo sustitui por
Month.JANUARY.toInt() O Day.SUNDAY.toInt(), segin el caso. Me detuve en
limpiar los algoritmos de SpreadsheetDate. El resultado final se puede
comprobar en los listados B.7 a B.16.

El alcance del codigo en DayDate se ha reducido al 84.9 por 100, no porque
se pruebe una cantidad menor de funcionalidad, sino porque la clase se ha
reducido tanto que las lineas sin alcance tienen un peso mayor. Ahora, en
DayDate las pruebas se aplican a 45 de las 53 instrucciones ejecutables. Las
lineas sin alcance son tan triviales que no merece la pena probarlas.

Conclusion

Otra vez hemos aplicado la Regla del Boy Scout. Hemos entregado el codigo

mas limpio de lo que lo recibimos. Nos ha llevado tiempo, pero ha merecido la
pena. El alcance de las pruebas ha aumentado, hemos corregido algunos errores
y hemos aclarado y reducido el tamafio del codigo. La proxima persona que lo
lea seguramente lo encontrara mas facil de leer. Y probablemente esa persona
sea capaz de limpiarlo algo mas de lo que hemos hecho nosotros.

Bibliografia

e [GOF]: Design Patterns: Elements of Reusable Object Oriented Software,
Gamma et al., Addison-Wesley, 1996.

e [Simmons04]: Hardcore Java, Robert Simmons, Jr., O’Reilly, 2004.

e [Refactoring]: Refactoring: Improving the Design of Existing Code, Martin
Fowler et al., Addison-Wesley, 1999.

o [Beck97]: Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall,
1997.

17
Sintomas y heuristica

e

e ;)
. D
"' g R

{ _,ﬂ-—'--"'--':"/_-: -,

En su magnifico libro Refactoring™, Martin Fowler identifica diversos sintomas
de codigo (Smells). La lista que mostramos a continuacion incluye muchos de
los sintomas de Martin y otros propios. También contiene otras perlas y
heuristica que suelo emplear en mi trabajo.

Para compilar esta lista he examinado diversos programas y los he
refactorizado. Al aplicar un cambio, me preguntaba el por qué y anotaba el
motivo. El resultado es una extensa lista de aspectos que no me «huelen» bien
cuando leo cédigo.

La lista se debe leer de arriba a abajo, y también se puede usar como
referencia.

Comentarios

C1: Informacion inapropiada

No es apropiado que un comentario contenga informacion que se pueda
almacenar en otro tipo de sistema como un sistema de control de cédigo fuente,
de seguimiento de problemas o de mantenimiento de registros. Los historiales de
cambios, por ejemplo, abarrotan los archivos de codigo con abundante texto sin
interés alguno. Por lo general, metadatos como autores, fechas de modificacion,
numeros SPR y similares no deben aparecer en los comentarios. Los comentarios
deben reservarse para notas técnicas sobre el codigo y el disefio.

C2: Comentario obsoleto

Un comentario anticuado, irrelevante e incorrecto es obsoleto. L.os comentarios
envejecen rapidamente. Es recomendable no escribir un comentario que vaya a
quedar obsoleto. Si detecta un comentario obsoleto, conviene actualizarlo o
eliminarlo lo antes posible. Los comentarios obsoletos tienden a alejarse del
codigo que describian. Se convierten en islas de irrelevancia y desorientacion en
el codigo.

C3: Comentario redundante

Un comentario es redundante si describe algo que ya se define correctamente por
si mismo. Por ejemplo:

i++; // incrementar i

Otro ejemplo es un Javadoc que no dice mas (o incluso menos) que la firma
de una funcion:

Jrx

* @param sellRequest

* @return

* @throws ManagedComponentException

*/

public SellResponse beginSellItem(SellRequest sellRequest)
throws ManagedComponentException

Los comentarios deben comunicar lo que el cédigo no pueda expresar por si
mismo.

C4: Comentario mal escrito

Un comentario que merezca la pena escribir merece la pena ser leido. Si piensa
escribir un comentario, asegurese de que es el mejor que puede crear. Elija las
palabras con atencion. Use gramatica y puntuacion correctas. No divague. No
afirme lo evidente. Sea breve.

C5: Codigo comentado

Me molesta ver grandes fragmentos de codigo comentado. ¢Quién sabe qué
antigiiedad tienen? ;Quién sabe si tiene sentido o no? Pero nadie lo borra porque
piensa que alguien mas lo necesita.

Ese cbédigo se estanca y se corrompe, y cada dia que pasa es menos
relevante. Invoca funciones que ya no existen. Usa variables cuyos nombres han
cambiado. Se rige por convenciones obsoletas. Contamina los modulos en los
que aparece y distrae a los usuarios que lo leen. El cédigo comentado es una
aberracion.

Cuando vea cdédigo comentado, eliminelo. No se preocupe, el sistema de
control de codigo fuente lo recordara. Si alguien lo necesita, puede consultar una
version anterior. No sufra el cédigo comentado para sobrevivir.

Entorno

E1: La generacion requiere mas de un paso

La generacion de un proyecto deberia ser una operacion sencilla. No deberia
tener que comprobar demasiados elementos del control de cédigo fuente. No
deberia necesitar una secuencia de antiguos comandos ni secuencias de
comandos dependientes del contexto para generar cada elemento. No deberia
tener que buscar los distintos archivos JAR, XML y similares necesarios para el
sistema. Deberia finalizar el sistema con un sencillo comando y después ejecutar
otro igual de sencillo para generarlo.

svn get mySystem
cd mySystem
ant all

E2: Las pruebas requieren mas de un paso

Deberia poder ejecutar todas las pruebas de unidad con un solo comando. En el
mejor de los casos, deberia poder ejecutarlas pulsando un botén de su IDE. En el
peor, deberia poder ejecutar un unico comando en una linea de comandos. La
capacidad de ejecutar todas las pruebas es tan importante que debe ser algo
rapido, sencillo y obvio.

Funciones

F1: Demasiados argumentos

Las funciones deben tener un nimero reducido de argumentos. L.o mejor es que
no tengan, seguido de uno, dos y tres argumentos. Mas de tres ya es cuestionable
y deberia evitarse (véase el capitulo 3).

F2: Argumentos de salida

Los argumentos de salida son ilégicos. El lector espera que los argumentos sean
entradas, no salidas. Si su funcion tiene que cambiar el estado de algo, haga que
cambie el estado del objeto en el que se invoca (véase el capitulo 3).

F3: Argumentos de indicador

Los argumentos booleanos declaran abiertamente que la funcion hace mas de
una cosa. Resultan confusos y deben eliminarse (véase el capitulo 3).

F4: Funcion muerta

Los métodos que nunca se invocan deben descartarse. La presencia de codigo
muerto es innecesaria. No tema eliminar la funcion. Su sistema de control de
codigo fuente la recordara.

General

G1: Varios lenguajes en un archivo de codigo

Los modernos entornos de programaciéon actuales permiten incluir varios
lenguajes diferentes en el mismo archivo de codigo. Por ejemplo, un archivo de
Java puede contener fragmentos de XML, HTML, YAML, JavaDoc, JavaScript,
y similares. Ademas de HTML, un archivo JSP podria incluir Java, sintaxis de
biblioteca de etiquetas, comentarios en espafiol, Javadoc, XML, JavaScript, etc.
Resulta confuso en el mejor de los casos y un desastre en el peor.

Lo ideal seria que el archivo de cédigo incluyera un solo lenguaje pero, en
realidad, seguramente tendremos que usar mas de uno. Debemos intentar
minimizar la cantidad y el alcance de los lenguajes adicionales en nuestros
archivos de codigo.

G2: Comportamiento evidente no implementado

De acuerdo al Principio de la Minima Sorpresa”, una funcion o clase debe
implementar los comportamientos que otro programador esperaria. Por ejemplo,
imagine una funcion que traduce el nombre de un dia en una enumeracion que
represente dicho dia.

Day day = DayDate.StringToDay(String dayName);

Esperariamos que la cadena «Monday» se tradujera en Day.MONDAY.
También esperariamos la traduccion de las abreviaturas habituales y que la
funcion ignorara mayusculas y minusculas.

Cuando un comportamiento obvio no se implementa, los lectores y usuarios
del codigo ya no dependen de su intuicion sobre los nombres de las funciones.
Pierden su confianza en el autor original y se ven obligados a leer los detalles del
codigo.

G3: Comportamiento incorrecto en los limites

Parece evidente afirmar que el cédigo debe comportarse de forma correcta. El
problema es que no nos damos cuenta de lo complicado que es dicho
comportamiento correcto. Los programadores suelen crear funciones que
esperan que funcionen y confian en su intuicion mas que en comprobar que el
codigo funciona en todos los casos de limites.

No existe sustituto para la meticulosidad. Las condiciones de limite, los
casos extremos, las excepciones, representan algo que puede confundir a un
algoritmo elegante e intuitivo. No dependa de su intuicion. Busque todas las
condiciones de limite y cree pruebas para cada una.

G4: Medidas de seguridad canceladas

Chernobyl se derritio porque el director de la central ignor6 todos y cada uno de
los mecanismos de seguridad. Impedian que se realizara un experimento. El
resultado fue que el experimento no sali6 bien y el mundo fue testigo de la
primera gran catastrofe nuclear para la poblacion.

Anular las medidas de seguridad es un riesgo. Puede que sea necesario
ejercer el control manual sobre serialversionUID pero siempre es arriesgado.
La desactivacion de determinadas advertencias del compilador (o de todas)
puede ayudarle a conseguir la generacion, pero corre el riesgo de sufrir
interminables sesiones de depuracion. Desactivar las pruebas que fallan y
convencerse de que conseguira que después sean satisfactorias es tan erroneo
como pensar que sus tarjetas de crédito son dinero gratuito.

G5: Duplicacion

Una de las reglas mas importantes del libro y que debe tomarse muy en serio. La
practica totalidad de los autores que escriben sobre disefio de software
mencionan esta regla. Dave Thomas y Andy Hunt la denominaron principio
DRY"™ (Don't Repeat Yourself, No repetirse). Kent Beck la convirtié en uno de
los principios fundamentales de la programacion Extreme y la denominé «Una
sola vez». Ron Jeffries sitia esta regla en segunda posicion, por debajo de la
consecucion satisfactoria de todas las pruebas.

Siempre que vea duplicados en el codigo, indican una oportunidad de
abstraccion fallida. La duplicacion podria convertirse en una subrutina o en otra
clase. Al incluir la duplicaciéon en una abstraccion, aumenta el vocabulario del
lenguaje del disefio. Otros programadores pueden usar sus creaciones abstractas.
El codigo se vuelve mas rapido y menos proclive a errores ya que ha aumentado
el nivel de abstraccion.

El caso mas evidente de duplicacion es la presencia de fragmentos de
codigo idéntico que parecen pegados repetidamente por el programador, sin
sentido. Conviene reemplazarlos por métodos simples.

Una forma mas sutil es la cadena switch/case o if/else que aparece
repetidamente en diversos modulos y que siempre prueba las mismas
condiciones. Conviene reemplazar estas cadenas por polimorfismo.

Y mas sutiles todavia son los médulos con algoritmos similares pero que no
comparten las mismas lineas de codigo. Sigue siendo duplicacion y debe

corregirse por medio del patron de método de plantilla"™ o estrategia™™.

En realidad, la mayoria de patrones de disefio aparecidos en los ultimos 15
afios son formas de eliminar la duplicacion. Las Formas normales de Codd
también son una estrategia para eliminar la duplicacion en esquemas de base de
datos. Incluso la programacion orientada a objetos es una estrategia para
organizar modulos y eliminar la duplicacion. No deberia sorprenderle, ya que se
trata de programacion estructurada. Creo que el objetivo es evidente: localice los
elementos duplicados y eliminelos siempre que pueda.

G6: Cadigo en un nivel de abstraccion incorrecto

Es importante crear abstracciones que separen conceptos generales de nivel
superior de conceptos detallados de nivel inferior. Para ello, en ocasiones
creamos clases abstractas que contengan los conceptos de nivel superior y
variantes los de nivel inferior. Si lo hacemos, debemos asegurarnos de que la
separacion sea completa. Todos los conceptos de nivel inferior deben estar en las
variantes y los de nivel superior en la clase base.

Por ejemplo, constantes, variables o funciones de utilidad que solamente
pertenezcan a la implementacion detallada no deben aparecer en la clase base. La
clase base no debe saber nada al respecto de estos elementos.

Esta regla también se aplica a archivos fuente, componentes y médulos. El
disefio correcto de software requiere la separacién de conceptos en distintos
niveles y su inclusion en contenedores diferentes. En ocasiones, dichos
contenedores son clases base o variantes, y en otros casos son archivos fuente,
modulos o componentes. Independientemente del caso, la separacion debe ser
completa. No queremos que conceptos de nivel inferior y superior se mezclen.

Fijese en este codigo:

public interface Stack {
Object pop() throws EmptyException;
void push(Object o) throws FullException;
double percentFull();
class EmptyException extends Exception {}
class FullException extends Exception {}

La funciéon percentFull se encuentra en el nivel de abstraccion
equivocado. Aunque hay implementaciones de Stack en las que el concepto de
amplitud es razonable, otras no pueden conocer su nivel de amplitud. Por tanto,
la funcién deberia incluirse en una interfaz derivada como BoundedStack.

Pensara que la implementacion podria devolver cero si la pila no tuviera
limites. El problema es que no existen pilas totalmente sin limites. No se puede
evitar outoOfMemoryException mediante la comprobacion de

stack.percentFull() < 50.0.

La implementacion de esta funcion para que devuelva 0 seria una mentira.

La moraleja es que no puede mentir o escapar de una abstraccién mal
ubicada. El aislamiento de abstracciones es una de las operaciones mas
complicadas para los desarrolladores de software y no se puede corregir cuando
se realiza de forma incorrecta.

G7: Clases base que dependen de sus variantes

El motivo mas habitual para dividir conceptos en clases base y derivadas es para
que los conceptos de nivel superior de la clase base sean independientes de los
de nivel inferior de las derivadas. Por ello, cuando vemos clases base que
mencionan los nombres de sus variantes, se intuye un problema. Por lo general,
las clases base no deben saber nada sobre su derivadas.

Evidentemente, hay excepciones. En ocasiones, el nimero de variantes es
fijo y la clase base tiene codigo que elegir entre las variantes. Es muy habitual en
implementaciones de equipos con estado finito. Sin embargo, en ese caso las
variantes y la clase base estan intimamente unidas y siempre se implementan en
el mismo archivo jar. En el caso general, deben implementarse en archivos
independientes.

Al implementar variantes y clases base en archivos diferentes y garantizar
que los archivos de la clase base desconocen el contenido de los archivos de las
variantes podemos implementar nuestros sistemas en componentes discretos e
independientes. Al modificar dichos componentes, se pueden volver a
implementar sin necesidad de implementar de nuevo los componentes base. De
este modo se reduce significativamente el impacto del cambio y se facilita el
mantenimiento de los sistemas.

G8: Exceso de informacion

Los modulos bien definidos tienen interfaces reducidas que nos permiten hacer
mucho con poco. Los mddulos definidos de forma incorrecta tienen interfaces
mas amplias que nos obligan a usar distintos gestos para realizar operaciones
sencillas. Una interfaz bien definida no ofrece demasiadas funciones y las
conexiones son reducidas. Una interfaz definida de forma incorrecta ofrece
multitud de funciones que invocar y, por tanto, las conexiones son elevadas. Los
buenos programadores de software aprenden a limitar la parte de sus clases y
modulos que muestran en sus interfaces. Cuantos menos métodos tenga una
clase, mejor. Cuantas menos variables conozca una funcion, mejor. Cuantas
menos variables de instancia tenga una clase, mejor.

Oculte sus datos. Oculte sus funciones de utilidad. Oculte sus constantes y
elementos temporales. No cree clases con multitud de métodos y variables de
instancia. No cree multitud de variables y funciones protegidas para sus
subclases. Concéntrese en crear interfaces concisas y de tamafio reducido. Limite

la informacion para reducir las conexiones.

G9: Caodigo muerto

El codigo muerto es el que no se ejecuta. Se encuentra en el cuerpo de una
instruccion if que comprueba una condicién que no sucede. Se encuentra en el
bloque catch de una instruccion try que carece de throws. Se encuentra en
pequefios métodos de utilidad que nunca se invocan o en condiciones
switch/case inexistentes.

El problema del codigo muerto es que con el tiempo empieza a oler. Cuanto
mas antiguo es, mas profundo el hedor que despide. Se debe a que el codigo
muerto no se actualiza al cambiar los disefios. Sigue compildndose pero no se
rige por nuevas convenciones o reglas. Se cre6 en un momento en el que el
sistema era diferente. Debe tener un entierro digno. Borrelo del sistema.

G10: Separacion vertical

Variables y funciones deben definirse cerca de donde se utilicen. Las variables
locales deben declararse por encima de su primer uso y deben tener un reducido
ambito vertical. No deben declararse a cientos de lineas de distancia de su uso.

Las funciones privadas deben definirse justo debajo de su primer uso.
Pertenecen al ambito de la clase completa pero conviene limitar la distancia
vertical entre las invocaciones y las definiciones. Para localizar una funcion
privada debe bastar con buscar debajo de su primer uso.

G11: Incoherencia

Si hace algo de una forma concreta, aplique la misma técnica a operaciones
similares. Esto entronca con el principio de minima sorpresa. Preste atencion a
las convenciones que elija y, una vez elegidas, asegurese de mantenerlas. Si en
una funcion concreta wusa la variable response para almacenar
HttpServletResponse, use el mismo nombre de variable en las demas funciones
que usen objetos HttpServletResponse. Si asigna el nombre
processVerificationRequest a un método, use un nombre similar, como
processDeletionRequest, para los métodos que procesen otros tipos de
solicitudes.

Este tipo de coherencia, si se aplica repetidamente, facilita la lectura y
modificacion del codigo.

G12: Desorden

¢Para qué sirve un constructor predeterminado sin implementacién? Unicamente
desordena el cédigo y lo inunda de elementos sin sentido. Variables sin usar,
funciones que nunca se invocan, comentarios que no afiaden informacién, etc.
Todos estos elementos sobran y deben eliminarse. Mantenga limpios sus
archivos, bien organizados y sin elementos sobrantes.

G13: Conexiones artificiales

Los elementos que no dependen unos de otros no deben conectarse de forma
artificial. Por ejemplo, las enumeraciones generales no deben incluirse en clases
mas especificas ya que esto obliga a la aplicacion a saber mas sobre dichas
clases. Lo mismo sucede con funciones static de proposito general declaradas
en clases especificas.

Por lo general, una conexion artificial es la que se establece entre dos
modulos sin un propésito directo. Es el resultado de incluir una variable,
constante o funcién en una ubicacion temporalmente tutil pero inadecuada. Es un
sintoma de falta de atencion.

Piense en donde debe declarar sus funciones, constantes y variables. No las
deje en el punto mas cémodo.

G14: Envidia de las caracteristicas

Uno de los sintomas de Martin Fowler"™®. Los métodos de una clase deben
interesarse por las variables y funciones de la clase a la que pertenecen, no por
las variables y funciones de otras clases. Cuando un método usa elementos de
acceso y mutacion de otro objeto para manipular los datos de éste, envidia el
ambito de la clase de dicho objeto. Desea formar parte de la otra clase para tener
acceso directo a las variables que manipula.

Por ejemplo:

public class HourlyPayCalculator {

public Money calculateweeklyPay(HourlyEmployee e) {
int tenthRate = e.getTenthRate().getPennies();
int tenthsWorked = e.getTenthsWorked();
int straightTime = Math.min(400, tenthsWorked);
int overTime = Math.max(0, tenthsworked - straightTime);
int straightPay = straightTime * tenthRate;
int overtimePay = (int)Math.round(overTime*tenthRate*1.5);
return new Money(straightPay + overtimePay);

}

El método calculateweeklyPay se acerca al objeto HourlyEmployee para
obtener los datos sobre los que opera. El método calculateweeklyPay envidia el
ambito de HourlyEmployee. Su deseo es formar parte de HourlyEmployee.

Es recomendable suprimir la envidia de caracteristicas ya que muestra los
detalles internos de una clase a otra. Sin embargo, en ocasiones es un mal
necesario. Fijese en lo siguiente:

public class HourlyEmployeeReport {
private HourlyEmployee employee;

public HourlyEmployeeReport(HourlyEmployee e) {

this.employee = e;

}

String reportHours() {
return String.format(
“Name: %s\tHours:%d.%1d\n"”,
employee.getName(),
employee.getTenthsWorked()/10,
employee.getTenthsWorked()%10);
}

Evidentemente, el método reportHours envidia la clase HourlyEmployee.
Por otra parte, no queremos que HourlyEmployee tenga que conocer el formato
del informe. Al incluir la cadena de formato en la clase HourlyEmployee
incumpliriamos varios de los principios del disefio orientado a objetos".
Conectaria HourlyEmployee al formato del informe y lo mostraria en los
cambios de dicho formato.

G15: Argumentos de selector

No hay nada mas abominable que un argumento false aislado al final de la
invocacion de una funcién. ;Qué significa? ;Qué cambiaria si fuera true? No
solo el proposito de un argumento de selector es dificil de recordar, sino que
cada argumento de selector combina varias funciones en una. Los argumentos de
selector son una forma indolente de evitar dividir una funcion de gran tamafio en
otras menores. Fijese en lo siguiente: puiic int cacutatencexiypay(bootean overtine) ¢

int tenthRate = getTenthRate();

int tenthsWorked = getTenthsWorked();

int straightTime = Math.min(400, tenthsWorked);

int overTime = Math.max(0, tenthsworked - straightTime);
int straightPay = straightTime * tenthRate;

double overtimeRate = overtime ? 1.5 : 1.0 * tenthRate;
int overtimePay = (int)Math.round(overTime*overtimeRate);
return straightPay + overtimePay;

Esta funcion se invoca con true si las horas extras se pagan como hora y
media, y con false si se pagan como una hora normal. Ya es bastante malo tener
que recordar lo que significa calculateweeklyPay(false) cada vez que
aparezca. Pero lo peor de esta funcion es que el autor ha perdido la oportunidad
de crear lo siguiente: puiic int straigntray() ¢

return getTenthswWorked() * getTenthRate();
}

public int overTimePay() {
int overTimeTenths = Math.max(©, getTenthswWorked() - 400);
int overTimePay = overTimeBonus(overTimeTenths);
return straightPay() + overTimePay;

}

private int overTimeBonus(int overTimeTenths) {
double bonus = 0.5 * getTenthRate() * overTimeTenths;
return (int) Math.round(bonus);

}

Evidentemente, los selectores no deben ser boolean. Pueden ser
enumeraciones, enteros u otro tipo de argumento que se use para seleccionar el
comportamiento de la funcién. Es mas recomendable tener varias funciones que
pasar codigo a una funcion para seleccionar el comportamiento.

G16: Intencion desconocida

Queremos que el codigo sea lo mas expresivo posible. Expresiones extensas,
notacion Hungara y nameros magicos distorsionan la intencion del autor. Por
ejemplo, veamos la funcion overTimePay como podria haber aparecido:

public int m_otCalc() {
return iThswkd * iThsRte +
(int) Math.round(0.5 iThsRte
Math.max(0/ iThswkd - 400)
)i

Aunque parezca reducida y densa, también es practicamente impenetrable.

Es recomendable dedicar tiempo a lograr que la intencion de nuestro codigo sea
aparente para nuestros lectores.

G17: Responsabilidad desubicada

Una de las principales decisiones de un programador de software es donde
ubicar el codigo. Por ejemplo, donde incluir la constante PI. ;En la clase Math?
;Pertenece a la clase Trigonometry? ;O ala clase Circle?

El principio de minima sorpresa vuelve a aparecer. El codigo debe ubicarse
donde el lector espera encontrarlo. La constante PI debe incluirse junto a la
declaracion de las funciones trigonométricas. La constante OVERTIME_RATE debe
declararse en la clase HourlyPayCalculator.

En ocasiones presumimos de donde afiadimos una determinada
funcionalidad. Incluimos una funcion porque nos resulta comodo pero no porque
sea intuitivo para el lector. Por ejemplo, puede que tengamos que imprimir un
informe con el total de horas que ha trabajado un empleado. Podriamos sumar
las horas en el codigo que imprime el informe o intentar mantener un total en el
codigo que acepte horarios de trabajo.

Una forma de tomar esta decision consiste en analizar el nombre de las
funciones. Imagine que el modulo del informe tiene la funcién getTotalHours.
Imagine también que el modulo que acepta horarios de trabajo tiene la funcion
saveTimecCard. ¢Cual de las dos, por nombre, implica que calcula el total? La
respuesta es evidente.

Existen motivos de rendimiento para calcular el total como horarios de
trabajo y no como informe impreso. Es correcto, pero el nombre de las funciones
deberia reflejarlo. ~Por ejemplo, deberia haber una funcion
computeRunningTotalOfHours en el médulo de horarios.

G18: Elementos estaticos incorrectos

Math.max (double a, double b) es un método estatico correcto. No opera en
una Unica instancia; de hecho, seria un error tener que usar new
Math().max(a,b) o incluso a.max(b). Todos los datos que usa max provienen de
sus dos argumentos, no de un objeto. Ademas, es practicamente imposible que
queramos que Math.max sea polimorfico. Sin embargo, en ocasiones creamos
funciones estaticas que no deben serlo. Fijese en este ejemplo:

HourlyPayCalculator.calculatePay(employee, overtimeRate).

De nuevo, parece una funcién estatica razonable. No opera en un objeto
concreto y recibe todos los datos de sus argumentos. Sin embargo, existe la
posibilidad de que queramos que sea polimorfica. Puede que queramos

implementar distintos algoritmos para calcular el precio de la hora, como por
ejemplo. OvertimeHourlyPayCalculator y
StraightTimeHourlyPayCalculator. En este caso, la funcién no debe ser
estatica. Deberia ser una funcion miembro no estatica de Employee.

Por lo general, debe decantarse por métodos no estaticos. En caso de duda,
convierta la funcion en no estatica. Si realmente quiere que una funcion sea
estatica, asegurese de que nunca querra que sea polimoérfica.

G19: Usar variables explicativas

Kent Beck escribio sobre este tema en su magnifico libro Smalltalk Best Practice
Patterns™™ y, mas recientemente en Implementation Patterns*2. Una de las
técnicas mas completas para que un programa sea legible consiste en dividir los
calculos en valores intermedios almacenados en variables con nombres
descriptivos. Fijese en este ejemplo de FitNesse: watcner naten = neaderpattern. natcher (1ine);

if(match.find())

{
String key = match.group(1);
String value = match.group(2);
headers.put(key.toLowercase(), value);

}

El simple uso de variables explicativas ilustra con claridad que el primer
grupo comparado es la clave y el segundo es el valor.

Es complicado excederse en esta técnica. Por lo general, es mejor tener mas
variables explicativas que menos. Es sorprendente que un moédulo opaco se
vuelva mas transparente con tan solo dividir los calculos en valores intermedios
con los nombres adecuados.

G20: Los nombres de funcion deben indicar lo que hacen

Fijese en este codigo:
Date newDate = date.add(5);

¢Intuye que se afiaden cinco dias a la fecha o son semanas u horas? ;La
instancia date cambia y la funcion simplemente devuelve un nuevo objeto Date
sin cambiar el antiguo? Por la invocacion no podemos saber qué hace la
funcion.

Si la funcion afiade cinco dias a la fecha y después la cambia, el nombre
deberia ser addbaysTo 0 increaseByDays. Si, por otra parte, la funcién devuelve
una nueva fecha con cinco dias mas pero no cambia la instancia date, el nombre
deberia ser daysLater o daysSince.

Si tiene que fijarse en la implementaciéon (o documentacion) de la funcion
para saber qué hace, tendra que elegir un nombre mas apropiado o modificar la
funcionalidad para que se pueda incluir en funciones con nombres mas
acertados.

G21: Comprender el algoritmo

Se crea gran cantidad de codigo extrafio porque los autores no se esfuerzan en
comprender el algoritmo. Consiguen que algo funcione combinando
instrucciones if e indicadores sin pararse a pensar en qué sucede realmente.

La programacion es una tarea de exploracion. Creemos que conocemos el
algoritmo adecuado para algo pero después lo modificamos y variamos hasta
conseguir que funcione. ;Como sabemos que funciona? Porque supera los casos
de prueba que pensamos.

No es un enfoque equivocado. De hecho, suele ser la unica forma de
conseguir que una funcién haga lo que pensamos que debe hacer. Sin embargo,
no basta con conseguir que funcione.

Antes de creer que hemos terminado con una funcion, asegurese de
entender su funcionamiento. No basta con que supere todas las pruebas. Tiene
que estar sequro™ de que la solucion es la correcta.

Por lo general, la forma Optima de saberlo consiste en refactorizar la
funcion en algo tan limpio y expresivo que su funcionamiento sea evidente.

G22: Convertir dependencias logicas en fisicas

Si un mddulo depende de otro, dicha dependencia debe ser fisica, no sélo l6gica.
El modulo dependiente no debe asumir aspectos (es decir, dependencias 16gicas)
sobre el modulo del que depende. Por el contrario, debe solicitar de forma
explicita al modulo toda la informacion de la que depende.

Por ejemplo, imagine que tiene que crear una funcion que imprima un
informe de las horas trabajadas por cada empleado. La clase HourlyReporter
recopila los datos y los pasa a HourlyReportFormatter para imprimirlos (véase
el Listado 17-1).

Listado 17-1
HourlyReporter.java.

public class HourlyReporter {
private HourlyReportFormatter formatter;
private List<LineItem> page;
private final int PAGE_SIZE = 55;

public HourlyReporter(HourlyReportFormatter formatter) {
this.formatter = formatter;
page = new ArraylList<LineItem>();

}

public void generateReport(List<HourlyEmployee> employees) {
for (HourlyEmployee e : employees) {
addLineItemToPage(e);
if (page.size() == PAGE_SIZE)
printAndClearItemList();

}
if (page.size() > 0)
printAndClearItemList();
}

private void printAndClearItemList() {
formatter.format(page);
page.clear();

}

private void addLineItemToPage(HourlyEmployee e) {
LineItem item = new LineItem();
item.name = e.getName();
item.hours = e.getTenthswWorked() / 10;
item.tenths = e.getTenthsworked() % 10;
page.add(item);

}

public class LineItem {
public String name;
public int hours;
public int tenths;

}

Este codigo tiene una dependencia loégica que no se ha convertido en fisica.
¢La detecta? Es la constante PAGE_SIZE. ;Para qué necesita HourlyReporter
saber el tamafio de la pagina? El tamafio de la pagina debe ser responsabilidad de
HourlyReportFormatter. La declaracién de PAGE_SIZE en HourlyReporter
representa una responsabilidad desubicada [G17] que hace que HourlyReporter
asuma que conoce el tamafio que debe tener la pagina. Esta presunciéon es una
dependencia légica. HourlyReporter depende de que HourlyReportFormatter
pueda procesar tamafios de pagina de hasta 55. Si alguna implementacion de
HourlyReportFormatter no puede asumir esos tamafios, se producira un error.
Podemos convertir en fisica esta dependencia si creamos un nuevo método en
HourlyReportFormatter con el nombre getMaxPageSize(). Tras ello,
HourlyReporter invoca esta funcién en lugar de usar la constante PAGE_SIZE.

G23: Polimorfismo antes que If/Else o Switch/Case

Puede parecer una sugerencia extrafia dado el tema descrito en el capitulo 6. En
este capitulo, afirmo que las instrucciones switch son adecuadas en partes del
sistema en las que se afiadan mas funciones nuevas que tipos nuevos.

Por un lado, la mayoria usamos instrucciones switch por ser una solucion
de fuerza bruta evidente, no por ser la solucion perfecta. Por tanto, esta
heuristica nos recuerda que debemos considerar el uso de polimorfismo antes de
usar switch.

Por otra parte, los casos en que las funciones son mas volatiles que los tipos

son escasos. Por tanto, toda instruccion switch es sospechosa.

Suelo aplicar la siguiente regla de una instruccion switch: No puede haber
mds de una instruccion switch por cada tipo de seleccion. Los casos de esa
instruccion switch deben crear objetos polimorficos que ocupen el lugar de
otras instrucciones switch similares en el resto del sistema.

G24: Seguir las convenciones estandar

Todos los equipos deben seguir un estandar de disefio de cédigo basado en
normas comunes de la industria. Este estandar debe especificar aspectos como
dénde declarar variables de instancia, como asignar nombres a clases, métodos y
variables, donde afadir llaves, etc. El equipo no debe necesitar un documento
que describa estas convenciones ya que su codigo proporciona los ejemplos.

Todos los miembros del equipo deben seguir estas convenciones, lo que
significa que no importa donde afiada cada uno las llaves mientras todos estén de
acuerdo en donde afiadirlas.

Si desea saber qué convenciones aplico, puede verlas en el codigo
refactorizado de los listados B.7 a B.14 del apéndice B.

G25: Sustituir nimeros magicos por constantes con nombre

Es probablemente una de las reglas mas antiguas del desarrollo de software.
Recuerdo haberla leido a finales de la década de 1960 en manuales de COBOL,
FORTRAN y PL/1. Por lo general, no es recomendable incluir numeros sin
procesar en el codigo; debe ocultarlos tras constantes con nombres correctos. Por
ejemplo, el nimero 86 400 debe ocultarse tras la constante SECONDS_PER_DAY. Si
va a imprimir 55 lineas por pagina, la constante 55 debe ocultarse tras la
constante LINES_PER_PAGE.

Algunas constantes son tan faciles de reconocer que no siempre necesitan
una constante con nombre tras la que ocultarse mientras se usen junto a codigo
explicativo. Por ejemplo:

double mileswWalked = feetWalked/5280.0;
int dailyPay = hourlyRate * 8;
double circumference = radius * Math.PI * 2;

:Necesitamos realmente las constantes FEET_PER_MILE,
WORK_HOURS_PER DAY y TWO en los ejemplos anteriores? EI ultimo caso es
absurdo. Existen ciertas formulas en las que las constantes se escriben mejor
como numeros sin procesar. Puede cuestionar el caso de WORK_HOURS_PER_DAY
ya que las leyes o las convenciones pueden cambiar. Por otra parte, esa formula

se lee perfectamente si se incluye el 8 por lo que no es necesario afiadir 17 mas.
En el caso de FEET_PER_MILE, el nimero 5280 es una constante tan conocida y
exclusiva que los lectores la reconoceran aunque se muestre de forma
independiente en una pagina sin contexto alguno.

Constantes como 3.141592653589793 también son conocidas y
reconocibles. Sin embargo, la probabilidad de errores es alta y no conviene
mostrarlas tal cual. Siempre que alguien ve 3.1415927535890793, sabe que es m,
y no se molestan en examinarlo (¢ha visto el error de un digito?). Tampoco
queremos que la gente use 3.14, 3.14159, 3.142, y similares. Por lo tanto, es una
suerte contar con Math.PI.

El término nimero magico no sélo se aplica a nimeros, sino a todo simbolo
que tenga un valor que no sea descriptivo por si mismo. Por ejemplo:

assertEquals(7777, Employee.find(“John Doe”).employeeNumber());

En esta afirmacion hay dos nimeros magicos. El primero es obviamente
7777, aunque no significa que no sea obvio. El segundo es «John Doe» y su
cometido tampoco esta claro.

“John Doe” es el nombre del empleado #7777 en una conocida base de
datos de pruebas creada por nuestro equipo. Todo el mundo sabe que al
conectarse a la base de datos, ya cuenta con varios empleados con sus valores y
atributos. Ademas, «John Doe» representa el tnico empleado por horas de la
base de datos. Por tanto, la prueba deberia ser la siguiente: assertequas

HOURLY_EMPLOYEE_ID,
Employee.find (HOURLY_EMPLOYEE_NAME).employeeNumber());

G26: Precision

Esperar que la primera coincidencia de una consulta sea la tnica es una
ingenuidad. El uso de numeros de coma flotante para representar divisas es casi
un delito. Evitar bloqueos y/o la administracion de transacciones por creer que
las actualizaciones concurrentes no son posibles es pura indolencia. Declarar una
variable como ArrayList cuando se necesita List es un exceso de restricciones.
Crear todas las variables como protected de forma predeterminada es falta de
restricciones.

Al adoptar una decisiéon en el codigo, debe hacerlo de forma precisa. Debe
saber por qué la adopta y cémo afrontara las excepciones. No sea indolente sobre
la precision de sus decisiones. Si decide invocar una funcion que pueda devolver
null, asegurese de comprobar null. Si consulta el que considera el unico
registro de una base de datos, asegurese de que el cédigo comprueba que no
haya otros. Si tiene que trabajar con divisas, use enteros"* y aplique el redondeo

correcto. Si existe la posibilidad de una actualizacion concurrente, asegurese de
implementar algtn tipo de mecanismo de bloqueo.

En el coédigo, la ambigiiedad y las imprecisiones son el resultado de
desacuerdos o de indolencia. En cualquier caso, eliminelas.

G27: Estructura sobre convencion

Aplique las decisiones de disefio con estructura y no convenciones. Las
convenciones de nomenclatura son correctas pero resultan inferiores a
estructuras que refuerzan la compatibilidad. Por ejemplo, los casos switch con
enumeraciones de nombres correctos son inferiores a clases base con métodos
abstractos. No estamos obligados a implementar siempre la instruccion
switch/case de la misma forma, pero las clases base hacen que las clases
concretas implementen métodos abstractos.

G28: Encapsular condicionales

La logica booleana es dificil de entender sin necesidad de verla en el contexto de
una instruccién if o while. Extraiga funciones que expliquen el cometido de la
condicional. Por ejemplo:

if (shouldBeDeleted(timer))

es preferible a

if (timer.hasExpired() && !timer.isRecurrent())

G29: Evitar condicionales negativas

Las condicionales negativas son mas dificiles de entender que las positivas. Por
ello, siempre que sea posible, debe expresar las condiciones como positivas. Por
ejemplo:

if (buffer.shouldCompact())

es preferible a

if (!buffer.shouldNotCompact())

G30: Las funciones solo deben hacer una cosa

Es tentador crear funciones con varias secciones que realicen una serie de
operaciones. Este tipo de funciones hacen mas de una cosa y deben convertirse

en funciones de menor tamafo, cada una para una cosa. Por ejemplo: pusisc vois pay()

{
for (Employee e : employees) {
if (e.isPayday()) {
Money pay = e .calculatePay();
e.deliverPay(pay);
}
}
}

Este fragmento de codigo realiza tres operaciones. Itera por todos los
empleados, comprueba si cada uno debe recibir su paga y después paga al
empleado. Se podria reescribir de esta forma:

public void pay() {
for (Employee e : employees)
payifNecessary(e);

}

private void payifNecessary(Employee e) {
if (e.isPayday())
calculateAndDeliverPay(e);

}

private void calculateAndDeliverPay(Employee e) {
Money pay = e.calculatePay();
e.deliverPay(pay);

}

Cada una de estas funciones hace una sola cosa (véase el capitulo 3).

G31: Conexiones temporales ocultas

Las conexiones temporales suelen ser necesarias pero no debe ocultar la
conexion. Estructure los argumentos de sus funciones de modo que el orden de
invocacion sea evidente. Fijese en lo siguiente:

public class MoogDiver {
Gradient gradient;
List<Spline> splines;

public void dive(String reason) {
saturateGradient();
reticulateSplines();
diveForMoog(reason);

}

El orden de las tres funciones es importante. Debe saturar el degradado
antes de poder entrelazar las tiras, para después continuar. Desafortunadamente,
el codigo no aplica esta conexion temporal. Otro programador podria invocar
reticulateSplines antes de saturateGradient, lo que generaria
UnsaturatedGradientException. Una solucién mas acertada seria: puiic ciass

MoogDiver {
Gradient gradient;
List<Spline> splines;

public void dive(String reason) {
Gradient gradient = saturateGradient();
List<Spline> splines = reticulateSplines(gradient);
diveForMoog(splines, reason);

}

De este modo se muestra la conexion temporal generando una especie de
embudo. Cada funcién genera un resultado que la siguiente necesita de modo
que no se pueden invocar en otro orden.

Puede argumentar que esto aumenta la complejidad de las funciones y tiene
razon, pero ese incremento de complejidad sintactica muestra la verdadera
complejidad temporal de la situacion.

Observara que he mantenido las variables de instancia. Imagino que son
necesarias para los métodos privados de las clases. Incluso asi, conservo los
argumentos para que la conexion temporal sea explicita.

G32: Evitar la arbitrariedad

Argumente la estructura de su codigo y asegtirese de que la estructura del codigo
comunica dicho argumento. Si la estructura parece arbitraria, otros se veran con
derecho a modificarla.

Si la estructura parece coherente en la totalidad del sistema, otros la usaran
y conservaran la convencion. Por ejemplo, recientemente repasaba cambios
realizados en FitNesse y descubri lo siguiente:

public class AliasLinkWidget extends ParentwWidget

{
public static class VariableExpandingWidgetRoot {

El problema es que variableExpandingWidgetRoot no debia estar en el
ambito de AliasLinkwidget. Es mas, otras clases sin relacion usaban
AliaslLinkwidget.VariableExpandingWidgetRoot y no tenian por qué saber
nada de AliasLinkwidget. Puede que el programador afadiera
VariableExpandingWidgetRoot a AliasWidget por comodidad o que realmente
pensara que debia formar parte del ambito de Aliaswidget. Independientemente
del motivo, el resultado sera arbitrario. Las clases publicas que no son utilidades
de otra clase no deben incluirse en el ambito de otra clase. La convencion es
convertirlas en publicas en el nivel superior de su paquete.

G33: Encapsular condiciones de limite

Las condiciones de limite son dificiles de controlar. Aisle su procesamiento y no
permita que se transfieran al resto del codigo. No necesitamos legiones de +1 y
-1 por todas partes. Fijese en este ejemplo de FIT:

if (level + 1 < tags.length)

{
parts = new Parse(body, tags, level + 1, offset + endTag);
body = null;

}

level+1 aparece dos veces. Es una condicién de limite que debe
encapsularse en una variable con un nombre como nextLevel.

int nextLevel = level + 1;

if(nextLevel < tags.length) {
parts = new Parse(body, tags, nextLevel, offset + endTag);
body = null;

}

G34: Las funciones solo deben descender un nivel de abstraccion

Las instrucciones de una funcion deben crearse en el mismo nivel de
abstraccion, un nivel por debajo de la operacion descrita por el nombre de la
funcion. Puede que sea la heuristica mas dificil de interpretar y aplicar. Aunque
la idea es simple, como humanos nos cuesta mezclar niveles de abstraccion.
Fijese en el siguiente codigo de FitINesse: puiic string render() throws exception
{
fﬁ[iiﬁﬁ“ifgg html = new StringBuffer(“<hr”);

html.append(“ size=\"").append(size + 1).append(“\"");
html.append(“>");

return html.toString();

Si lo analiza, vera lo que sucede. Esta funcién crea la etiqueta HTML que
traza una regla horizontal por la pagina. La altura de la regla se especifica en la
variable size.

Fijese otra vez en el codigo. Este método mezcla al menos dos niveles de
abstraccion. El primero es la nocion de que una regla horizontal tiene un tamafio.
El segundo es la sintaxis de la propia etiqueta HR. El cddigo proviene del mddulo
Hrulewidget de FitNesse. Este modulo detecta una fila de cuatro o mas guiones
y la convierte en la correspondiente etiqueta HR. Cuantos mas guiones haya,
mayor sera el tamafio.

A continuacién le muestro la refactorizacion del codigo. He cambiado el
nombre del campo size para reflejar su verdadero cometido. Contenia el nimero
de guiones adicionales.

public String render() throws Exception

HtmlTag hr = new HtmlTag(“hr”);
if (extraDashes > 0)
hr.addAttribute(“size”, hrSize(extrabDashes));
return hr.html();
}

private String hrSize(int height)
{
int hrSize = height + 1;
return String.format(“%d”, hrSize);

}

Este cambio separa correctamente los dos niveles de abstraccion. La
funcion render simplemente crea una etiqueta HR sin tener que saber nada sobre
su sintaxis HTML. El médulo Htm1Tag se encarga de los problemas sintacticos.

De hecho, al realizar este cambio detecté un sutil error. El cédigo original
no incluia la barra final en la etiqueta HR, como haria el estandar XHTML (es
decir, generaba <hr> en lugar de <hr/>). El modulo HtmlTag se habia
modificado hace tiempo para ajustarlo a XHTML.

La separacion de niveles de abstraccion es una de las tareas mas
importantes de la refactorizacion, y también una de las mas complejas. Por

ejemplo, fijese en el siguiente cédigo. Fue mi primer intento de separar los
niveles de abstraccion del método Hrulewidget.render.

public String render() throws Exception

{
HtmlTag hr = new HtmlTag(“hr”);
if (size > 0) {
hr.addAttribute (“size”, “”+(size+1));

3eturn hr.html();

Mi objetivo, en esta fase, es crear la separacion necesaria y conseguir
superar las pruebas. El objetivo lo alcancé facilmente pero el resultado fue una
funcion con niveles de abstraccién mezclados. En este caso, fueron obra de la
etiqueta HR y de la interpretacion y el formato de la variable size. Esto indica
que al dividir una funcion en lineas de abstraccion, suelen aparecer nuevas lineas
de abstraccion ocultas por la estructura anterior.

G35: Mantener los datos configurables en los niveles superiores

Si tiene una constante como un valor predeterminado o de configuracion que se
conoce y se espera en un nivel superior de abstraccion, no debe sepultarla en una
funcion de nivel inferior. Muéstrela como argumento para esa funcion de nivel
inferior invocado desde la funcion de nivel superior. Fijese en este ejemplo de
FitNesse: public static void main(String[] args) throws Exception

{

Arguments arguments = parseCommandLine(args);

}

public class Arguments

{
public static final String DEFAULT_PATH = “.”;
public static final String DEFAULT_ROOT = “FitNesseRoot”;
public static final int DEFAULT_PORT = 80;
public static final int DEFAULT_VERSION_DAYS = 14;

Los argumentos de linea de comandos se analizan en la primera linea
ejecutable de FitNesse. Los valores predeterminados de dichos argumentos se
especifican al inicio de la clase Argument. No tiene que buscar instrucciones
como la siguiente en los niveles inferiores del sistema: ir (argunents.port == o) /7 usar a0 ae

forma predeterminada

Las constantes de configuracion se encuentran en un nivel superior y son
faciles de cambiar. Se pasan al resto de la aplicaciéon. Los niveles inferiores de la
aplicacion no poseen los valores de estas constantes.

G36: Evitar desplazamientos transitivos

Por lo general, no es recomendable que un modulo sepa demasiado sobre sus
colaboradores. En concreto, si A colabora con B y B con C, no queremos que los
modulos que usan A sepan nada sobre C (por ejemplo, o queremos
a.getB().getC().doSomething();).

Es lo que en ocasiones se denomina Ley de Demeter. Los programadores
pragmaticos lo denominan Crear codigo silencioso*. En cualquier caso, se trata
de garantizar que los modulos sélo tienen conocimiento de sus colaboradores
inmediatos y no del mapa de navegacion completo del sistema. Si varios
modulos usan alguna variante de la instruccién a.getB().getC(), seria
complicado cambiar el disefio y la arquitectura para intercalar Q entre B y
C. Tendria que localizar todas las instancias de a.getB().getC() y convertirlas
a a.getB().getQ().getc(). Es la forma en que las arquitecturas se vuelven
rigidas. Demasiados modulos saben demasiado sobre la arquitectura. Por el
contrario, queremos que nuestros colaboradores intermedios ofrezcan todos los
servicios que necesitamos. No debemos deambular por el grafico de objetos del
sistema en busca del método que necesitamos invocar. Bastaria con poder usar:

myCollaborator.doSomething().

Java

J1: Evitar extensas listas de importacion mediante el uso de
comodines

Si usa dos o mas clases de un paquete, importe el paquete completo con
import package.*;

Las listas extensas de importaciones intimidan al lector. No queremos
colapsar la parte superior de los m6dulos con 80 lineas de importaciones, sino
que sean una instruccion concisa de los paquetes con los que colaboramos.

Las importaciones especificas son dependencias rigidas, mientras que las
importaciones de comodin no. Si importa una clase concreta, esa clase debe
existir, pero si importa un paquete con un comodin, no es necesario que existan
clases concretas. La instruccion de importacion simplemente afiade el paquete a
la ruta de busqueda al localizar los nombres. Por tanto, no se genera una

verdadera dependencia en estas importaciones y permiten aligerar las conexiones
de nuestros modulos. En ocasiones, la lista extensa de importaciones puede
resultar util. Por ejemplo, si tiene que trabajar con codigo de legado y desea
saber para qué clases crear elementos ficticios, puede examinar la lista de
importaciones concretas para determinar los verdaderos nombres cualificados de
todas esas clases y después afiadirlos. No obstante, este uso de las importaciones
concretas no es habitual. Es mas, muchos IDE modernos le permiten convertir
las importaciones con comodines en una lista de importaciones concretas con un
solo comando. Por tanto, incluso en el caso anterior, es recomendable usar
comodines. Las importaciones de comodin pueden probar conflictos de nombres
y ambigiiedades. Dos clases con el mismo nombre pero en paquetes diferentes
tienen que importarse de forma concreta o al menos cualificarse de forma
especifica cuando se usen. Puede resultar molesto pero no es habitual que el uso
de importaciones de comodin sea mas indicado que el de importaciones
concretas.

J2: No heredar constantes

Lo he visto muchas veces y siempre me molesta. Un programador afiade
constantes a una interfaz y después accede a las mismas heredando dicha
interfaz. Fijese en el siguiente codigo:

public class HourlyEmployee extends Employee {
private int tenthsWorked;
private double hourlyRate;
public Money calculatePay() {
int straightTime = Math.min(tenthswWorked, TENTHS_PER_WEEK);
int overTime = tenthswWorked - straightTime;
return new Money (
hourlyRate (tenthsWorked + OVERTIME_RATE overTime)
)i
}

¢De donde salen las constantes TENTHS_PER_WEEK y OVERTIME_RATE? Puede
que provengan de la clase Employee; comprobémoslo:

public abstract class Employee implements PayrollConstants {
public abstract boolean isPayday();
public abstract Money calculatePay();
public abstract void deliverPay(Money pay);

}

No, de ahi no. ;Entonces de dénde? Fijese atentamente en la clase
Employee. Implementa PayrollConstants.

public interface PayrollConstants {
public static final int TENTHS_PER_WEEK = 400;
public static final double OVERTIME_RATE = 1.5;

}

Es horrible. Las constantes se ocultan en la parte superior de la jerarquia de
herencia. No use la herencia para burlar las reglas de ambito del lenguaje. Use
una importacion estatica:

import static PayrollConstants.*;

public class HourlyEmployee extends Employee {
private int tenthsWorked;
private double hourlyRate;

public Money calculatePay() {
int straightTime = Math.min(tenthswWorked, TENTHS_PER_WEEK);
int overTime = tenthswWorked - straightTime;
return new Money (
hourlyRate (tenthsWorked + OVERTIME_RATE overTime)
)i
}

J3: Constantes frente a enumeraciones

Ahora que se han afiadido enumeraciones al lenguaje (Java 5), juselas! No
recurra al viejo truco de public static final int. El significado de int se
puede perder. El de enum no, ya que pertenece a una enumeracion con nombre.
Es mas, analice atentamente la sintaxis de las enumeraciones. Pueden tener
métodos y campos, lo que las convierte en potentes herramientas que ofrecen
mayor expresividad y flexibilidad que los int. Fijese en esta variante del codigo:

public class HourlyEmployee extends Employee {
private int tenthsWorked;
HourlyPayGrade grade;

public Money calculatePay() {
int straightTime = Math.min(tenthswWorked, TENTHS_PER_WEEK);
int overTime = tenthswWorked - straightTime;
return new Money (

grade.rate() (tenthsWorked + OVERTIME_RATE overTime)

)i

}

}

public enum HourlyPayGrade {
APPRENTICE {
public double rate() {
return 1.0;

}

+
LEUTENANT_JOURNEYMAN (
public double rate() {
return 1.2;

}

i
JOURNEYMAN {
public double rate() {
return 1.5;
}
i
MASTER {
public double rate() {
return 2.0;
}
}

public abstract double rate();

Nombres

N1: Elegir nombres descriptivos

No sea demasiado rapido a la hora de elegir un nombre. Aseguirese de que sea
descriptivo. Recuerde que los significados suelen variar cuando el cddigo
evoluciona, de modo que debe revisar frecuentemente la correccién de los
nombres elegidos.

No es una recomendacion de sensaciones. En software, los nombres
constituyen el 90 por 100 de su legibilidad. Dedique tiempo a seleccionarlos con
atencion y mantenga su relevancia. Los nombres son demasiado importantes
como para tratarlos mal.

Fijese en el siguiente codigo. ¢Para qué sirve? Si le muestro el mismo
codigo con nombres bien elegidos, tendra sentido, pero con este formato no es
mas que una masa de simbolos y nimeros magicos.

public int x() {
int q = 0;
int z = 0;
for (int kk = 0; kk < 10; kk++) {
if (1[z] == 10)
{

q += 10 + (1[z + 1] + 1[z + 2]);
z += 1;

}
else if (1[z] + 1[z + 1] == 10)
{

q += 10 + 1[z + 2];
z += 2;
} else {
q += 1[z] + 1[z + 1];
z += 2;
}
}
return q;

}

A continuacién, el codigo como deberia haberse escrito. Este fragmento es
en realidad menos completo que el anterior, pero detectara inmediatamente lo
que intenta hacer y es probable que pudiera crear las funciones que faltan en
funcion de ese significado que intuye. Los numeros magicos ya no lo son y la
estructura del algoritmo es descriptiva y atractiva: puwiic it score() ¢

int score = 0;
int frame = 0;
for (int frameNumber = 0; frameNumber < 10; frameNumber++) {
if (isStrike(frame)) {
score += 10 + nextTwoBallsForStrike(frame);
frame += 1;
} else if (isSpare(frame)) {
score += 10 + nextBallForSpare(frame);
frame += 2;
} else {
score += twoBallsInFrame(frame);
frame += 2;
}
}
return score;

}

Los nombres bien elegidos inundan la estructura del coédigo con
descripciones. Dicha inundacion define las expectativas del lector sobre el

cometido de otras funciones del modulo.
Puede inferir la implementacion de isStrike() si se fija en el cddigo
anterior. Cuando lea el método isStrike, sera practicamente lo que esperaba™®.

private boolean isStrike(int frame) {
return rolls[frame] = 10;

}

N2: Elegir nombres en el nivel correcto de abstraccion

No elija nombres que comuniquen implementacion; seleccione nombres que
reflejen el nivel de abstraccion de la clase o la funcién con la que trabaje. Es
complicado. De nuevo, nos cuesta mezclar niveles de abstraccion. Siempre que
realice una pasada por su codigo, es probable que encuentre una variable con
nombre en un nivel demasiado bajo. Cambie esos nombres cuando los vea. Para
que el codigo sea legible se necesita una mejora continua. Fijese en la siguiente
il'l'[erfaz MOdem: public interface Modem {

boolean dial(String phoneNumber);

boolean disconnect();

boolean send(char c);

char recv();
String getConnectedPhoneNumber();

Inicialmente parece correcta. Las funciones parecen las adecuadas. De
hecho lo son para muchas aplicaciones, pero piense ahora en una aplicacion en la
que algunos modems no se conecten mediante marcacion telefonica, sino
mediante cables (como los usados para conexiones domésticas a Internet). Puede
que algunos se conecten enviando un numero de puerto a un concentrador a
través de una conexién USB. Es evidente que la nocién de nimeros de teléfono
se encuentra en un nivel de abstraccién equivocado. Una estrategia de
nomenclatura mas adecuada para este caso seria la siguiente: puiic interrace voden ¢

boolean connect(String connectionLocator);

boolean send(char ©).

char recv();
String getConnectedLocator();

Ahora los nombres no se limitan a nimeros de teléfono. Se pueden usar
para numeros de teléfono o para otros tipos de estrategia de conexion.

N3: Usar nomenclatura estandar siempre que sea posible

Los nombres son mas faciles de entender si se basan en una convencion o un uso
existente. Por ejemplo, si emplea el patron DECORATOR, deberia usar la palabra
Decorator en los nombres de las clases. Por ejemplo,
AutoHangupModemDecorator podria ser el nombre de una clase que permite a un

modem colgar automaticamente al final de una sesion. Los patrones son un tipo
de estandar. En Java, por ejemplo, las funciones que convierten objetos en
representaciones de cadena suelen tener el nombre toString. Es mejor seguir
estas convenciones que inventar otras propias.

Los equipos suelen inventar su propio sistema estandar de nombres para un
proyecto concreto. Eric Evans lo denomina lenguaje omnipresente del
proyecto™”. Su cdodigo debe usar los términos de este lenguaje. En definitiva,
cuantos mas nombres con significado especial y relevante para su proyecto
utilice, mas facil sera para los lectores saber de qué trata el codigo.

N4: Nombres inequivocos

Seleccione nombres que ilustren de forma inequivoca el funcionamiento de
funciones y variables. Fijese en este ejemplo de FitNesse:

private String doRename() throws Exception

{
if (refactorReferences)
renameReferences();
renamePage();

pathToRename.removeNameFromend() ;
pathToRename.addNameToEnd (newName) ;
return PathParser.render(pathToRename);

El nombre de esta funcion no indica qué hace, al menos en términos
amplios y sin concretar. Ademas, se refuerza por la presencia de la funcion
renamePage dentro de la funcién doRename. ;Qué indican los nombres sobre la
diferencia entre ambas funciones? Nada. Un nombre mas acertado para la
funcion seria renamePageAndOptionallyAllReferences. Puede parecerle
extenso, y lo es, pero sélo se invoca desde un punto del médulo, de modo que su
valor descriptivo supera su longitud.

N5: Usar nombres extensos para ambitos extensos

La longitud de un nombre debe estar relacionada con la de su ambito. Puede usar
nombres de variables breves para ambitos diminutos pero en ambitos mayores
debe emplear nombres extensos.

Los nombres de variables como i y j son correctos si su ambito tiene cinco
lineas de longitud. Fijese en el siguiente fragmento del conocido juego de los
bolos:

private void rollMany(int n, int pins)
{
for (int 1i=0; i<n; i++)
g.roll(pins);
}

Es totalmente claro y se complicaria si la variable i se cambiara por algo
como rollcCount. Por otra parte, las variables y funciones con nombres breves
pierden su significado en las grandes distancias. Por tanto, cuanto mayor sea el
ambito del nombre, mas extenso y preciso tendra que ser el nombre.

NG6: Evitar codificaciones

Los nombres no deben codificarse con informacion de tipos o ambitos. Prefijos
como m_ o f no sirven de nada en los entornos actuales. Ademas, codificaciones
de proyecto y/o subsistema como vis_ (para un sistema de imagenes visuales)
distraen la atencién y son redundantes. L.os entornos actuales proporcionan toda
esa informacion sin tener que modificar los nombres. Aleje sus nombres de la
contaminacion hingara.

N7: Los nombres deben describir efectos secundarios

Los nombres deben describir todo lo que haga una funcidn, variable o clase. No
oculte efectos secundarios con un nombre. No utilice un simple verbo para
describir una funcién que realiza algo mas que una simple accion. Fijese en este
Cédlgo de TestNG: public ObjectOutputStream getOos() throws IOException {

if (m_oos == null) {

m_oos = new ObjectOutputStream(m_socket.getOutputStream());

}

return m_oos;

}

Esta funcién hace algo mas que obtener oos; lo crea si todavia no se ha
creado. Por lo tanto, un nombre mas acertado seria createOrReturn0os.

Pruebas (Test)

T1: Pruebas insuficientes

;Cuantas pruebas debe incluir una suite de pruebas? Desafortunadamente,
muchos programadores dirian que las que parezcan suficientes. Una suite de
pruebas debe probar todo lo que pueda fallar. Las pruebas son insuficientes
mientras haya condiciones que no se hayan examinado o calculos que no se
hayan validado.

T2: Usar una herramienta de cobertura

Las herramientas de cobertura indican vacios en su estrategia de pruebas.
Facilitan la deteccion de moddulos, clases y funciones insuficientemente
probadas. Muchos IDE le ofrecen un indicador visual y marcan en verde las
lineas cubiertas y en rojo las no cubiertas. De este modo es mas rapido y sencillo
detectar instrucciones if o catch cuyos cuerpos no se han comprobado.

T3: No ignorar pruebas triviales

Son faciles de redactar y su valor documental es mayor que el coste de crearlas.

T4: Una prueba ignorada es una pregunta sobre una ambigiiedad

En ocasiones dudamos de un detalle de comportamiento porque los requisitos no
son claros. Podemos expresar nuestra duda sobre los requisitos en forma de
prueba comentada o como prueba anotada con @Ignore. La decisién depende de
si la ambigiliedad es sobre algo que se compila o no.

T5: Probar condiciones de limite

Preste especial atencion a las pruebas de condiciones de limite. Solemos acertar
con la parte central de un algoritmo pero malinterpretar los limites.

T6: Probar de forma exhaustiva junto a los errores

Los errores suelen congregarse. Si detecta un error en una funcion, es
recomendable probarla de forma exhaustiva. Seguramente no sea el tnico error.

T7: Los patrones de fallo son reveladores

En ocasiones diagnosticamos un problema detectando patrones de fallo en los
casos de prueba. Es otro argumento para crear casos de prueba lo mas completos
posibles. Los casos de prueba completos, si se ordenan de forma razonable,
revelan patrones.

Como ejemplo, imagine que ha detectado que todas las pruebas con un
entero mayor de cinco caracteres fallan. O que fallan todas las pruebas que pasan
un numero negativo al segundo argumento de una funcién. En ocasiones, con ver
el patron de rojos y verdes de un informe de pruebas basta para hacer saltar la
chispa y llegar a una solucion. En el capitulo 16 encontrara un interesante
ejemplo en el caso de SerialDate.

T8: Los patrones de cobertura de pruebas pueden ser reveladores

El analisis del codigo que se ejecuta o no en las pruebas superadas suele indicar
porqué fallan las pruebas no superadas.

T9: Las pruebas deben ser rapidas

Una prueba lenta no se ejecuta. Cuando las cosas se ponen feas, las pruebas
lentas se eliminan de la suite. Por lo tanto, intente que sus pruebas sean rapidas.

Conclusion

Esta lista de heuristica y sintomas no se podria considerar completa. De hecho,
dudo de que alguna vez exista alguna. Pero puede que ese no sea el objetivo, ya
que lo que implica esta lista es un sistema de valores.

El sistema de valores ha sido el objetivo y la base de este libro. El cddigo
limpio no se crea siguiendo una serie de reglas. No se convertira en un maestro
del software aprendiendo una lista de heuristicas. La profesionalidad y la
maestria provienen de los valores que impulsan las disciplinas.

Bibliografia

[Refactoring]: Refactoring: Improving the Design of Existing Code, Martin
Fowler et al., Addison-Wesley, 1999.

[PRAG]: The Pragmatic Programmer, Andrew Hunt, Dave Thomas,
Addison-Wesley, 2000.

[GOF]: Design Patterns: Elements of Reusable Object Oriented Software,
Gamma et al., Addison-Wesley, 1996.

[Beck97]: Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall,
1997.

[Beck07]: Implementation Patterns, Kent Beck, Addison-Wesley, 2008.
[PPP]: Agile Software Development: Principles, Patterns, and Practices,
Robert C. Martin, Prentice Hall, 2002.

[DDD]: Domain Driven Design, Eric Evans, Addison-Wesley, 2003.

Apeéendice A
Concurrencia I1

por Brett L. Schuchert

Este apéndice complementa y amplia el capitulo 13 sobre concurrencia. Se ha
escrito como una serie de temas independientes que puede leer en el orden que
desee. Algunas secciones estan duplicadas para facilitar dicha lectura.

Ejemplo cliente/servidor

Imagine una sencilla aplicaciéon cliente/servidor. Un servidor espera a que un
cliente se conecte. Un cliente se conecta y envia una solicitud.

El servidor

A continuacion le mostramos una version simplificada de una aplicacion de
servidor. El codigo completo de este ejemplo se recoge en el Listado A-3.

ServerSocket serverSocket = new ServerSocket(8009);

while (keepProcessing) {
try {
Socket socket = serverSocket.accept();
process(socket);
} catch (Exception e) {
handle(e);
}
}

Esta sencilla aplicacion espera una conexion, procesa un mensaje entrante y
vuelve a esperar a la siguiente solicitud cliente. El cddigo cliente para conectarse
al servidor es el siguiente:

private void connectSendReceive(int i) {
try {
Socket socket = new Socket (“localhost”, PORT);
MessageUtils.sendMessage(socket, Integer.toString(i));
MessageUtils.getMessage(socket);
socket.close();
} catch (Exception e) {
e.printStackTrace();
}
}

¢Cémo se comporta esta combinacion de cliente y servidor? ;Como
podemos describir formalmente ese rendimiento? La siguiente prueba afirma que
el rendimiento es aceptable:

@Test(timeout = 10000)

public void shouldRunInuUnderi10Seconds() throws Exception {
Thread[] threads = createThreads();
startAllThreadsw(threads);
waitForAllThreadsToFinish(threads);

}

Se omite la configuracion para que el ejemplo sea sencillo (véase
“ClientTest.java” mas adelante). Esta prueba afirma que debe completarse en
10 000 milisegundos.

Es un ejemplo clasico de validacion del rendimiento de un sistema. Este
sistema debe completar una serie de solicitudes cliente en 10 segundos. Mientras
el servidor pueda procesar cada solicitud cliente a tiempo, la prueba sera
satisfactoria.

¢Qué sucede si la prueba falla? Aparte de desarrollar algun tipo de bucle de
consulta de eventos, no hay mucho que hacer en un tnico proceso para aumentar
la velocidad de este codigo. ¢Se solucionaria el problema con varios procesos?
Puede, pero necesitamos saber como se consume el tiempo. Hay dos
posibilidades:

e E/S: Con un socket, conectandose a la base de datos, esperando al
intercambio de memoria virtual, etc.

e Procesador: Calculos numéricos, procesamiento de expresiones regulares,
recoleccion de elementos sin usar, etc.

Los sistemas suelen tener uno de cada, pero para una operacion concreta
suele haber uno dominante. Si el codigo se vincula al procesador, mayor
cantidad de hardware de procesamiento puede mejorar el rendimiento y hacer
que se supere la prueba, pero no hay tantos ciclos de CPU disponibles, de modo
que afiadir procesos a un problema vinculado al procesador no hara que aumente
la velocidad.

Por otra parte, si el proceso esta vinculado a E/S, la concurrencia puede
aumentar la eficacia. Cuando una parte del sistema espera a E/S, otra puede usar
ese tiempo de espera para procesar algo distinto, maximizando el uso eficaz de la
CPU disponible.

Anadir subprocesos

Imagine que la prueba de rendimiento falla. ;Como podemos mejorar la

produccion para que la prueba de rendimiento sea satisfactoria? Si el método
process del servidor esta vinculado a la E/S, existe una forma de conseguir que
el servidor use subprocesos (basta con cambiar processMessage): v process (final
Socket socket) {

if (socket == null)
return;

Runnable clientHandler = new Runnable() {
public void run() {
try {
String message = MessageUtils.getMessage(socket);
MessageUtils.sendMessage(socket, “Processed: ” + message);
closeIgnoringException(socket);
} catch (Exception e) {
e.printStackTrace();
}
}
}

Thread clientConnection = new Thread(clientHandler);
clientConnection.start();

Asuma que este cambio hace que la prueba se supere™; el cdodigo es
completo, ¢correcto?

Observaciones del servidor

El servidor actualizado completa satisfactoriamente la prueba en algo mas de un
segundo. Desafortunadamente, la solucion genera ciertos problemas.

¢Cuantos subprocesos podria crear nuestro servidor? El codigo no define
limites de modo que podriamos alcanzar el impuesto por la Maquina virtual de
Java (MVJ), suficiente en muchos sistemas sencillos. ;Pero y si el sistema tiene
que asumir multitud de usuarios de una red publica? Si se conectan demasiados
usuarios al mismo tiempo, el sistema podria colapsarse.

Pero dejemos temporalmente este problema de comportamiento. La
solucion mostrada tiene problemas de limpieza y estructura. ¢Cuantas
responsabilidades tiene el codigo del servidor?

Administracion de conexiones.
Procesamiento de clientes.
Politica de subprocesos.
Politica de cierre del servidor.

Desafortunadamente, todas estas responsabilidades se encuentran en la
funcion process. Ademas, el codigo cruza varios niveles diferentes de
abstraccion. Por tanto, a pesar de la reducida funcion process, es necesario
dividirlo.

Existen varios motivos para cambiar el servidor; por tanto, incumple el
principio de responsabilidad tnica. Para mantener la limpieza de un sistema
concurrente, la administraciéon de subprocesos debe limitarse a una serie de
puntos controlados. Es mas, el codigo que gestione los subprocesos tinicamente
debe encargarse de la gestiobn de subprocesos. ;Por qué? Si no existe otro
motivo, el control de problemas de concurrencia ya es lo suficientemente
complicado como para generar simultaneamente otros problemas no
relacionados con la concurrencia.

Si creamos una lista independiente para cada una de las responsabilidades
anteriores, incluyendo la administracion de subprocesos, al cambiar la estrategia
de administracion de subprocesos, el cambio tiene un menor impacto sobre el
codigo y no contamina a otras responsabilidades. De este modo también es mas
sencillo probar las demas responsabilidades sin necesidad de preocuparse de los
subprocesos. Veamos la version actualizada que se encarga de ello: puiic voia run() ¢

while (keepProcessing) {

try {
ClientConnection clientConnection = connectionManager.awaitClient();
ClientRequestProcessor requestProcessor

= new ClientRequestProcessor(clientConnection);

clientScheduler.schedule(requestProcessor);

} catch (Exception e) {
e.printStackTrace();

}

}

connectionManager.shutdown();

Ahora centra en el mismo punto todos los aspectos relacionados con los
subprocesos: clientScheduler. Si hay problemas de concurrencia, bastara con
examinar un punto concreto:

public interface ClientScheduler {
void schedule(ClientRequestProcessor requestProcessor);

}

La politica actual es facil de implementar:

public class ThreadPerRequestScheduler implements ClientScheduler {
public void schedule(final ClientRequestProcessor requestProcessor) {
Runnable runnable = new Runnable() {
public void run() {
requestProcessor.process();
}
}

Thread thread = new Thread(runnable);
thread.start();
}
}

Tras aislar la administracion de subprocesos, resulta mas sencillo cambiar
el control de los mismos. Por ejemplo, para cambiar a la estructura Executor de
Java 5 es necesario crear una nueva clase y conectarla (véase el Listado A-1).

Listado A-1

ExecutorClientScheduler.java.

import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

public class ExecutorClientScheduler implements ClientScheduler {
Executor executor;

public ExecutorClientScheduler(int availableThreads) {
executor = Executors.newFixedThreadPool(availableThreads);

}

public void schedule(final ClientRequestProcessor requestProcessor) {
Runnable runnable = new Runnable() {
public void run() {
requestProcessor.process();
}
}
executor.execute(runnable);
}
}

Conclusion

En este ejemplo concreto, la presencia de la concurrencia ilustra una forma de
mejorar la produccion de un sistema y otra de validar dicha produccion a través
de una estructura de pruebas. Al centrar el codigo de concurrencia en un nimero
reducido de clases, aplicamos el Principio de responsabilidad tnica. En el caso
de la programacion concurrente, resulta especialmente importante debido a su
complejidad.

Posibles rutas de ejecucion

Repase el método incrementVvalue, un método de Java de una linea sin bucles ni
ramificaciones:

public class IdGenerator {
int lastIdUsed;

public int incrementValue() {
return ++lastIdUsed;

}
}

Ignore el desbordamiento de enteros e imagine que solamente un
subproceso accede a una instancia de IdGenerator. En este caso existe una sola
ruta de ejecucion y un unico resultado garantizado:

e El valor devuelto es igual al valor de lastIdUsed, y ambos son una unidad
mayores que antes de invocar el método.

¢Qué sucede si usamos dos subprocesos y no cambiamos el método?

¢Cuales son los posibles resultados si cada subproceso invoca incrementvalue
una vez? ;Cuantas rutas de ejecucion posibles hay? Primero, los resultados
(imagine que el valor inicial de lastIdUsed es 93):

e El primer subproceso obtiene el valor 94, el segundo el valor 95 y
lastIdused es 95.

e El primer subproceso obtiene el valor 95, el segundo el valor 94 y
lastIdused es 95.

e El primer subproceso obtiene el valor 94, el segundo el valor 94 y
lastIdUsed es 94.

El resultado final, aunque sorprendente, es posible. Para ver los distintos
resultados, debemos comprender las diferentes rutas de ejecucion posibles y
como las ejecuta la MV1J.

Numero de rutas

Para calcular el nimero de rutas de ejecucion posibles, comenzaremos con el
codigo de bytes generado. La tnica linea de Java (return ++lastIdUsed;) se
convierte en ocho instrucciones de codigo de bytes. L.os dos subprocesos pueden
intercambiar la ejecucion de estas ocho instrucciones del mismo modo que
mezclamos las cartas de una baraja™. Incluso con sélo ocho cartas en cada
mano, el numero de posibles resultados es sorprendente.

Para este sencillo caso de N instrucciones en una secuencia, sin bucles ni
condicionales y T subprocesos, el nimero total de posibles rutas de ejecucion es
igual a:

NT)!
NI

Calcular las érdenes posibles

Extraido de un correo electrénico de Uncle Bob a Brett:

Con N pasos y T subprocesos hay T * N pasos totales. Antes de cada paso hay un conmutador de contexto que elige entre los
subprocesos. Por tanto, cada ruta se representa como una cadena de digitos que denota los cambios de contexto. Dados los
pasos Ay B y los subprocesos 1 y 2, las seis rutas posibles son 1122, 1212, 1221, 2112, 2121 y 2211. 0, en términos de pasos,
A1B1A2B2, A1A2B1B2, A1A2B2B1, A2A1B1B2, A2A1B2B1 y A2B2A1B1l. Para tres subprocesos, la secuencia seria 112233, 112323, 113223,
113232, 112233, 121233, 121323, 121332, 123132, 123123..

Una caracteristica de estas cadenas es que siempre debe haber N instancias de cada 7. Por tanto, la cadena 111111 no es valida
ya que tiene seis instancias de 1 y ninguna de 2 y 3.

Por tanto, necesitamos las permutaciones de N 1, N 2..y N T. En realidad son las permutaciones de N * T tomando cada vez N * T,
que es (N * T)!, pero sin los duplicados. Por tanto, el truco consiste en contar los duplicados y restarlos de (N * T)!.

Dados dos pasos y dos subprocesos, ¢cuantos duplicados hay? Cada cadena de cuatro digitos tiene dos 1 y dos 2. Estos pares se
pueden intercambiar sin modificar el sentido de la cadena. Podriamos intercambiar los 1 o los 2, o ninguno. Por tanto hay
cuatro isomorfas por cada cadena, lo que significa que hay tres duplicados, de modo que tres de las cuatro opciones son

duplicados; por otra parte, una de las cuatro permutaciones no son duplicados. 4! * .25 = 6. Este razonamiento parece
funcionar.

¢Cuantos duplicados hay? Si N = 2 y T = 2, podria intercambiar los 1, los 2, o ambos. En el caso de N = 2 y T = 3, podria
intercambiar los 1, los 2, los 3, 1y 2, 1y 3, o 2 vy 3. El intercambio son las permutaciones de N. Imagine que hay P
permutaciones de N. E1l numero de formas diferentes de organizar dichas permutaciones es P**T.

Por tanto el numero de isomorfas posibles es N!/**T. Y el numero de rutas es (T*N)!/(N!**T). De nuevo, en nuestro caso T = 2, N
= 2 obtenemos 6 (24/4).

Para N = 2 y T = 3 obtenemos 720/8 = 90.

Para N = 3 y T = 3 obtenemos 9!/6/A3 = 1680.

En nuestro sencillo caso de una sola linea de cédigo Java, que equivale a
ocho lineas de codigo de bytes y a dos subprocesos, el numero total de posibles
rutas de ejecucion es 12 870. Si el tipo de lastIdUsed es long, cada lectura y
escritura se convierte en dos operaciones y no una, y el nimero de posibilidades
asciende a 2 704 156.

¢ Qué sucede si realizamos un cambio en este método?

public synchronized void incrementValue() {
++lastIdUsed;

}

El numero de posibles rutas de ejecucion es dos para dos subprocesos y N!
para el caso general.

Un examen mas profundo

¢Qué piensa del sorprendente resultado de dos subprocesos que invoquen el
método una vez (antes de afiadir synchronized) y obtengan el mismo resultado
numeérico? ;Como es posible? Vayamos por partes.

¢Qué es una operacion atomica? Podemos definir una operacion atémica
como toda operacion ininterrumpible. Por ejemplo, en el siguiente codigo, la
linea 5, donde se asigna 0 a lastId, es atomica ya que de acuerdo al modelo de
memoria de Java, la asignacion a un valor de 32 bits es ininterrumpible.

(©ELg public class Example {
02: int lastId;

03:

04: public void resetId() {
05: value = 0;

06: }

07:

08: public int getNextId() {
09: ++value;

e }

aliLg }

¢Qué sucede si cambiamos el tipo de lastId de int a long? ;Sigue siendo
atomica la linea 5? No de acuerdo a la especificacion de la MV]J. Podria ser
atomica en un procesador concreto, pero segun la especificacion de la MVJ, la
asignacion a un valor de 64 bits requiere dos asignaciones de 32 bits. Esto
significa que entre la primera y la segunda podria irrumpir otro subproceso y
cambiar uno de los valores.

¢Y qué sucede con el operador de preincremento, ++, de la linea 9? Este
operador se puede interrumpir, de modo que no es atémico. Para entenderlo,
repasemos el cadigo de bytes de ambos métodos.

Antes de continuar, hay tres definiciones importantes:

e Marco: La invocacion de un método requiere un marco, el cual incluye la
direccion de devolucion, los parametros pasados al método y las variables
locales definidas en el mismo. Es una técnica estandar empleada para
definir una pila de invocaciones, que se usa en muchos lenguajes modernos
para permitir la invocacion de funciones y métodos basicos, ademas de
invocaciones recursivas.

e Variable local: Las variables definidas en el ambito del método. Todos los
métodos no estaticos tienen al menos una variable, this, que representa el
objeto actual, el objeto que ha recibido el ultimo mensaje (en el subproceso
actual) que ha propiciado la invocacion del método.

e Pila de operandos: Muchas instrucciones de la MVJ aceptan parametros.
La pila de operandos es donde se incluyen dichos parametros. La pila es
una estructura de datos LIFO (Last-In, First-Out o Ultimo en entrar,
primero en salir) estandar.

Veamos el codigo de bytes generado para resetId().

Nemonico Descripcion Pila de
operandos
posterior

ALOAD @ Cargar la variable 0 en la pila de operandos. ;Qué es la this
variable 0'? Es this., el objeto actual. Al invocar el
método, el receptor del mensaje, una instancia de
Example , se envia a la matriz de variables locales del
marco creado para la invocacion de métodos. Siempre
es la primera variable que se afiade a todos los métodos
de instancia.

ICONST_0 Incluir el valor constante 0 en la pila de operandos. this, 0
PUTFIELD Almacenar el valor superior de la pila (0) en el valor de <vacio>
lastId campo del objeto denominado por la referencia de

objeto una posicion alejada de la parte superior de la
pila, this .

Estas tres instrucciones son atdmicas ya que a pesar de que el subproceso
que las ejecuta podria verse interrumpido por cualquiera de ellas, la informacion
para la instruccion PUTFIELD (el valor constante © de la parte superior de la pila y
la referencia a éste una posicion inferior, junto con el valor del campo) no se ve
alterada por ningun otro subproceso. Por tanto, al producirse la asignacion,
sabemos que el valor 0 se almacena en el valor del campo. La operacion es
atomica. Todos los operandos procesan informacion local del método, de modo
que no hay interferencias entre subprocesos.

Si estas instrucciones se ejecutan en diez subprocesos, hay
4.38679733629¢e+24 ordenaciones posibles. Sin embargo, s6lo hay un resultado
posible, de modo que las distintas ordenaciones son irrelevantes. Y ademas, se
garantiza el mismo resultado para valores long en este caso. ;Por qué? Los diez
subprocesos asignan un valor constante. Aunque se entremezclen, el resultado
final sera el mismo. Habra problemas con la operacién ++ en el método
getNextId. Imagine que lastId contiene 42 al inicio de este método. Veamos el
codigo de bytes de este nuevo método:

Nemonico Descripcion Pila de
operandos
posterior

ALOAD 0 Cargar this en la pila de operandos. this

DUP Copiar la parte superior de la pila. Ahora tenemos dos this,

copias de this en la pila de operandos. this

GETFIELD Recuperar el valor del campo lastId del objeto al que this,
lastId se apunta en la parte superior de la pila (this)y volver 42
a almacenar el valor en la pila.

ICONST_1 Desplazar la constante entera 1 en la pila. this,
42, 1
IADD Suma entera de los dos valores superiores de la pila de this,
operandos y volver a almacenar el resultado en la pila. 43
DUP_X1 Duplicar el valor 43 y afiadirlo delante de this . 43,
this, 43
PUTFIELD Almacenar el valor superior de la pila de operandos, 43
value 43, en el valor de campo del objeto actual, representado
por el siguiente valor superior de la pila de operandos,
this .

IRETURN Devolver el valor superior (y tnico) de la pila de <vVacio>

operandos.

Imagine que el primer subproceso completa las tres primeras instrucciones,
hasta GETFIELD incluida y después se interrumpe. Aparece un segundo
subproceso y ejecuta el método completo, incrementando lastId en uno;
devuelve 43. Tras ello, el primer subproceso retoma desde donde se detuvo; 42
sigue en la pila de operandos por ser el valor de lastId cuando ejecuto
GETFIELD. Suma uno para obtener 43 y almacena el resultado.

El valor 43 también se devuelve al primer subproceso. Como resultado, uno
de los incrementos se pierde ya que el primer subproceso interfiere con el
segundo después de que éste haya interrumpido al primero.

Al convertir el método getNextId() en synchronized se corrige este
problema.

Conclusion

No se necesita un conocimiento extenso del codigo de bytes para entender como
unos subprocesos interrumpen a otros. Si consigue entender este ejemplo,
demostrara la posibilidad de varios subprocesos entrelazados, un conocimiento
suficiente.

Dicho esto, lo que este sencillo ejemplo revela es la necesidad de entender
el modelo de memoria para saber qué se permite y qué no. Equivocadamente se
piensa que el operador ++ (pre o postincremento) es atobmico, y evidentemente no
lo es. Esto significa que tiene que saber:

e Donde estan los objetos y valores compartidos.
¢ El codigo que provoca problemas de lectura/actualizacion concurrente.
e Como evitar que se produzcan dichos problemas.

Conocer su biblioteca

La estructura Executor

Como mostramos en ExecutorClientScheduler.java, la estructura Executor
de Java 5 permite la ejecuciéon sofisticada por medio de agrupaciones de
subprocesos. Es una clase del paquete java.util.concurrent. Si va a crear

subprocesos y no usa una agrupacion de subprocesos o utiliza una creada a
mano, considere el uso de Executor. Hace que el c6digo sea mas limpio, mas
facil de entender y de menor tamafio.

La estructura Executor agrupa subprocesos, los cambia automaticamente
de tamafio y los vuelve a crear si es necesario. También admite futuros, una
construccion de programacion concurrente habitual. La estructura Executor
funciona con clases que implementan Runnable y también con clases que
implementan la interfaz callable. Callable se parece a Runnable, pero puede
devolver un resultado, una necesidad habitual en soluciones de multiples
subprocesos.

Un futuro resulta muy util cuando el cédigo tiene que ejecutar varias
operaciones independientes y esperar a que terminen:

public String processRequest(String message) throws Exception {
Callable<String> makeExternalCall = new Callable<String>() {
public String call() throws Exception {
String result = “”;
// realizar solicitud externa
return result;
}
}

Future<String> result = executorService.submit(makeExternalCall);
String partialResult = doSomelLocalProcessing();
return result.get() + partialResult;

En este ejemplo, el método comienza a ejecutar el objeto
makeExternalCall, prosigue con otro procesamiento y la ultima linea invoca
result.get(), que se bloquea hasta que el futuro termina.

Soluciones no bloqueantes

La MV Java 5 aprovecha el disefio de los procesadores modernos que admiten
actualizaciones fiables y no bloqueantes. Imagine una clase que usa
sincronizacion (y por tanto bloqueo) para proporcionar la actualizacion
compatible con subprocesos de un valor: puiic ciass objectustnvatue ¢

private int value;
public void synchronized incrementValue() { ++value; }
public int getvalue() { return value; }

}

Java 5 dispone de varias clases nuevas para este tipo de situaciones, como
por ejemplo AtomicBoolean, AtomicInteger y AtomicReference. Podemos
modificar el codigo anterior para usar un enfoque no bloqueante:

public class Objectwithvalue {
private AtomicInteger value = new AtomicInteger(0);

public void incrementValue() {
value.incrementAndGet();
}
public int getvalue() {
return value.get();
}
}

Aunque use un objeto en lugar de una primitiva y envie mensajes como
incrementAndGet() en lugar de ++, el rendimiento de esta clase supera en la
mayoria de los casos al de la version anterior. En algunos casos sera ligeramente
mas rapido pero los casos en los que es mas lento son practicamente inexistentes.

¢Cbémo es posible? Los procesadores modernos disponen de una operacion
denominada CAS (Compare and Swap, Comparar e intercambiar). Es una
operacion similar al bloqueo optimista de una base de datos, mientras que la
version sincronizada es similar al bloqueo pesimista.

La palabra clave synchronized siempre adquiere un bloqueo, incluso
cuando un segundo subproceso no intenta actualizar el mismo valor. Aunque el
rendimiento de los bloqueos intrinsecos ha mejorado con respecto a versiones
anteriores, sigue siendo muy costoso.

La version no bloqueante asume inicialmente que varios subprocesos no
modifican el mismo valor con la suficiente periodicidad como para generar un
problema. Por el contrario, detecta de forma eficaz si se produce dicha situacion
y la reintenta hasta que la actualizacion es satisfactoria. Esta deteccion suele ser
menos costosa que la adquisicién de un bloqueo, incluso en situaciones de
contencion moderada o alta.

¢Cémo lo hace la MV? La operacion CAS es atomica. Por tanto, la
operacion CAS tiene este aspecto:

int variableBeingSet;

void simulateNonBlockingSet (int newValue) {
int currentValue;
do {
currentvValue = variableBeingSet
} while(currentvalue != compareAndSwap(currentValue, newValue));

}

int synchronized compareAndSwap(int currentvValue, int newvValue) {
if(variableBeingSet == currentValue) {
variableBeingSet = newValue;
return currentvalue;

}

return variableBeingSet;

}

Cuando un método intenta actualizar una variable compartida, la operacion
CAS comprueba que la variable establecida sigue teniendo el ultimo wvalor
conocido. En caso afirmativo, se cambia la variable. En caso contrario, la
variable no se establece ya que otro subproceso ha conseguido acceder.

El método que realiza el intento (mediante la operaciéon CAS) ve que el
cambio no se ha realizado y lo intenta de nuevo.

Clases incompatibles con subprocesos

Existen clases que no son compatibles con subprocesos, como las siguientes:

SimpleDateFormat.
Conexiones de base de datos.
Contenedores de java.util.
Servlet.

Algunas clases de coleccion tienen métodos concretos compatibles con
subprocesos. Sin embargo, cualquier operacion que invoque mas de un método
no lo es. Por ejemplo, si no quiere reemplazar algo en HashTable porque ya
existe, podria crear el siguiente cOdig0: it (inashrabic. containskey(sonexey)) ¢

hashTable.put(someKey, new SomeValue());

}

Cada uno de los métodos es compatible con subprocesos. Sin embargo, otro
subproceso podria afiadir un valor entre las invocaciones de containsKey y put.
Existen varias formas de solucionar este problema:

e Bloquear primero HashTable y comprobar que los demadas usuarios de
HashTable hagan lo mismo; bloqueo basado en clientes:

synchronized(map) {
if(!map.containsKey(key))
map.put(key,value);
}

e Envolver HashTable en su propio objeto y usar dos API distintas; bloqueo
basado en servidores con un adaptador:

public class WrappedHashtable<K, V> {
private Map<K, V> map = new Hashtable<K, V>();

public synchronized void putIfAbsent(K key, V value) {
if (map.containsKey(key))
map.put(key, value);
}
}

e Usar colecciones compatibles con subprocesos:

ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<Integer, String>();
map.putIfAbsent(key, value);

Las colecciones de java.util.concurrent incluyen operaciones como
putIfAbsent () para acomodar este tipo de operaciones.

Las dependencias entre métodos pueden afectar al
codigo concurrente

El siguiente ejemplo es una forma de afiadir dependencias entre métodos:

public class IntegerIterator implements Iterator<Integer>
private Integer nextvalue = 0;

public synchronized boolean hasNext() {
return nextvalue < 100000;
}

public synchronized Integer next() {
if (nextvalue == 100000)
throw new IteratorPastEndException();
return nextValue++;

}
public synchronized Integer getNextvalue() {
return nextValue;

}

Veamos otro codigo que usa IntegerIterator:

IntegerIterator iterator = new IntegerIterator();
while(iterator.hasNext()) {

int nextvalue = iterator.next();

// hacer algo con nextValue

}

Si un subproceso ejecuta este codigo no habra problemas. ;Qué sucede si
dos subprocesos intentan compartir una misma instancia de IntegerIterator
para procesar el valor que reciba cada uno pero cada elemento de la lista solo se
procesa una vez? En la mayoria de los casos, no hay consecuencias negativas;
los subprocesos comparten la lista, procesan los elementos devueltos por el
iterador y se detienen cuando éste termina. Sin embargo, existe la posibilidad de
que al final de la iteracion los dos subprocesos interfieran entre ellos y
provoquen que uno supere el final del iterador y se genere una excepcion.

El problema es el siguiente: El subproceso 1 pregunta hasNext(), que
devuelve true. El subproceso 1 se evita y el subproceso 2 realiza la misma
pregunta, que sigue siendo true. Tras ello, el subproceso 2 invoca next (), que
devuelve un valor, como era de esperar, pero como efecto secundario hace que
hasNext () devuelva false.

Se vuelve a iniciar el subproceso 1, pensando que hasNext () sigue siendo
true, y después invoca next(). Aunque los métodos concretos estan
sincronizados, el cliente usa dos métodos.

Es un problema real y un ejemplo que puede surgir en codigo concurrente.
En este caso concreto, el problema es especialmente sutil ya que la tinica ocasion
en la que produce un fallo es durante la iteracion final del iterador. Si los
subprocesos se dividen de forma correcta, puede que uno supere el final del
iterador. Es el tipo de error que surge en un sistema que lleva tiempo en
produccion, y es dificil de detectar. Tiene tres opciones:

e Tolerar el fallo.

e Solucionar el problema cambiando el cliente: bloqueo basado en el cliente.

e Solucionar el problema cambiando el servidor, lo que también provoca que
cambie el cliente: bloqueo basado en el servidor.

Tolerar el fallo

En ocasiones, los sistemas se configuran para que un fallo no produzca dafios.
Por ejemplo, el cliente anterior podia capturar la excepcion y limpiarla, aunque
seria un tanto torpe. Es como limpiar fugas de memoria reiniciando a
medianoche.

Bloqueo basado en el cliente

Para que IntegerIterator funcione correctamente con varios subprocesos,
cambie el cliente (y los demas) como se indica a continuacion:

IntegerIterator iterator = new IntegerIterator();

while (true) {
int nextVvalue;
synchronized (iterator) {
if (!iterator.hasNext())
break;
nextValue = iterator.next();

zosometingwith(nextvalue) ;

Cada cliente afiade un bloqueo a través de la palabra clave synchronized.
Esta duplicacion incumple el principio DRY, pero puede ser necesaria si el
codigo usa agrupaciones de terceros no compatibles con subprocesos.

La estrategia es arriesgada ya que todos los programadores que usen el
servidor deben acordarse de bloquearlo antes de usarlo y de desbloquearlo
cuando terminen. Hace muchos afios, trabajé en un sistema que usaba el bloqueo
basado en el cliente en un recurso compartido. El recurso se usaba en cientos de
puntos distintos del codigo. Un pobre programador se olvido de bloquear el
recurso en uno de esos puntos.

Era un sistema de varios terminales con software de contabilidad para el
sindicato de transportistas. Local 705. El ordenador se encontraba en una sala de
temperatura controlada de un piso elevado, a unas 50 millas al norte de la sede
de Local 705. En la sede, decenas de trabajadores introducian datos en las
terminales, conectadas al ordenador mediante lineas telefénicas dedicadas y
modem semiduplex de 600bps (esto fue hace mucho, mucho tiempo).

Una vez al dia, una de las terminales se bloqueaba, sin razén aparente. El

bloqueo no tenia preferencia alguna por una terminal o una hora concreta. Es
como si alguien echara a suertes la terminal que bloquear y la hora del bloqueo.
En ocasiones, se bloqueaba mas de una terminal. En ocasiones, podian pasar
varios dias sin bloqueos.

Inicialmente, se optd por reiniciar como solucion, pero era complicado
coordinar los reinicios. Tenemos que avisar a la sede y esperar a que todos
terminaran lo que estuvieran haciendo en todas las terminales. Tras ello, se
apagaba el sistema y se reiniciaba. Si alguien estaba haciendo algo importante
para lo que necesitaba una o dos horas, la terminal bloqueada tenia que seguir
bloqueada.

Tras varias semanas de depuracion, descubrimos que la causa era un
contador de bufer circular desincronizado con su puntero. Este bufer controlaba
la salida a la terminal. El valor del puntero indicaba que el bufer estaba vacio
pero el contador mostraba que estaba lleno. Como estaba vacio, no habia nada
que mostrar; pero como también estaba lleno, no se podia afiadir nada al bufer
que mostrar en la pantalla.

Sabiamos qué era lo que bloqueaba las terminales pero no qué provocaba la
desincronizacion del bufer circular, por lo que afiadimos un truco para resolver
el problema. Se podian leer los conmutadores del panel frontal en el ordenador
(esto fue hace mucho, mucho, mucho tiempo). Disefiamos una funcién de trampa
que detectaba si uno de los conmutadores se habia generado y después
buscabamos un bufer circular que estuviera tanto lleno como vacio. Si lo
encontrabamos, lo variabamos. Voila! La terminal bloqueada volvia a
funcionar. De este modo no era necesario reiniciar el sistema si una terminal se
bloqueaba. La sede nos llamaba y nos decia que habia un bloqueo, nos
acercabamos hasta la sala de ordenadores y pulsabamos un conmutador.

En ocasiones ellos trabajan los fines de semana pero nosotros no. Por ello,
afiadimos una funcion al programador que comprobaba los bufer circulares una
vez por minuto y restablecia los que estuvieran tanto llenos como vacios. De este
modo se descongestionaban las pantallas antes de que la direccion llegara al
teléfono.

Necesitamos varias semanas de analisis de cdédigo de lenguaje de
ensamblado antes de localizar al culpable. Habiamos calculado que la frecuencia
de los bloqueos se debia a un uso desprotegido del bufer circular, asi que s6lo
era necesario determinar el uso fallido. Desafortunadamente, esto fue hace
mucho tiempo y no disponiamos de herramientas de busqueda, referencias
cruzadas ni de otras técnicas automaticas de ayuda. Teniamos que escudrifiar los
listados. En aquel frio invierno de 1971 en Chicago aprendi que los bloqueos
basados en el cliente son verdaderamente terribles.

Bloqueo basado en el servidor

La duplicacion se puede eliminar si modificamos IntegerIterator de esta
forma:

public class IntegerIteratorServerLocked {

}

private Integer nextvalue = 0;
public synchronized Integer getNextOrNull() {
if (nextvalue < 100000)
return nextValue++;
else
return null;

}

Y también cambia el codigo cliente:

while (true) {

}

Integer nextValue = iterator.getNextOrNull();
if (next == null)

break;
// hacer algo con nextValue

En este caso, en realidad cambiamos la API de la clase para que sea

compatible con el subproceso". El cliente debe realizar una comprobacion de
null en lugar de comprobar hasNext ().

Por lo general, el bloqueo basado en el servidor es preferible por estos

motivos:

Reduce el cdodigo repetido: El bloqueo basado en el servidor hace que el
cliente bloquee correctamente el servidor. Al incluir el cédigo de bloqueo
en el servidor, se libera a los clientes para usar el objeto y no tener que
preocuparse de crear codigo de bloqueo adicional.

Permite un mejor rendimiento: Puede intercambiar un servidor compatible
con subprocesos por otro incompatible en caso de desarrollo de un solo
subproceso, lo que evita la sobrecarga.

Reduce las posibilidades de error: S6lo se necesita un programador que se
olvide del bloqueo.

Aplica una tnica politica: La politica se aplica solamente al servidor, no a
todos los clientes.

Reduce el ambito de las variables compartidas: El cliente las desconoce y
tampoco sabe como se bloquean. Todo se oculta en el servidor. Cuando se
produce un fallo, su origen se busca en menos puntos.

¢Y sino es el propietario del codigo de servidor?

Usar un adaptador para cambiar la API y afiadir bloqueo

public class ThreadSafeIntegerIterator {
private IntegerIterator iterator = new IntegerIterator();

public synchronized Integer getNextOrNull() {
if(iterator.hasNext())
return iterator.next();
return null;
}
}

e Mejor todavia, usar colecciones compatibles con subprocesos con interfaces
ampliadas.

Aumentar la produccion

Imagine que desea leer el contenido de una serie de paginas de una lista de URL
en la red. Al leer cada pagina, la analizamos para acumular estadisticas. Después
de leer todas, imprimimos un informe de resumen.

La siguiente clase devuelve el contenido de una pagina, dada una URL.

public class PageReader {
/7.
public String getPageFor(String url) {
HttpMethod method = new GetMethod(url);

try {
httpClient.executeMethod(method);
String response = method.getResponseBodyAsString();
return response;

} catch (Exception e) {
handle(e);

} finally {
method.releaseConnection();

}

}
}

La siguiente clase es el iterador que proporciona el contenido de las paginas
en funcion de un iterador de URL:

public class Pagelterator {
private PageReader reader;
private URLIterator urls;

public PageIterator(PageReader reader, URLIterator urls) {
this.urls = urls;
this.reader = reader;

}

public synchronized String getNextPageOrNull() {
if (urls.hasNext())
getPageFor(urls.next());
else
return null;

}

public String getPageFor(String url) {
return reader.getPageFor(url);

}

Se puede compartir una instancia de PageIterator entre varios
subprocesos distintos, cada uno con su propia instancia de PageReader para leer
las paginas que obtiene del iterador.

Hemos reducido el tamafio del bloque synchronized. Simplemente
contiene la seccion critica de PageIterator. Siempre conviene sincronizar lo
menos posible.

Calculo de produccion de un solo subproceso

Vayamos con los calculos. Imagine lo siguiente, de acuerdo al argumento
anterior:

e Tiempo de E/S para recuperar una pagina (de media): 1 segundo.

e Tiempo de procesamiento para analizar la pagina (de media): .5 segundos.

e E/S requiere 0 por 100 de la CPU mientras que el procesamiento requiere
100 por 100.

Si se procesan N paginas en un mismo subproceso, el tiempo de ejecucion
total es de 1.5 segundos * N. En la figura A.1 puede ver una instantanea de 13
paginas, aproximadamente 19.5 segundos.

Un subproceso

Analizar pagina
obtener pagina — L{ L [T TLITTTTTTT LTI TTTL

Figura A.1. Un tinico subproceso

Calculo de produccion con varios subprocesos

Si se pueden recuperar paginas en cualquier orden y procesarlas de forma
independiente, entonces es posible usar varios subprocesos para aumentar la
produccion. ¢Qué sucede si usamos tres subprocesos? ;Cuantas paginas
podemos obtener en el mismo tiempo?

Como se aprecia en la figura A.2, la solucion con varios procesos permite
que el analisis de las paginas vinculado al proceso se solape con la lectura de las
mismas, vinculada a E/S. En un mundo ideal, significaria que el procesador se
utiliza totalmente. Cada lectura de pagina por segundo se solapa con dos analisis.
Por tanto, podemos procesar dos paginas por segundo, lo que triplica la
produccion de la solucién con un solo proceso.

Subproceso 1

Analizar pagina
obtener pagina — L{ L [T TLITTTTTTT LTI TTTL

Subproceso 2

Analizar pagina
obtener pagina — L LI L ITLTL LTI TLTLTLT

Subproceso 3

Analizar pagina
obtener pagina —| L/ L [T T T ML

Figura A.2. Tres subprocesos concurrentes.

Bloqueo mutuo

Imagine una aplicacion Web con dos agrupaciones de recursos compartidos de
tamafio finito:

e Una agrupacion de conexiones de base de datos para tareas locales de
almacenamiento de procesos.
e Una agrupacion de conexiones MQ a un repositorio principal.

Imagine que hay dos operaciones en la aplicacion: crear y actualizar:

e Crear: Adquirir una conexion al repositorio principal y la base de datos.
Comunicarse con el repositorio principal y después almacenar el trabajo
local en la base de datos de procesos.

e Actualizar: Adquirir una conexién a la base de datos y después al
repositorio principal. Leer el trabajo de la base de datos y enviarlo al
repositorio principal.

¢Qué sucede con los usuarios que superan el tamafio de la agrupacion?
Imagine que el tamafio de cada agrupacion es 10.

e 10 usuarios intentan usar crear, de modo que se adquieren diez conexiones

de base de datos y cada subproceso se interrumpe después de esta
adquisicion pero antes de adquirir una conexion al repositorio principal.

10 usuarios intentan usar actualizar, de modo que se adquieren las diez
conexiones al repositorio principal y cada subproceso se interrumpe
después de adquirir el repositorio principal pero antes de adquirir una
conexion a la base de datos.

Ahora los 10 subprocesos crear deben esperar a adquirir una conexién al
repositorio principal pero los 10 subprocesos actualizar deben esperar a
adquirir una conexion a la base de datos.

Bloqueo mutuo. El sistema no se recupera nunca.

Puede parecerle una situacion improbable pero ;quién desea un sistema que

se colapsa cada semana? ;Quién quiere depurar un sistema con sintomas tan
dificiles de reproducir? Es el tipo de problema que tarda semanas en resolverse.

Una solucion habitual consiste en afiadir instrucciones de depuracién para

determinar qué sucede. Evidentemente, estas instrucciones cambian tanto el
codigo que el bloqueo mutuo se genera en otras situaciones y tarda meses en
volver a producirse™".

Para solucionar realmente el problema del bloqueo absoluto, debemos

entender sus causas. Para que se produzca, deben darse cuatro condiciones:

Exclusion mutua.
Bloqueo y espera.
No expropiacion.
Espera circular.

Exclusion mutua

La exclusion mutua se produce cuando varios subprocesos deben usar los
mismos recursos y dichos recursos

No se pueden usar en varios subprocesos al mismo tiempo.
Son de numero limitado.

Un ejemplo tipico de este tipo de recurso es una conexion de base de datos,

un archivo abierto para escritura, un bloqueo de registro o un semaforo.

Bloqueo y espera

Cuando un subproceso adquiere un recurso, no lo libera hasta adquirir los demas
recursos que necesita y terminar su trabajo.

No expropiacion

Un subproceso no puede aduefiarse de los recursos de otro. Cuando un
subproceso obtiene un recurso, la unica forma de que otro lo consiga es que el
primero lo libere.

Espera circular

También se denomina abrazo mortal. Imagine dos subprocesos, T1 y T2, y dos
recursos, R1 y R2. T1 tiene R1, T2 tiene R2. T1 también necesita R2 y T2
también necesita R1. Es similar al diagrama de la figura A.3:

Subproceso 1 -

P \\\é.

(@um / *S?s
Recurso 2 Recurso 1
A f
AN /o
Q’s \ P4 mum

“~ Subproceso 2 <~ ¢

Figura A.3.

Estas cuatro condiciones deben cumplirse para que se produzca un bloqueo
mutuo. Si se incumple alguna de ellas, no se producira.

Evitar la exclusion mutua

Una estrategia para evitar el bloqueo mutuo es impedir la condicién de exclusion
mutua, por medio de lo siguiente:

e Usar recursos que permitan un uso simultdneo, como por ejemplo,

AtomicInteger.

e Incrementar el nimero de recursos para que sea igual o mayor que el
numero de subprocesos implicados.
e Comprobar que todos los recursos estan libres antes de adquirir ninguno.

Desafortunadamente, la mayoria de recursos son limitados y no permiten un
uso simultaneo, y es habitual que la identidad del segundo recurso se base en los
resultados de operar sobre el primero, pero no se desanime, todavia quedan tres
condiciones.

Evitar bloqueo y espera

También puede eliminar el bloqueo mutuo si rechaza la espera. Compruebe cada
uno de los recursos antes de obtenerlos y libere todos los recursos y comience de
nuevo si detecta uno que esté ocupado. Este enfoque genera algunos problemas:

¢ Inanicion: Un subproceso no consigue adquirir los recursos que necesita
(puede que tenga una combinacion exclusiva de recursos que casi nunca
esté disponible).

e Bloqueo activo: Varios subprocesos pueden actuar al unisono, adquirir un
recurso y liberarlo, de forma repetida. Es especialmente probable en
algoritmos de programaciéon de CPU simples (como dispositivos
incrustados o algoritmos de equilibrio de subprocesos escritos a mano).

En ambos casos, se puede reducir la produccion. El primero reduce la
utilizacion de la CPU, mientras que el segundo genera una elevada utilizacion de
la CPU sin sentido.

Aunque esta estrategia parezca ineficaz, es mejor que nada. Como ventaja,
siempre se puede implementar si todo lo demas falla.

Evitar la expropiacion

Otra estrategia para evitar el bloqueo mutuo consiste en permitir que todos los
subprocesos se apropien de los recursos de otros. Suele realizarse a través de un

sencillo mecanismo de solicitudes. Cuando un subproceso descubre que hay un
recurso ocupado, le solicita al propietario que lo libere. Si el propietario también
espera a otro recurso, lo libera y comienza de nuevo.

Es similar al enfoque anterior, pero, como ventaja, un subproceso puede
esperar a un recurso, lo que reduce el numero de reinicios. Sin embargo, la
gestion de todas estas solicitudes puede resultar complicada.

Evitar la espera circular

Es el enfoque mas habitual para impedir el bloqueo mutuo. En la mayoria de
sistemas, basta con una sencilla convencion acordada entre ambas partes.

En el ejemplo anterior del subproceso 1 que quiere tanto el recurso 1 como
el 2, y el subproceso 2 que desea tanto el recurso 2 como el 1, al forzar a ambos
subprocesos a que asignen los recursos en el mismo orden se imposibilita la
espera circular.

En general, si todos los subprocesos pueden acordar un orden global de los
recursos y si todos asignan los recursos en ese orden, el bloqueo mutuo es
imposible. Pero como todas las estrategias, también se pueden producir
problemas:

e El orden de adquisiciéon puede no corresponderse al orden de uso; por tanto,
un recurso adquirido al inicio puede que no se use hasta el final. Esto puede
bloquear recursos mas tiempo de lo estrictamente necesario.

e En ocasiones no se puede imponer un orden de adquisiciéon de recursos. Si
el ID del segundo recurso proviene de una operacion realizada en el
primero, ese orden no es factible.

Por tanto, existen varias formas de evitar el bloqueo mutuo. Algunas
provocan inanicion, mientras que otras usan la CPU en exceso y reducen la
capacidad de respuesta. jTANSTAAFL!"*

El aislamiento de la parte relacionada con subprocesos de su solucion para
permitir ajustes y experimentacion es una forma de aprender a determinar las
estrategias optimas.

Probar codigo con multiples subprocesos

¢Coémo se puede crear una prueba que demuestre que el siguiente c6digo no es

correcto?

(@ELg public class ClassWithThreadingProblem {
02: int nextId;

03:
04: public int takeNextId() {
05: return nextId++;
06: }
@78 }
Veamos la descripciéon de una prueba que lo demuestre:
e Recordar el valor actual de nextId.
e Crear dos subprocesos y que cada uno invoque takeNextId() una vez.
e Comprobar que el valor de nextId es dos mas que el inicial.
e Ejecutar hasta demostrar que nextId solo se ha incrementado en uno y no

en dos.

En el Listado A-2 se reproduce la prueba:

Listado A-2
ClassWithThreadingProblemTest.java.

(@ELg package example;

02:

OSE import static org.junit.Assert.fail;
04:

ObE import org.junit.Test;

06:
@78 public class ClassWithThreadingProblemTest {
08: @Test

09: public void twoThreadsShouldFailEventually() throws Exception {
e final ClassWithThreadingProblem classwWithThreadingProblem
= new ClassWithThreadingProblem();

11728 Runnable runnable = new Runnable() {
18 public void run() {
14: ClasswithThreadingProblem. takeNextId();

158 }
16: s
17

158 for (int i = 0; i < 50000; ++i) {
19: int startingId = classWithThreadingProblem.lastId;
20k int expectedResult = 2 + startingId;

2228 Thread t1 = new Thread(runnable);
2238 Thread t2 = new Thread(runnable);
24: tl.start();
258 t2.start();
26: tl.join();
278 t2.join();

28:

29: int endingId = classWithThreadingProblem.lastId;
30:

Sk if (endingId != expectedResult)

32: return;

S3E }

SHE fail(“Should have exposed a threading issue but it did not.”);

36: }
S }

Linea Descripcion

10

12-16

18

19

20
22-23

24-25
26-27

29
31-32

35

Crear una sola instancia de ClassWithThreadingProblem . Debemos
usar la palabra clave final ya que se usa después en una clase interna
anénima.

Crear una clase interna anénima que use la instancia de
ClassWithThreadingProblem .

Ejecutar este cdigo hasta demostrar que falla, pero no tanto como para
que la prueba tarde demasiado. Es un acto de equilibrio; no queremos
esperar demasiado para demostrar el fallo. Elegir la cantidad de
ejecuciones es complicado, aunque como veremos después, esta cifra se
puede reducir considerablemente.

Recordar el valor inicial, la prueba intenta demostrar que el codigo de
ClassWithThreadingProblem es incorrecto. Si se supera la prueba, lo
habra demostrado. Si la prueba falla, habra sido incapaz de demostrarlo.

Esperamos que el valor final sea dos mas que el actual.

Crear dos subprocesos que usen el objeto creado en las lineas 12-16. De
este modo contamos con dos posibles subprocesos que intentan usar
nuestra instancia de ClasswithThreadingProblem y ambos interfieren
entre si.

Hacer que los dos subprocesos se puedan ejecutar.

Esperar a que terminen los dos subprocesos antes de comprobar los
resultados.

Registrar el valor final.

¢Es diferente endingId a lo que esperabamos? En caso afirmativo, se
finaliza la prueba; hemos demostrado que el cédigo es incorrecto. En
caso negativo, volver a intentarlo.

Si hemos llegado hasta aqui, la prueba no ha podido demostrar que el
codigo de produccion era incorrecto en una cantidad de tiempo
razonable; el cddigo ha fallado. O no es incorrecto o no hemos realizado
suficientes iteraciones para que se produzca la condicion de fallo.

Esta prueba establece las condiciones de un problema de actualizacion

concurrente. Sin embargo, el problema es tan infrecuente que la mayoria de las
veces la prueba no lo detecta.

En realidad, para detectar el problema debemos establecer el nimero de
iteraciones en mas de un millon. Incluso con esa cantidad, en diez ejecuciones de
un bucle de 1 000 000, el problema sélo apareci6 una vez, lo que significa que
debemos aumentar las iteraciones para obtener fallos fiables. ;Cuanto estamos
dispuestos a esperar?

Aunque ajustaramos la prueba para obtener fallos fiables en un equipo,
seguramente tendriamos que ajustarla con otros valores para ilustrar el fallo en
otro equipo, sistema operativo o version de la MVJ.

Y es un problema sencillo. Si no podemos demostrarlo, ¢qué pasara cuando
detectemos problemas realmente complejos?

¢Qué enfoques debemos adoptar para demostrar este sencillo fallo? Y,
sobre todo, ;como podemos crear pruebas que demuestren fallos en un codigo
mas complejo? ;Como podremos saber si el codigo tiene fallos cuando ni
siquiera sabemos donde buscar?

Veamos algunas sugerencias:

e Pruebas Monte Carlo: Crear pruebas flexibles que se puedan ajustar.
Después, ejecutarlas repetidamente, por ejemplo, en un servidor de prueba,
y cambiar los valores de ajuste aleatoriamente. Si las pruebas fallan, el
codigo es incorrecto. Disefie las pruebas en las fases iniciales para que un
servidor de integracion continua las ejecute lo antes posible. Registre las
condiciones de fallo de las pruebas.

e Ejecutar la prueba en todas las plataformas de desarrollo: De forma repetida
y continuada. Cuanto mas tiempo se ejecuten las pruebas sin fallos, mas
probable es que

o El codigo de produccion sea correcto o
o Las pruebas no sean adecuadas para revelar los problemas.

e Ejecutar las pruebas en un equipo con distintas cargas: Si puede simular

cargas similares a las del entorno de produccién, hagalo.

Sin embargo, aunque realice todos estos pasos, no es probable que detecte
problemas de subprocesos en el codigo. Los problemas mas complicados son los
que solo se producen una vez cada mil millones de oportunidades. Son el azote
de los sistemas complejos.

Herramientas para probar codigo basado en
subprocesos

IBM ha creado la herramienta ConTest"?. Lo que hace es instrumentar las clases
para aumentar las probabilidades de que falle el c6digo sin subprocesos.

No tenemos relacion directa con IBM ni con el equipo que ha desarrollado
ConTest. Un colega nos la descubri6. Tras varios minutos de usarla, notamos
una gran mejoria en la deteccion de errores.

A continuacion, le indicamos cémo usar ConTest:

e Crear pruebas y codigo de produccién, asegurandonos que haya pruebas
disefiadas especificamente para simular varios usuarios con diferentes
cargas, Como mencionamos antes.

e Instrumentar el codigo de pruebas y produccion con ConTest.

e FEjecutar las pruebas.

Al instrumentar el codigo con ConTest, la tasa de éxito pasé de un fallo por
cada millon de iteraciones a un fallo en 30 iteraciones. Los valores de bucle de
las distintas ejecuciones de la prueba tras la instrumentacion son los siguientes:
13, 23, 0, 54, 16, 14, 6, 69, 107, 49, 2. Evidentemente, las clases instrumentadas
fallaban antes y con mayor fiabilidad.

Conclusion

En este capitulo hemos realizado un breve recorrido por el vasto y complejo
territorio de la programacion concurrente. Apenas hemos mostrado la superficie.
Nos hemos centrado en disciplinas para mantener la limpieza del cddigo
concurrente, pero hay mucho mas que aprender si tiene pensado disefiar sistemas
concurrentes. Le recomendamos que empiece por el libro de Doug Lea
Concurrent Programming in Java: Design Principles and Patterns“*.

En este capitulo hemos presentado la actualizacion concurrente y las
disciplinas de sincronizacion y bloqueo para evitarla. Hemos visto cémo los
subprocesos pueden mejorar la produccion de un sistema vinculado a E/S y las
técnicas limpias para lograr dichas mejoras. Hemos descrito el bloqueo mutuo y
las disciplinas para evitarlo de forma limpia.

Por ultimo, hemos analizado estrategias para mostrar problemas de

concurrencia mediante la instrumentacion del codigo.

Ejemplos de codigo completos

Cliente/Servidor sin subprocesos

Listado A-3
Server.java

package com.objectmentor.clientserver.nonthreaded;

import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;

import java.net.SocketException;

import common.MessageUtils;

public class Server implements Runnable {
ServerSocket serverSocket;
volatile boolean keepProcessing = true;

public Server(int port, int millisecondsTimeout) throws IOException
serverSocket = new ServerSocket(port);
serverSocket.setSoTimeout(millisecondsTimeout);

~

public void run() {
System.out.printf(“Server Starting\n”);

while (keepProcessing) {

try {
System.out.printf(“accepting client\n”);
Socket socket = serverSocket.accept();
System.out.printf(“got client\n”);
process(socket);

} catch (Exception e) {
handle(e);

}

private void handle(Exception e) {
if (!(e instanceof SocketException)) {
e.printStackTrace();

}

public void stopProcessing() {
keepProcessing = false;
closeIgnoringException(serverSocket);

void process(Socket socket) {
if (socket == null)
return;

try {
System.out.printf(“Server: getting message\n”);
String message = MessageUtils.getMessage(socket);
System.out.printf(“Server: got message: %s\n”, message);
Thread.sleep(1000);
System.out.printf(“Server: sending reply: %s\n”, message);
MessageUtils.sendMessage(socket, “Processed: ” + message);
System.out.printf(“Server: sent\n”);

closeIgnoringException(socket);
} catch (Exception e) {
e.printStackTrace();

}

private void closeIgnoringException(Socket socket) {

if (socket
try {

= null)

socket.close();
} catch (IOException ignore) {

private void closeIgnoringException(ServerSocket serverSocket) {
if (serverSocket != null)

try {

serverSocket.close();
} catch (IOException ignore) {

}

Listado A-4
ClientTest.java.

package com.

import
import
import
import

import

java.io.IOException;
java.net.ServerSocket;
java.net.Socket;
java.net.SocketException;

common.MessageUtils;

objectmentor.clientserver.nonthreaded;

public class Server implements Runnable {
ServerSocket serverSocket;
volatile boolean keepProcessing = true;

public Server(int port,

int millisecondsTimeout) throws IOException

serverSocket = new ServerSocket(port);
serverSocket.setSoTimeout(millisecondsTimeout);

public void run() {
System.out.printf(“Server Starting\n”);

while (keepProcessing) {

try {

System.out.printf(“accepting client\n”);
Socket socket = serverSocket.accept();
System.out.printf(“got client\n”);
process(socket);

} catch (Exception e) {
handle(e);

}

private void handle(Exception e) {
if (!(e instanceof SocketException)) {
e.printStackTrace();

}

public void stopProcessing() {
keepProcessing = false;
closeIgnoringException(serverSocket);

void process(Socket socket) {
if (socket == null)

return;

try {
System.
String
System.
Thread
System.

out.printf(“Server:

getting message\n”);

message = MessageUtils.getMessage(socket);

out.printf(“Server:

.sleep(1000);

out.printf(“Server:

got message: %s\n”, message);

sending reply: %s\n”, message);

~

MessageUtils.sendMessage(socket, “Processed: ” + message);
System.out.printf(“Server: sent\n”);
closeIgnoringException(socket);

} catch (Exception e) {
e.printStackTrace();

}

private void closeIgnoringException(Socket socket) {
if (socket !'= null)
try {
socket.close();
} catch (IOException ignore) {

}
}
private void closeIgnoringException(ServerSocket serverSocket) {
if (serverSocket != null)
try {

serverSocket.close();
} catch (IOException ignore) {
}

Listado A-5
MessageUtils.java.

package common;

import java.io.IOException;

import java.io.InputStream;

import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.net.Socket;

public class MessageUtils {
public static void sendMessage(Socket socket, String message)
throws IOException {
OutputStream stream = socket.getOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(stream);
0os.writeUTF(message);
oos.flush();

public static String getMessage(Socket socket) throws IOException {
InputStream stream = socket.getInputStream();
ObjectInputStream ois = new ObjectInputStream(stream);
return ois.readUTF();

Cliente/Servidor con subprocesos

Para cambiar el servidor para que use subprocesos basta con cambiar el mensaje
process (las nuevas lineas se muestran en negrita para destacarlas):

void process(final Socket socket) {
if (socket == null)
return;

Runnable clientHandler = new Runnable() {
public void run() {
try {

System.out.printf(“Server: getting message\n”);
String message = MessageUtils.getMessage(socket);
System.out.printf(“Server: got message: %s\n”, message);
Thread.sleep(1000);
System.out.printf(“Server: sending reply: %s\n”, message);
MessageUtils.sendMessage(socket, “Processed: ” + message);
System.out.printf(“Server: sent\n”);
closeIgnoringException(socket);

} catch (Exception e) {
e.printStackTrace();

}
3

Thread clientConnection = new Thread(clientHandler);
clientConnection.start();

o oA W N B

~

Listado B-1
SerialDate.Java

Apendice B
org.jfree.date.SerialDate

J*
* JCommon: biblioteca gratuita de clases de propdésito general para Java(tm)

*

*

*

(C) Copyright 2000-2005, de Object Refinery Limited y colaboradores.

*

Informacién del proyecto: http://www.jfree.org/jcommon/index.html

*

Esta biblioteca es software gratuito; puede distribuirla y/o modificarla

*

bajo las condiciones de la Licencia publica general GNU publicada por

*

la Free Software Foundation; ya sea la versién 2.1 de la licencia, u

*

otra versién posterior (de su elecciédn).

*

Esta biblioteca se distribuye con la intencién de que sea util, pero
SIN GARANTIA ALGUNA, incluida la garantia implicita de COMERCIABILIDAD
e IDONEIDAD PARA UN DETERMINADO FIN. Consulte la Licencia

publica general GNU si necesita mas informacién al respecto.

*

*

*

*

Deberia haber recibido una copia de la Licencia publica general GNU

*

junto a esta biblioteca; en caso contrario, contacte con la Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* EE.UU.

*

*

[Java es una marca comercial o marca comercial registrada de Sun

*

Microsystems, Inc. en Estados Unidos y otros paises.]

*
173
0}
=S
b
o
jud
o
o
=
®

[
o
<
S

*

(C) Copyright 2001-2005, de Object Refinery Limited.

*

Autor original: David Gilbert (para Object Refinery Limited);

*

Colaborador(es): -;

*

$Id: SerialDate.java,v 1.7 2005/11/03 09:25:17 mungady Exp $

*

Cambios (11-0Oct-2001)

*

11-0ct-2001: Reorganizacién de la clase y cambio a un nuevo paquete

*

com.jrefinery.date (DG);

*

05-Nov-2001: Se afiade un método getDescription() y se elimina la clase
NotableDate (DG);

*

*

12-Nov-2001: IBD requiere el método setDescription(), una vez eliminada la clase

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
68
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107

*

*

*

*

*

*

*

*

*

*

*

*

*/

NotableDate (DG); Se cambian getPreviousDayOfWeek(),

getFollowingDayOfWeek() y getNearestDayOfWeek() para corregir

errores (DG);

05-Dic-2001: Error corregido en la clase SpreadsheetDate (DG);

29-May-2002: Se transfieren las constantes de mes a una interfaz independiente
(MonthConstants) (DG);

27-Ago-2002: Error corregido en el método addMonths(), gracias a Nalevka Petr (DG);
03-0ct-2002: Errores indicados por Checkstyle (DG) corregidos;

13-Mar-2003: Implementacidén de Serializable (DG);

29-May-2003: Error corregido en el método addMonths (DG);

04-Sep-2003: Implementacidén de Comparable. Actualizacién de los javadoc isInRange (DG);

05-Ene-2005: Error corregido en el método addYears() (1096282) (DG);

package org.jfree.date;

import java.io.Serializable;

import java.text.DateFormatSymbols;

import java.text.SimpleDateFormat;

import java.util.Calendar;

import java.util.GregorianCalendar;

Vit

*

*

*

*

*

*

*

*

*

*

*

*

*

*/

Clase abstracta que define nuestros requisitos para manipular fechas,

sin limitacién a una determinada implementacion.

<P>

Requisito 1: coincidir al menos con el procesamiento de fechas en Excel;
Requisito 2: la clase es inmutable;

<P>

¢Por qué no usar java.util.Date? Lo haremos, cuando tenga sentido. En ocasiones
java.util.Date puede ser demasiado precisa; representa un instante en el tiempo,
con una precisién de 1/1000 de segundo (y la fecha depende de la

zona horaria). En ocasiones s6lo querremos representar un dia concreto (como el 21
de enero de 2015) sin preocuparnos de la hora del dia, la

zona horaria u otros aspectos. Para eso hemos definido DayDate.

<P>

Puede invocar getInstance() para obtener una subclase concreta de SerialDate,

sin preocuparse de su implementacién exacta

@author David Gilbert

public abstract class SerialDate implements Comparable,

Serializable,
MonthConstants {

/** Para serializacién. */
private static final long serialVersionUID = -293716040467423637L;

/** Simbolos de formato de fecha. */

public static final DateFormatSymbols
DATE_FORMAT_SYMBOLS = new SimpleDateFormat().getDateFormatSymbols();

/** Numero de serie para el 1 de enero de 1900. */
public static final int SERIAL_LOWER_BOUND = 2;

/** Numero de serie para el 31 de diciembre de 9999. */
public static final int SERIAL_UPPER_BOUND = 2958465;

/** Valor de afio mas bajo admitido por este formato de fecha. */
public static final int MINIMUM_YEAR_SUPPORTED = 1900;

/** Valor de afio mas alto admitido por este formato de fecha. */
public static final int MAXIMUM_YEAR_SUPPORTED = 9999;

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

/** Constante util para lunes; equivale a java.util.Calendar.MONDAY. */
public static final int MONDAY = Calendar.MONDAY;

Jrx
* Constante util para martes; equivale a java.util.Calendar.TUESDAY.
*/

public static final int TUESDAY = Calendar.TUESDAY;

Jrx
* Constante util para miércoles; equivale a

* java.util.Calendar.WEDNESDAY .

*/

public static final int WEDNESDAY = Calendar.WEDNESDAY;

Jrx
* Constante util para jueves; equivale a java.util.Calendar.THURSDAY.
*/

public static final int THURSDAY = Calendar.THURSDAY;

/** Constante util para viernes; equivale a java.util.Calendar.FRIDAY. */
public static final int FRIDAY = Calendar.FRIDAY;

Jrx
* Constante util para sabado; equivale a java.util.Calendar.SATURDAY.
*/

public static final int SATURDAY = Calendar.SATURDAY;

/** Constante util para domingo; equivale a java.util.Calendar.SUNDAY. */
public static final int SUNDAY = Calendar.SUNDAY;

/** Numero de dias de cada mes en afios no bisiestos. */
static final int[] LAST_DAY_OF_MONTH =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

/** Numero de dias en un afio (no bisiesto) hasta el final de cada mes. */
static final int[] AGGREGATE_DAYS_TO_END_OF_MONTH =
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};

/** Numero de dias en un afio hasta el final del mes anterior. */
static final int[] AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =
{0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};

/** Numero de dias en un afio bisiesto hasta el final de cada mes. */
static final int[] LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH =
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};

Jrx
* Numero de dias en un afio bisiesto hasta el final del mes anterior.
*/

static final int[]
LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =

{0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};

/** Una constante Util para hacer referencia a la primera semana del mes.
public static final int FIRST_WEEK_IN_MONTH = 1;

/** Una constante Util para hacer referencia a la segunda semana del mes.
public static final int SECOND_WEEK_IN_MONTH = 2;

/** Una constante Util para hacer referencia a la tercera semana del mes.
public static final int THIRD_WEEK_IN_MONTH = 3;

/** Una constante Util para hacer referencia a la cuarta semana del mes.

*/

*/

*/

*/

172

174
175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192

194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212

214
215
216
217
218
219
220
221
222

224
225
227
228
229
230
231
232

234
235
236

public static final int FOURTH_WEEK_IN_MONTH = 4;

/** Una constante G(til para hacer

public static final int LAST_WEEK_

/** Constante de intervalo. */

referencia a la Ultima semana del mes. */
IN_MONTH = 0;

public static final int INCLUDE_NONE = 0;

/** Constante de intervalo. */

public static final int INCLUDE_FIRST = 1;

/** Constante de intervalo. */

public static final int INCLUDE_SECOND = 2;

/** Constante de intervalo. */

public static final int INCLUDE_BOTH = 3;

Jrx
* Constante Util para especificar
* fija.

*/

public static final int PRECEDING

Jrx
* Constante Gtil para especificar
* fija.

*/

public static final int NEAREST =

Jrx
* Constante Util para especificar
* fija.

*/

public static final int FOLLOWING

/** Una descripcién para la fecha.

private String description;

Jrx
* Constructor predeterminado.
*/

protected SerialDate() {

}

J*

un dia de la semana con respecto a una fecha

un dia de la semana con respecto a una fecha

un dia de la semana con respecto a una fecha

* Devuelve <code>true</code> si el cédigo entero proporcionado representa un

* dia de la semana valido y <code>false</code> en caso contrario.

*

* @param code el cédigo del que se comprueba la validez.

*

* @return <code>true</code> si el

coédigo entero proporcionado representa un

* dia de la semana valido y <code>false</code> en caso contrario.

*/

public static boolean isValidweekdayCode(final int code) {

switch(code) {
case SUNDAY:
case MONDAY:
case TUESDAY:
case WEDNESDAY:
case THURSDAY:
case FRIDAY:
case SATURDAY:
return true;
default:

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

re

}

J*
z
z
z
z
z
z
*/
pu

fi

fi

in
s
fo
if
re
br
}
if
re
br
}
}

re

.
.
.
.
.
.
.
.
5y
pu

fi

re

/*
*/
pu

re

/*

*

turn false;

*

Convierte la cadena proporcionada en un dia de la semana.

@param s una cadena que representa el dia de la semana.

@return <code>-1</code> si la cadena no se puede convertir o el dia de

la semana en caso contrario.

blic static int stringToWeekdayCode(String s) {

nal String[] shortWeekdayNames
DATE_FORMAT_SYMBOLS.getShortwWeekdays();
nal String[] weekDayNames = DATE_FORMAT_SYMBOLS.getWeekdays();

t result = -1;

= s.trim();

r (int i = @; i < weekDayNames.length; i++) {
(s.equals(shortweekdayNames[i])) {

sult = i;

eak;

(s.equals(weekDayNames[i])) {
sult = i;

eak;

turn result;

*

Devuelve una representacién en cadena del dia de la semana proporcionado.

<pP>

Necesitamos un enfoque mejor.

@param weekday el dia de la semana.

@return una cadena que representa el dia de la semana proporcionado.

blic static String weekdayCodeToString(final int weekday) {

nal String[] weekdays = DATE_FORMAT_SYMBOLS.getWeekdays();

turn weekdays[weekday];

*

Devuelve una matriz de nombres de mes.

@return una matriz de nombres de mes.

blic static String[] getMonths() {

turn getMonths(false);

*

Devuelve una matriz de nombres de mes.

301
302

304
305
306
307
308
309
310
311
312

314
315
316
317
318
319
320
321
322

324
325
326
327
328
329
330
331
332

334
335
336
337
338
339
340
341
342

344
345
346
347
348
349
350
351
352

354
355
356
357
358
359
360
361
362

364

* @param shortened un indicador para indicar que deben devolverse los nombres

* de

*

* @return una matriz de nombres de mes.

*/

public static String[] getMonths(final boolean shortened) {

mes en formato reducido.

if (shortened) {

return DATE_FORMAT_SYMBOLS.getShortMonths();

}

else

return DATE_FORMAT_SYMBOLS.getMonths();

}

J*

* Devuelve true si el cédigo entero proporcionado representa un mes valido.

*

* @param code el cédigo del que se comprueba la validez.

*

* return <code>true</code> si el c6digo entero proporcionado representa un

{

* mes valido.

*/

public static boolean isValidMonthCode(final int code) {

switch(code) {

case

case

case

case

case

case

case

case

case

case

case

case

JANUARY :
FEBRUARY :
MARCH:
APRIL:
MAY :
JUNE:
JULY:
AUGUST :
SEPTEMBER:
OCTOBER:
NOVEMBER:
DECEMBER:

return true;
default:

return false;

}

J*

* Devuelve el trimestre del mes especificado.

*

* @param code el cédigo del mes (1-12).

*

* @return el trimestre al que pertenece el mes.

* @throws java.lang.IllegalArgumentException

*/

public static int monthCodeToQuarter(final int code) {

switch(code) {

case

case

case

case

case

case

JANUARY :
FEBRUARY :

MARCH: return 1;
APRIL:

MAY :

JUNE: return 2;

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

case JULY:

case AUGUST:

case SEPTEMBER: return 3;

case OCTOBER:

case NOVEMBER:

case DECEMBER: return 4;

default: throw new IllegalArgumentException(
“SerialDate.monthCodeToQuarter: invalid month code.”);

}

J**

Devuelve una cadena que representa el mes proporcionado.

*

* <P>

*

La cadena devuelta es la forma extensa del nombre del mes obtenido de la

*

configuracién regional.

*

@param month el mes.

*

@return una cadena que representa el mes proporcionado
*/
public static String monthCodeToString(final int month) {

return monthCodeToString(month, false);

J*

Devuelve una cadena que representa el mes proporcionado.

*

* <P>

*

La cadena devuelta es la forma extensa o reducida del nombre del mes

*

obtenido de la configuracién regional.

*

@param month el mes.

*

@param shortened si <code>true</code> devuelve la abreviatura del

* mes.

*

@return una cadena que representa el mes proporcionado.

*

@throws java.lang.IllegalArgumentException
*/
public static String monthCodeToString(final int month,

final boolean shortened) {

// comprobar argumentos..

if (!isvalidMonthCode(month)) {

throw new IllegalArgumentException(
“SerialDate.monthCodeToString: month outside valid range.”);

}

final String[] months;

if (shortened) {
months = DATE_FORMAT_SYMBOLS.getShortMonths();
}

else {

months = DATE_FORMAT_SYMBOLS.getMonths();
}

return months[month - 1];

J**

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

*

* <pP>

*

*

*

*

*

* afio en caso contrario.
*/

public static int stringToMonthCode(String s) {

final String[] shortMonthNames = DATE_FORMAT_SYMBOLS.getShortMonths();
= DATE_FORMAT_SYMBOLS.getMonths();

final String[] monthNames

int result = -1;

s = s.trim();

// primero intentar analizar la cadena como entero (1-12)..

try {
result = Integer.parselnt

}

Convierte una cadena en el cédigo del mes.
Este método devuelve una de las constantes JANUARY, FEBRUARY,
DECEMBER correspondientes a la cadena. Si la cadena no se

reconoce, este método devuelve -1.

@param s la cadena que analizar

(s);

catch (NumberFormatException e) {

// suprimir

}

// buscar por los nombres de los meses..

if ((result < 1) || (result > 12)) {

for (int i = ©; i < monthNames.length; i++) {

if (s.equals(shortMonthNames[i])) {

result = i + 1;

break;

}

if (s.equals(monthNames[i
result = i + 1;

break;

}

}

}

return result;

Jx*

* Devuelve true si el cédigo entero proporcionado representa una semana

* del mes valida y false en caso contrario

*

* @param code el cédigo del que se comprueba la validez.

* @return <code>true</code> si el cédigo entero proporcionado representa una

* semana del mes valida.
*/

public static boolean isValidwWeekInMonthCode(final int code) {

switch(code) {

case FIRST_WEEK_IN_MONTH:
case SECOND_WEEK_IN_MONTH
case THIRD_WEEK_IN_MONTH:
case FOURTH_WEEK_IN_MONTH
case LAST_WEEK_IN_MONTH:
default: return false;

}

M {

return true;

ang

@return <code>-1</code> si la cadena no se puede analizar, o el mes del

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

Jrx
* Determina si el afio especificado es bisiesto o no.

*

* @param yyyy el afio (entre 1900 y 9999).

* @return <code>true</code> si el afio especificado es bisiesto.
*/

public static boolean isLeapYear(final int yyyy) {

if ((yyyy % 4) !'=0) {

return false;

}

else if ((yyyy % 400) == 0) {
return true;

}

else if ((yyyy % 100) == 0) {
return false;

}

else {

return true;

}

Jrx
Devuelve el numero de afios bisiestos desde 1900 hasta el afio especificado
INCLUSIVE.

*

*

* <p>

*

1900 no es un afio bisiesto.

*

@param yyyy el afio (entre 1900 y 9999).

*

@return el ndmero de afios bisiestos desde 1900 hasta el afio especificado.
*/
public static int leapYearCount(final int yyyy) {

final int leap4 = (yyyy - 1896) / 4;
final int leap100 = (yyyy - 1800) / 100;
final int leap400 = (yyyy - 1600) / 400;
return leap4 - leapl00 + leap400;

Jrx
* Devuelve el nimero del ultimo dia del mes, teniendo en cuenta los
* afios bisiestos.

*

* @param month el mes.

* @param yyyy el afio (entre 1900 y 9999).

*

* @return el numero del Gltimo dia del mes.

*/

public static int lastDayOfMonth(final int month, final int yyyy) {

final int result = LAST_DAY_OF_MONTH[month];
if (month != FEBRUARY) {

return result;

}

else if (isLeapYear(yyyy)) {

return result + 1;

}

else {

557
558
5509
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
515
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

return result;

}

J*

* Crea una nueva fecha afiadiendo el nimero especificado de dias a la fecha

* base.

*

* @param days el nimero de dias que afadir (puede ser negativo).

* @param base la fecha base.

*

* @return una nueva fecha.

*/

public static SerialDate addDays(final int days, final SerialDate base) {

final int serialDayNumber = base.toSerial() + days;

return SerialDate.createInstance(serialDayNumber);

J*

*

* base.

* <pP>

*

*

*

*

*

*/

se puede ajustar ligeramente: 31 Mayo + 1 mes

@param base la fecha base.

@return una nueva fecha.

Crea una nueva fecha afiadiendo el numero especificado de meses a la fecha

Si la fecha base es préoxima al final del mes, el dia del resultado

30 Junio.

@param months el numero de meses que afiadir (puede ser negativo).

public static SerialDate addMonths(final int months,

final SerialDate base) {

final int yy = (12 * base.getYYYY() + base.getMonth() + months - 1)

/ 12;

final int mm = (12 * base.getYYYY() + base.getMonth() + months - 1)

% 12 + 1;
final int dd = Math.min(
base.getDayOfMonth(), SerialDate.lastDayOfMonth(mm, yy)

)i

return SerialDate.createInstance(dd, mm, yy);

J*

* Crea una nueva fecha afiadiendo el numero especificado de afios a la fecha

* base.

*

* @param years el numero de afios que afiadir (puede ser negativo).

* @param base la fecha base.

*

* @return Una nueva fecha.

*/

public static SerialDate addyears(final int years, final SerialDate base) {

final
final

final

final

final

int
int

int

int

int

baseY =
baseM =

baseD =

targety
targetD

base.getYYYY();
base.getMonth();

base.getDay0fMonth();

baseY + years;
Math.min(

621
622

624
625
626
627
628
629
630
631
632

634
635
636
637
638
639
640
641
642

644
645
646
647
648
649
650
651
652

654
655
656
657
658
659
660
661
662

664
665
666
667
668
669
670
671
672

674
675
676
677
678
679
680
681
682

684

baseD, SerialDate.lastDayOfMonth(baseM, targetY)
)i

return SerialDate.createInstance(targetD, baseM, targetY);

Jrx
* Devuelve la ultima fecha correspondiente al dia de la semana especificado y
* ANTERIOR a la fecha base.

*

* @param targetWeekday un cédigo para el dia de la semana de destino.

* @param base la fecha base.

*

* @return la ultima fecha correspondiente al dia de la semana especificado y
* ANTERIOR a la fecha base.

*/

public static SerialDate getPreviousDayOfWeek(final int targetWeekday,

final SerialDate base) {

// comprobar argumentos..

if (!SerialDate.isValidweekdayCode(targetWeekday)) {
throw new IllegalArgumentException(

“Invalid day-of-the-week code.”

)i

}

// buscar la fecha..

final int adjust;

final int baseDOW = base.getDayOfWeek();

if (baseDOW > targetWeekday) {

adjust = Math.min(0, targetWeekday - baseDOW);

}

else {

adjust = -7 + Math.max(0, targetWeekday - baseDOW);
}

return SerialDate.addDays(adjust, base);

Jrx
* Devuelve la primera fecha que coincide con el dia de la semana especificado
* y POSTERIOR a la fecha base.

*

* @param targetWeekday un cédigo para el dia de la semana de destino.

* @param base la fecha base.

*

* @return la primera fecha que coincide con el dia de la semana especificado
* y POSTERIOR a la fecha base.

*/

public static SerialDate getFollowingDayOfWeek(final int targetWeekday,

final SerialDate base) {

// comprobar argumentos..

if (!SerialDate.isValidweekdayCode(targetWeekday)) {
throw new IllegalArgumentException(

“Invalid day-of-the-week code.”

)i

}

// buscar la fecha..
final int adjust;
final int baseDOW = base.getDayOfWeek();

685
686
687
688
689
690
691
692

694
695
696
697
698
699
700
701
702

704
705
706
707
708
709
710
711
712

714
715
716
717
718
719
720
721
722

724
725
726
727
728
729
730
731
732

734
735
736
737
738
739
740
741
742

744
745
746
747
748

if (baseDOW > targetWeekday) {

adjust = 7 + Math.min(©, targetWeekday - baseDOW);
}

else {

adjust = Math.max(0, targetWeekday - baseDOW);

}

return SerialDate.addDays(adjust, base);

}

Jrx
* Devuelve la fecha que coincide con el dia de la semana especificado y mas
* PROXIMA a la fecha base.

*

* @param targetDOW un cédigo para el dia de la semana de destino.

* @param base la fecha base.

*

* @return la fecha que coincide con el dia de la semana especificado y mas
* PROXIMA a la fecha base.

*/

public static SerialDate getNearestDayOfwWeek(final int targetDOW,

final SerialDate base) {

// comprobar argumentos..

if (!SerialDate.isValidweekdayCode(targetDow)) {
throw new IllegalArgumentException(

“Invalid day-of-the-week code.”

)i

}

// buscar la fecha..

final int baseDOW = base.getDayOfWeek();

int adjust = -Math.abs(targetDOW - baseDOW);
if (adjust >= 4) {

adjust = 7 - adjust;

}

if (adjust <= -4) {

adjust = 7 + adjust;

}

return SerialDate.addDays(adjust, base);

Jrx
* Avanzar la fecha hasta el Gltimo dia del mes.

*

* @param base la fecha base.

*

* @return una nueva fecha de serie.

*/

public SerialDate getEndOfCurrentMonth(final SerialDate base) {

final int last = SerialDate.lastDayOfMonth(

base.getMonth(), base.getYYYY()

)i

return SerialDate.createInstance(last, base.getMonth(), base.getYYYY())

}

Jrx
* Devuelve una cadena correspondiente al cédigo de la semana del mes.
* <p>

* Necesitamos un enfoque mejor.

* @param count un cédigo entero que representa la semana del mes.

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

* @return una cadena correspondiente al cédigo de la semana del mes.

*/
public static String weekInMonthToString(final int count) {

switch (count) {

case SerialDate.FIRST_WEEK_IN_MONTH : return “First”;
case SerialDate.SECOND_WEEK_IN_MONTH : return “Second”;
case SerialDate.THIRD_WEEK_IN_MONTH : return “Third”;
case SerialDate.FOURTH_WEEK_IN_MONTH : return “Fourth”;
case SerialDate.LAST_WEEK_IN_MONTH : return “Last”;
default

return “SerialDate.weekInMonthToString(): invalid code.”;

}

J*

* Devuelve una cadena que representa el valor ‘relativo’ proporcionado.

* <pP>

* Necesitamos un enfoque mejor.

*

* @param relative una constante que representa el valor ‘relativo’

*

* @return una cadena que representa el valor ‘relativo’ proporcionado.

*/

public static String relativeToString(final int relative) {

switch (relative) {

case SerialDate.PRECEDING : return “Preceding”;
case SerialDate.NEAREST : return “Nearest”;
case SerialDate.FOLLOWING : return “Following”;
default : return “ERROR : Relative To String”;
}

J*

* Método de factoria que devuelve una instancia de una subclase concreta de

* {@link SerialDate}.

* @param day el dia (1-31).

* @param month el mes (1-12).

* @param yyyy el afio (entre 1900 y 9999).

* @return Una instancia de {@link SerialDate}
*/

public static SerialDate createInstance(final int day, final int month,

final int yyyy) {
return new SpreadsheetDate(day, month, yyyy);
}

J**

* Método de factoria que devuelve una instancia de una subclase concreta de

* {@link SerialDate}.

*

* @param serial numero de serie del dia (1 de enero de 1900

*
* @return una instancia de SerialDate.

*/

public static SerialDate createInstance(final int serial) {
return new SpreadsheetDate(serial);

}

J*

2).

814
815
816
817
818
818
820
821
822

824
825
826
827
828
829
830
831
832

834
835
836
837
838
839
840
841
842

844
845
846
847
848
849
850
851
852

854
855
856
857
858
859
860
861
862

864
865
866
867
868
869
870
871
872

874
875
876

* Método de factoria que devuelve una instancia de una subclase de SerialDate.

* @param date Un objeto de fecha de Java.
*

* @return una instancia de SerialDate.

*/

public static SerialDate createInstance(final java.util.Date date) {

final GregorianCalendar calendar = new GregorianCalendar();
calendar.setTime(date);

return new SpreadsheetDate(calendar.get(Calendar.DATE),
calendar.get(Calendar.MONTH) + 1,
calendar.get(Calendar.YEAR));

Jrx
* Devuelve el numero de serie de la fecha, siendo el 1 de enero de 1900 = 2 (se
* corresponde, casi totalmente, al sistema de numeracién empleado en Microsoft
* Excel para Windows y Lotus 1-2-3).

*

* @return el numero de serie de la fecha.

*/

public abstract int toSerial();

Jrx
* Devuelve java.util.Date. Como java.util.Date tiene mayor precisién que
* SerialDate, debemos definir una convencién para “la hora del dia”

*

* @return this como <code>java.util.Date</code>.

*/

public abstract java.util.Date toDate();

Jrx
* Devuelve una descripcién de la fecha.
*

* @return una descripcién de la fecha.
*/

public String getDescription() {

return this.description;

}

Jrx
* Establece la descripcién de la fecha.

* @param description la nueva descripcién de la fecha.
*/

public void setDescription(final String description) {
this.description = description;

}

Jrx
* Convierte la fecha en una cadena.

*

* @return una representacién en cadena de la fecha.

*/

public String toString() {

return getDayOfMonth() + “-” + SerialDate.monthCodeToString(getMonth())
+ Y-+ getYYYY();

}

J*

* Devuelve el afio (con un intervalo véalido de 1900 a 9999).

*

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

* @return el afio.
*/
public abstract int getYYYY();

J**

* Devuelve el mes (Enero = 1, Febrero = 2, Marzo = 3).

* @return el mes del afo.
*/
public abstract int getMonth();

Jrx
* Devuelve el dia del mes.

*

* @return el dia del mes.
*/
public abstract int getDayOfMonth();

Jrx
* Devuelve el dia de la semana.

*

* @return el dia de la semana.
*/
public abstract int getDayOfweek();

J*

Devuelve la diferencia (en dias) entre esta fecha y la

*

*

‘otra’ fecha especificada.

* <pP>

*

El resultado es positivo si esta fecha es posterior a la ‘otra’ y

*

negativo si es anterior.

*

@param other la fecha con la que se compara.

*

@return la diferencia entre esta fecha y la otra.
*/

public abstract int compare(SerialDate other);

Jrx
* Devuelve true si esta SerialDate representa la misma fecha que la
* SerialDate especificada.

*

* @param other la fecha con la que se compara.

*

* @return <code>true</code> si esta SerialDate representa la misma fecha que
* la SerialDate especificada.

*/

public abstract boolean isOn(SerialDate other);

Jrx
* Devuelve true si esta SerialDate representa una fecha anterior en
* comparacion a la SerialDate especificada.

*

* @param other la fecha con la que se compara.

*

* @return <code>true</code> si esta SerialDate representa una fecha anterior
* en comparacién a la SerialDate especificada.

*/

public abstract boolean isBefore(SerialDate other);

Jrx
* Devuelve true si esta SerialDate representa la misma fecha que la

* SerialDate especificada.

*

941 * @param other la fecha con la que se compara.

942 *

943 * @return <code>true</code> si esta SerialDate representa la misma fecha
944 * que la SerialDate especificada.

945 */

946 public abstract boolean isOnOrBefore(SerialDate other);

947

948 /**

949 * Devuelve true si esta SerialDate representa la misma fecha que la

950 * SerialDate especificada.

951 *

952 * @param other la fecha con la que se compara.

953 *

954 * @return <code>true</code> si esta SerialDate representa la misma fecha
955 * que la SerialDate especificada.

956 */

957 public abstract boolean isAfter(SerialDate other)

958

959 /**

960 * Devuelve true si esta SerialDate representa la misma fecha que la
961 * SerialDate especificada.

962 *

963 * @param other la fecha con la que se compara.

964 *

965 * @return <code>true</code> si esta SerialDate representa la misma fecha
966 * que la SerialDate especificada.

967 */

968 public abstract boolean isOnOrAfter(SerialDate other)

969

970 /**

971 * Devuelve <code>true</code> si {@link SerialDate} se encuentra en el
972 * rango especificado (INCLUSIVE). E1 orden de fecha de di1 y d2 no es
973 * importante.

974 *

975 * @param d1 fecha limite del rango.

976 * @param d2 la otra fecha limite del rango.

977 *

978 * @return Un valor booleano.

979 */

980 public abstract boolean isInRange(SerialDate di1, SerialDate d2);
981

982 /**

983 * Devuelve <code>true</code> si {@link SerialDate} se encuentra en el
984 * rango especificado (el invocador especifica si los puntos finales se
985 * incluyen o no). El orden de fecha de d1 y d2 no es importante.

986 *

987 * @param d1 fecha limite del rango.

988 * @param d2 la otra fecha limite del rango.

989 * @param include un cédigo que controla si las fechas inicial y final
990 * se incluyen o no en el rango.

991 *

992 * @return Un valor booleano.

993 */

994 public abstract boolean isInRange(SerialDate d1, SerialbDate d2,
995 int include);

996

997 /**

998 * Devuelve la Gltima fecha que coincide con el dia de la semana especificado y
999 * que es ANTERIOR a esta fecha.

1000 *

1001 * @param targetDOW un cédigo para el dia de la semana de destino.

1002 *

1003 * @return la Gltima fecha que coincide con el dia de la semana especificado y
1004 * que es ANTERIOR a esta fecha.

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

*/

public SerialDate getPreviousDayOfWeek(final int targetDOw) {
return getPreviousDayOfWeek(targetDOW, this);

}

Jrx
* Devuelve la primera fecha que coincide con el dia de la semana especificado
* y que es POSTERIOR a esta fecha.

*

* @param targetDOW un cédigo para el dia de la semana de destino.

*

* @return la primera fecha que coincide con el dia de la semana especificado
* que es POSTERIOR a esta fecha.

*/

public SerialDate getFollowingDayOfWeek(final int targetDOw) {

return getFollowingDayOfWeek(targetDOW, this);

}

Jrx
* Devuelve la fecha mas préxima que coincide con el dia de la semana especificado.

*

* @param targetDOW un cédigo para el dia de la semana de destino.

*

* @return la fecha mas préxima que coincide con el dia de la semana especificado.
*/

public SerialDate getNearestDayOfWeek(final int targetDOW) {

return getNearestDayOfWeek(targetDOW, this);

}

Listado B-2
SerialDateTest.java

© © N O O A W N R

NN NNNNNNERRRRRRB B B B g
N o 0 A W N KEF O © 0N O 0 b~ w N BB o

/

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

JCommon : biblioteca gratuita de clases de propésito general para Java(tm)

(C) Copyright 2000-2005, de Object Refinery Limited y colaboradores.

Informacién del projecto: http://www.jfree.org/jcommon/index.html

Esta biblioteca es software gratuito; puede distribuirla y/o modificarla
bajo las condiciones de la Licencia publica general GNU publicada por
la Free Software Foundation; ya sea la versién 2.1 de la licencia, u

otra versioén posterior (de su elecciédn).

Esta biblioteca se distribuye con la intencién de que sea util, pero
SIN GARANTIA ALGUNA, incluida la garantia implicita de COMERCIABILIDAD
e IDONEIDAD PARA UN DETERMINADO FIN. Consulte la Licencia publica general GNU

si necesita mas informacién al respecto.

Deberia haber recibido una copia de la Licencia publica general GNU

junto a esta biblioteca; en caso contrario, contacte con la Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
EE.UU.

[Java es una marca comercial o marca comercial registrada de Sun

Microsystems, Inc. en Estados Unidos y otros paises.]

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

*

SerialDateTests.java

*

*

*

*

*

Cambios

*

*

*

*

*

*/

package org

import
import
import
import
import

import
import
import

import

import

import

J**

java.
java.i
java.i
java.i
java.i

java.i

15-Nov-2001:
25-Jun-2002:
24-0ct-2002:
13-Mar-2003:
05-Jan-2005:

(C) Copyright 2001-2005, por Object Refinery Limited.

Autor original: David Gilbert (por Object Refinery Limited);

Colaborador(es): -;

$Id: SerialDateTests.java,v 1.6 2005/11/16 15:58:40 taqua Exp $

Version 1 (DG);

Se elimina la importacién innecesaria (DG);
Errores indicados Checkstyle corregidos (DG);
Se aflade prueba de serializacién (DG);

Se afiade prueba para el informe de errores 1096282

.jfree.date.junit;

io

.ByteArrayInputStream;
.ByteArrayOutputStream;
.ObjectInput;
.ObjectInputStream;
.ObjectOutput;
.ObjectOutputStream;

junit.framework.Test;

junit.framework.TestCase;

junit.framework.TestSuite;

org.jfree.date.MonthConstants;

org.jfree.date.SerialDate;

* Pruebas Junit para la clase {@link SerialDate}.

*/

public class SerialDateTests extends TestCase {

/** Fecha que representa 9 de noviembre.

private SerialDate nov9Y2001;

J**

* Crea un nuevo caso de prueba.

*

* @param name el nombre.

*/

public SerialDateTests(final String name) {

super (name);

}

J**

* Devuelve una suite de pruebas para el ejecutor de pruebas JuUnit.

*

* @return La suite de pruebas.

*/

public static Test suite() {

return new TestSuite(SerialDateTests.class);

}

J**

* Problema.

*/

(DG);

92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112

114
115
116
117
118
119
120
121
122

124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151
152

154
155

protected void setUp() {
this.nov9Y2001 = SerialDate.createInstance(9, MonthConstants.NOVEMBER, 2001);
}

Jrx
* 9 Nov 2001 mas dos meses debe ser 9 Ene 2002.

*/

public void testAddMonthsTo9Nov2001() {

final SerialDate jan9Y2002 = SerialDate.addMonths(2, this.nov9Y2001);
final SerialDate answer = SerialDate.createInstance(9, 1, 2002);
assertEquals(answer, jan9Yy2002);

}

Jrx
* Caso de prueba de un error, ya corregido.

*/

public void testAddMonthsTo50ct2003() {

final SerialDate d1 = SerialDate.createInstance(5, MonthConstants.OCTOBER, 2003);
final SerialDate d2 = SerialDate.addMonths(2, di1);

assertEquals(d2, SerialDate.createInstance(5, MonthConstants.DECEMBER, 2003));

}

Jrx
* Caso de prueba de un error, ya corregido.

*/

public void testAddMonthsTo1Jan2003() {

final SerialDate d1 = SerialDate.createInstance(l, MonthConstants.JANUARY, 2003);
final SerialDate d2 = SerialDate.addMonths(0, di1);

assertEquals(d2, di);

}

Jrx
* E1 lunes anterior al viernes 9 de noviembre de 2001 debe ser el 5 de noviembre.
*/

public void testMondayPrecedingFriday9Nov2001() {

SerialDate mondayBefore = SerialDate.getPreviousDayOfWeek(

SerialDate.MONDAY, this.nov9Y2001

)i

assertEquals(5, mondayBefore.getDayOfMonth());

}

Vaki

* E1 lunes posterior al viernes 9 de noviembre de 2001 debe ser el 12 de noviembre.

*/

public void testMondayFollowingFriday9Nov2001() {
SerialDate mondayAfter = SerialDate.getFollowingDayOfWeek(
SerialDate.MONDAY, this.nov9Y2001

)i

assertEquals (12, mondayAfter.getDayOfMonth());

}

Vaki

* E1 lunes mas proximo al viernes 9 de noviembre de 2001 debe ser el 12 de noviembre.

*/

public void testMondayNearestFriday9Nov2001() {
SerialDate mondayNearest = SerialDate.getNearestDayOfWeek(
SerialDate.MONDAY, this.nov9Y2001

)i

assertEquals(12, mondayNearest.getDayOfMonth());

}

Jrx
* E1 lunes mas préximo al 22 de enero de 1970 cae en el 19.
*/

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

public void testMondayNearest22Jan1970() {

SerialDate jan22Y1970 = SerialDate.createInstance(22, MonthConstants.JANUARY, 1970);
SerialDate mondayNearest = SerialDate.getNearestDayOfWeek(SerialDate.MONDAY, jan22Y1970);
assertEquals(19, mondayNearest.getDayOfMonth());

}

Jrx
* E1 problema es que la conversién de dias en cadenas devuelva el resultado
* correcto. En realidad este resultado depende de la configuracién regional.
*/

public void testWeekdayCodeToString() {

final String test = SerialDate.weekdayCodeToString(SerialDate.SATURDAY);

assertEquals(“Saturday”, test);

Jrx
* Probar la conversién de una cadena en dia de la semana. Esta prueba falla si
* la configuracion regional predeterminada no usa nombres de dias en inglés

*/

public void testStringToweekday() {

int weekday = SerialDate.stringToweekdayCode(“Wednesday”);
assertEquals(SerialDate.WEDNESDAY, weekday);

weekday = SerialDate.stringToWeekdayCode(“ Wednesday ”);
assertEquals(SerialDate.WEDNESDAY, weekday);

weekday = SerialDate.stringToWeekdayCode(“Wed”);
assertEquals(SerialDate.WEDNESDAY, weekday);

Jrx
* Probar la conversién de una cadena en mes. Esta prueba falla si la

* configuracién regional predeterminada no usa nombres de dias en inglés
*/

public void testStringToMonthCode() {

int m = SerialDate.stringToMonthCode(“January”);
assertEquals(MonthConstants.JANUARY, m);

m = SerialDate.stringToMonthCode(* January ”);
assertEquals(MonthConstants.JANUARY, m);

m = SerialDate.stringToMonthCode(“Jan”);
assertEquals(MonthConstants.JANUARY, m);

Jrx
* Probar la conversién de un cédigo de mes en cadena.
*/

public void testMonthCodeToStringCode() {

final String test = SerialDate.monthCodeToString(MonthConstants.DECEMBER);

assertEquals(“December”, test);

Jrx
* 1900 no es un afio bisiesto.
*/

220 public void testIsNotLeapYear1900() {
221 assertTrue(!SerialDate.isLeapYear(1900));

222}
223
224 /**

225 * 2000 es un afio bisiesto.

226 */

227 public void testIsLeapYear2000() {

228 assertTrue(SerialDate.isLeapYear(2000));

229 }
230
231 /**

232 * E1 numero de afios bisiestos desde 1900 y hasta 1899 incluido es 0.
233 */

234 public void testLeapYearCount1899() {

235 assertEquals(SerialDate.leapYearCount(1899), 0);

236 1}
237
238 /**

239 * E1 numero de afios bisiestos desde 1900 y hasta 1903 incluido es 0.
240 */

241 public void testLeapYearCount1903() {

242 assertEquals(SerialDate.leapYearCount(1903), 0);

243}
244
245 /**

246 * E1 numero de afios bisiestos desde 1900 y hasta 1904 incluido es 1.
247 */

248 public void testLeapYearCount1904() {

249 assertEquals(SerialDate.leapYearCount(1904), 1);

250}
251
252 /**

253 * E1 numero de afios bisiestos desde 1900 y hasta 1999 incluido es 24.
254 */

255 public void testLeapYearCount1999() {

256 assertEquals(SerialDate.leapYearCount(1999), 24);

257 }
258
259 /**

260 * E1 numero de afios bisiestos desde 1900 y hasta 2000 incluido es 25.
261 */

262 public void testLeapYearCount2000() {

263 assertEquals(SerialDate.leapYearCount(2000), 25);

264 1}
265
266 /**

267 * Serializar una instancia, restaurarla y comprobar la igualdad.
268 */

269 public void testSerialization() {

270

271 SerialDate d1 = SerialDate.createInstance(15, 4, 2000);

272 Serialbate d2 = null;

274 try {

275 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
276 ObjectOutput out = new ObjectOutputStream(buffer);

277 out.writeObject(d1)

278 out.close();

279

280 ObjectInput in = new ObjectInputStream(

new ByteArrayInputStream(buffer.toByteArray()));

281 d2 = (SerialDate) in.readObject();

282 in.close();

284
285
286
287
288
289
290
291
292

294
295
296
297
298
299
300
301
302

304
305
307
308
309
310
311
312

314
315
316
317
318
319
320
321
322

}

catch (Exception e) {
System.out.println(e.toString());
}

assertEquals(di, d2);

Jrx
* Prueba para el informe de error 1096282 (ya corregido).

*/

public void test1096282() {

SerialDate d = SerialDate.createInstance(29, 2, 2004);

d = SerialDate.addYears(1, d);

SerialDate expected = SerialDate.createInstance(28, 2, 2005);
assertTrue(d.isOn(expected));

}

Jrx
* Diversas pruebas para el método addMonths().

*/

public void testAddMonths() {

SerialDate d1 = SerialDate.createInstance(31, 5, 2004);
SerialDate d2 = SerialDate.addMonths(1, di);
assertEquals(30, d2.getDayOfMonth());

assertEquals(6, d2.getMonth());

assertEquals(2004, d2.getYYYY());

SerialDate d3 = SerialDate.addMonths(2, di);
assertEquals(31, d3.getDayOfMonth());
assertEquals(7, d3.getMonth());
assertEquals(2004, d3.getYYYY());

SerialDate d4 = SerialDate.addMonths(1, SerialDate.addMonths(1, di));
assertEquals(30, d4.getDayOfMonth());

assertEquals(7, d4.getMonth());

assertEquals (2004, d4.getYYYY());

}

}

Listado B-3

MonthConstants.java
1 /*
2 * JCommon : biblioteca gratuita de clases de propésito general para Java(tm)
3 *
4 *
5 * (C) Copyright 2000-2005, de Object Refinery Limited y colaboradores.
6 *
7 * Informacién del proyecto: http://www.jfree.org/jcommon/index.html
8 *
9 * Esta biblioteca es software gratuito; puede distribuirla y/o modificarla
10 * bajo las condiciones de la Licencia publica general GNU publicada por
11 * la Free Software Foundation; ya sea la versién 2.1 de la licencia, u
12 * otra versioén posterior (de su elecciodn).
13 *
14 * Esta biblioteca se distribuye con la intencién de que sea util, pero
15 * SIN GARANTIA ALGUNA, incluida la garantia implicita de COMERCIABILIDAD
16 * e IDONEIDAD PARA UN DETERMINADO FIN. Consulte la Licencia publica general GNU
17 * si necesita mas informacién al respecto.

[y
©

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

*

*

*

Foundation,
EE.UU.

*

*

*

Deberia haber recibido una copia de la Licencia publica general GNU

junto a esta biblioteca; en caso contrario, contacte con la Free Software

Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

[Java es una marca comercial o marca comercial registrada de Sun

Microsystems, Inc. en Estados Unidos y otros paises.]

*
=
o
=
=3
=
o
o
=
7]
-+
o
=
=
%]

.
O
<
o

*

*

*

*

* Cambios

* 29-May-2002

(C) Copyright 2002, 2003, de Object Refinery Limited.

Autor original: David Gilbert (para Object Refinery Limited);

Colaborador(es): -;

$Id: MonthConstants.java,v 1.4 2005/11/16 15:58:40 taqua Exp $

: Version 1 (code moved from SerialDate class) (DG);

package org.jfree.date;

Jx*

*

*

* <p>

*

*

*/

Constantes Gtiles para los meses. NO son equivalentes a las
constantes definidas por java.util.Calendar (donde JANUARY=0 y DECEMBER=11).

Se usa en las clases SerialDate y RegularTimePeriod.

@author David Gilbert

public interface MonthConstants {

/** Constante

public static

/** Constante

public static

/** Constante

public static

/** Constante

public static

/** Constante

public static

/** Constante

public static

/** Constante

public static

/** Constante

public static

/** Constante

public static

/** Constante

para Enero. */
final int JANUARY = 1;

para Febrero. */
final int FEBRUARY = 2;

para Marzo. */
final int MARCH = 3;

para Abril. */
final int APRIL = 4;

para Mayo. */
final int MAY = 5;

para Junio. */
final int JUNE = 6;

para Julio. */
final int JULY = 7;

para Agosto. */
final int AUGUST = 8;

para Septiembre. */
final int SEPTEMBER = 9;

para Octubre. */

83
84
85
86
87
88
89
90
91

© © N O O A W N R

A A DA D D D D DD ®® W W W W W WNNNNNNDNNNNERERRPRRRRRPRR PR PR
©® N O 00 A W N P © © ©® N O® 0 N~ ®WNR O O © N 0 S~ WNRO O © N0 0~ W NRL O

public static final int OCTOBER = 10;

/** Constante para Noviembre. */
public static final int NOVEMBER = 11;

/** Constante para Diciembre. */
public static final int DECEMBER = 12;

Listado B-4
BobsSerialDateTest.java

package org.jfree.date.junit;

import junit.framework.TestCase;
import org.jfree.date.*;

import static org.jfree.date.SerialDate.*;

import java.util.*;

public class BobsSerialDateTest extends TestCase {

public void testIsvValidweekdayCode() throws Exception {
for (int day = 1; day <= 7; day++)
assertTrue(isvalidweekdayCode(day));
assertFalse(isValidweekdayCode(0));
assertFalse(isValidweekdayCode(8));

}

public void testStringToWeekdayCode() throws Exception {

assertEquals(-1, stringToWeekdayCode(“Hello”));
assertEquals(MONDAY, stringToWeekdayCode(“Monday”));
assertEquals(MONDAY, stringTowWeekdayCode(“Mon”));

//todo assertEquals(MONDAY, stringToWeekdayCode(“monday”));
// assertEquals(MONDAY, stringTowWeekdayCode (“MONDAY"));

// assertEquals(MONDAY, stringToWeekdayCode(“mon”));

assertEquals(TUESDAY, stringTowWeekdayCode(“Tuesday”));
assertEquals(TUESDAY, stringToweekdayCode(“Tue”));

// assertEquals(TUESDAY, stringToWeekdayCode(“tuesday”));
// assertEquals(TUESDAY, StringToWeekdayCode (“TUESDAY"));
// assertEquals(TUESDAY, stringToWeekdayCode(“tue”));

// assertEquals(TUESDAY, stringToWeekdayCode(“tues”));

assertEquals(WEDNESDAY, stringToWeekdayCode (“Wednesday”));
assertEquals(WEDNESDAY, stringToWeekdayCode(“Wed”));

// assertEquals(WEDNESDAY, stringTowWeekdayCode(“wednesday”));
// assertEquals(WEDNESDAY, stringToweekdayCode (“WEDNESDAY"));
// assertEquals(WEDNESDAY, StringToWeekdayCode(“wed”));

assertEquals(THURSDAY, stringToWeekdayCode(“Thursday”));
assertEquals (THURSDAY, stringTowWeekdayCode(“Thu”));

// assertEquals(THURSDAY, stringToWeekdayCode(“thursday”));
// assertEquals(THURSDAY, stringToWeekdayCode (“THURSDAY"));
// assertEquals(THURSDAY, stringTowWeekdayCode(“thu”));

// assertEquals(THURSDAY, stringToweekdayCode(“thurs”));

assertEquals(FRIDAY, stringToWeekdayCode(“Friday”));
assertEquals(FRIDAY, stringTowWeekdayCode(“Fri”));

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112

// assertEquals(FRIDAY, stringTowWeekdayCode(“friday”));
// assertEquals(FRIDAY, stringTowWeekdayCode(“FRIDAY"));
// assertEquals(FRIDAY, StringToWeekdayCode(“fri”));

assertEquals(SATURDAY, stringToWeekdayCode(“Saturday”));
assertEquals(SATURDAY, stringTowWeekdayCode(“Sat”));

// assertEquals(SATURDAY, stringToWeekdayCode(“saturday”));
// assertEquals(SATURDAY, stringToWeekdayCode(“SATURDAY"));
// assertEquals(SATURDAY, stringToweekdayCode(“sat”));

assertEquals(SUNDAY, stringToWeekdayCode(“Sunday”));
assertEquals(SUNDAY, stringTowWeekdayCode(“Sun”));

// assertEquals(SUNDAY, stringTowWeekdayCode(“sunday”));
// assertEquals(SUNDAY, stringTowWeekdayCode (“SUNDAY"));
// assertEquals(SUNDAY, stringToWeekdayCode(“sun”));

}

public void testWeekdayCodeToString() throws Exception
assertEquals(“Sunday”, weekdayCodeToString(SUNDAY));
assertEquals(“Monday”, weekdayCodeToString(MONDAY));
assertEquals(“Tuesday”, weekdayCodeToString(TUESDAY));
assertEquals(“wWednesday”, weekdayCodeToString(WEDNESDAY));
assertEquals(“Thursday”, weekdayCodeToString(THURSDAY));
assertEquals(“Friday”, weekdayCodeToString(FRIDAY));
assertEquals(“Saturday”, weekdayCodeToString(SATURDAY));

}

-~

public void testIsvalidMonthCode() throws Exception {
for (int i = 1; i <= 12; i++)
assertTrue(isvalidMonthCode(1i));
assertFalse(isvalidMonthCode(0));
assertFalse(isVvalidMonthCode(13));

}

public void testMonthToQuarter() throws Exception {
assertEquals(1, monthCodeToQuarter (JANUARY));
assertEquals(1, monthCodeToQuarter (FEBRUARY));
assertEquals(1, monthCodeToQuarter (MARCH));
assertEquals(2, monthCodeToQuarter (APRIL));
assertEquals(2, monthCodeToQuarter(MAY));
assertEquals(2, monthCodeToQuarter (JUNE));
assertEquals(3, monthCodeToQuarter (JULY));
assertEquals(3, monthCodeToQuarter (AUGUST));
assertEquals(3, monthCodeToQuarter (SEPTEMBER));
assertEquals(4, monthCodeToQuarter (OCTOBER));
assertEquals(4, monthCodeToQuarter (NOVEMBER));
assertEquals(4, monthCodeToQuarter (DECEMBER));

try {

monthCodeToQuarter(-1);

fail(“Invalid Month Code should throw exception”);
} catch (IllegalArgumentException e) {

}

}

public void testMonthCodeToString() throws Exception {
assertEquals(“January”, monthCodeToString(JANUARY));
assertEquals(“February”, monthCodeToString(FEBRUARY));
assertEquals(“March”, monthCodeToString(MARCH));
assertEquals(“April”, monthCodeToString(APRIL));
assertEquals(“May”, monthCodeToString(MAY));
assertEquals(“June”, monthCodeToString(JUNE));
assertEquals(“July”, monthCodeToString(JULY));
assertEquals(“August”, monthCodeToString(AUGUST));

114
115
116
117
118
119
120
121
122

124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172

174
175
176

assertEquals(“September”,

assertEquals(“Jan”, monthCodeToString(JANUARY,

assertEquals(“Feb”, monthCodeToString(FEBRUARY, true));

assertEquals(“Mar”, monthCodeToString(MARCH,
assertEquals(“Apr”, monthCodeToString(APRIL,

assertEquals(“May”,

assertEquals(“Jun”, monthCodeToString(JUNE,
assertEquals(“Jul”, monthCodeToString(JULY,

assertEquals(“Aug”,
assertEquals(“sep”,
assertEquals(“Oct”,
assertEquals(“Nov”,

assertEquals(“Dec”,

try {
monthCodeToString(-1);

fail(“Invalid month code should throw exception”);

} catch (IllegalArgumentException e) {

}

public void testStringToMonthCode() throws Exception {

assertEquals(JANUARY, stringToMonthCode(“1"));

assertEquals(FEBRUARY, stringToMonthCode(“2"));

assertEquals(MARCH, stringToMonthCode(“3"));
assertEquals(APRIL, stringToMonthCode(“4"));
assertEquals(MAY, stringToMonthCode(“5"));
assertEquals(JUNE, stringToMonthCode(“6"”));
assertEquals(JULY, stringToMonthCode(“7"));
assertEquals(AUGUST, stringToMonthCode(“8"));

assertEquals(SEPTEMBER, stringToMonthCode(“9”));
assertEquals(OCTOBER, stringToMonthCode(“10"));
stringToMonthCode(“11"));
assertEquals(DECEMBER, stringToMonthCode(“12"));

assertEquals(NOVEMBER,

//todo assertEquals(-1,

//

assertEquals(-1, stringToMonthCode(“13"));

assertEquals(-1,stringToMonthCode(“Hello”));

for (int m = 1; m <= 12; m++) {

assertEquals(m,

assertEquals(m,

}

/
/
/
/
/
/
/
/
/
/
/
/

N N N N N N N N N N N~

/

~

assertEquals(1, stringToMonthCode(“jan”));
assertEquals(2, stringToMonthCode(“feb”));
assertEquals(3, stringToMonthCode(“mar”));
assertEquals(4, stringToMonthCode(“apr”));
assertEquals(5, stringToMonthCode(“may”));
assertEquals(6, stringToMonthCode(“jun”));
assertEquals(7, stringToMonthCode(“jul”));
assertEquals(8, stringToMonthCode(“aug”));
assertEquals(9, stringToMonthCode(“sep”));
assertEquals (10, stringToMonthCode(“oct”));
assertEquals(11, stringToMonthCode(“nov”));
assertEquals(12, stringToMonthCode(“dec”));

assertEquals(1, stringToMonthCode(“JAN"));

monthCodeToString (SEPTEMBER));
assertEquals(“October”, monthCodeToString(OCTOBER));
assertEquals(“November”, monthCodeToString(NOVEMBER));
assertEquals(“December”, monthCodeToString(DECEMBER));

monthCodeToString(MAY, true));

monthCodeToString(AUGUST, true));
monthCodeToString(SEPTEMBER,
monthCodeToString(OCTOBER,
monthCodeToString(NOVEMBER,
monthCodeToString(DECEMBER,

stringToMonthCode(“0"));

stringToMonthCode(monthCodeToString(m,
stringToMonthCode(monthCodeToString(m,

177
178
179
180
181
182

184
185
186
187
188
189
190
191
192

194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212

214
215
216
217
218
219
220
221
222

224
225
226
227
228
229
230
231
232

234
235
236
237
238
239
240

/
/
/
/
/
/
/
/
/
/
/

N N N N N N N N N N~

/
/
/
/
/
/
/
/
/
/
/
/

N N N N N N N N N N N~

/
/
/
/
/
/
/
/
/
/
/
/

N N N N N N N N N N N~

public void testIsValidweekInMonthCode() throws Exception

for (int w = 0; w <= 4; w++) {

assertTrue(isvValidweekInMonthCode(w));

}

assertFalse(isvalidwWeekInMonthCode(5));

}

public void testIsLeapYear() throws Exception {

assertFalse(isLeapYear (1900));
assertFalse(isLeapYear(1901));
assertFalse(isLeapYear(1902));
assertFalse(isLeapYear(1903));
assertTrue(isLeapYear(1904));
assertTrue(isLeapYear(1908));
assertFalse(isLeapYear(1955));
assertTrue(isLeapYear(1964));
assertTrue(isLeapYear(1980));
assertTrue(isLeapYear(2000));
assertFalse(isLeapYear (2001));
assertFalse(isLeapYear(2100));
}

public void testLeapYearCount() throws Exception {
assertEquals(0, leapYearCount(1900));
assertEquals(0, leapYearCount(1901));

assertEquals(2, stringToMonthCode(“FEB"”));
assertEquals(3, stringToMonthCode(“MAR"));
assertEquals(4, stringToMonthCode(“APR"));
assertEquals(5, stringToMonthCode(“MAY"”));
assertEquals(6, stringToMonthCode(“JUN"));
assertEquals(7, stringToMonthCode(“JuL"”));
assertEquals(8, stringToMonthCode(“AUG"));
assertEquals(9, stringToMonthCode(“SEP"));
assertEquals (10, stringToMonthCode(“0CT”));
assertEquals(11, stringToMonthCode(“NOV”));
assertEquals(12, stringToMonthCode(“DEC”));

assertEquals(1, stringToMonthCode(“january”));
assertEquals(2, stringToMonthCode(“february”));
assertEquals(3, stringToMonthCode(“march”));
assertEquals(4, stringToMonthCode(“april”));
assertEquals(5, stringToMonthCode(“may”));
assertEquals(6, stringToMonthCode(“june”));
assertEquals(7, stringToMonthCode(“july”));
assertEquals(8, stringToMonthCode(“august”));
assertEquals(9, stringToMonthCode(“september”));
assertEquals(10, stringToMonthCode(“october”));
assertEquals(11, stringToMonthCode(“november”));

assertEquals(12, stringToMonthCode(“december”));

assertEquals(1, stringToMonthCode(“JANUARY"));
assertEquals(2, stringToMonthCode (“FEBRUARY"));
assertEquals(3, stringToMonthCode(“MAR"));
assertEquals(4,stringToMonthCode(“APRIL"));
assertEquals(5, stringToMonthCode(“MAY"”));
assertEquals (6, stringToMonthCode(“JUNE"));
assertEquals(7,stringToMonthCode(“JULY"));
assertEquals(8, stringToMonthCode(“AUGUST"”));
assertEquals(9, stringToMonthCode(“SEPTEMBER”));
assertEquals (10, stringToMonthCode(“0OCTOBER"));
assertEquals(11, stringToMonthCode (“NOVEMBER"));
assertEquals(12, stringToMonthCode (“DECEMBER”));

-~

241
242

244
245
246
247
248
249
250
251
252

254
255
256
257
258
259
260
261
262

264
265
266
267
268
269
270
271
272

274
275
276
277
278
279
280

281
282

284
285
286
287
288
289
290
291
292

294
295
296
297
298
299
300
301
302

assertEquals(0,
assertEquals(0,
assertEquals(1,
assertEquals(1,
assertEquals(1,
assertEquals(1,
assertEquals(2,
assertEquals(24,
assertEquals(25,
assertEquals(49,
assertEquals(73,
assertEquals(97,

leapYearCount(1902));
leapYearCount(1903));
leapYearCount(1904));
leapYearCount(1905));
leapYearCount(1906));
leapYearCount(1907));
leapYearCount(1908));
leapYearCount(1999));
leapYearCount(2001));
leapYearCount(2101));
leapYearCount(2201));
leapYearCount(2301));

assertEquals(122, leapYearCount(2401));

}

public void testLastDayOfMonth() throws Exception {

assertEquals(31,
assertEquals(28,
assertEquals(31,
assertEquals(30,
assertEquals(31,
assertEquals(30,
assertEquals(31,
assertEquals(31,
assertEquals(30,
assertEquals(31,
assertEquals(30,
assertEquals(31,
assertEquals(29,
}

lastDayOfMonth(JANUARY, 1901));
lastDayOfMonth(FEBRUARY, 1901));
lastDayOfMonth(MARCH, 1901));
lastDayOfMonth(APRIL, 1901));
lastDayOfMonth(MAY, 1901));
lastDayOfMonth(JUNE, 1901));
lastDayOfMonth(JULY, 1901));
lastDayOfMonth (AUGUST, 1901));
lastDayOfMonth(SEPTEMBER, 1901));
lastDayOfMonth(OCTOBER, 1901));
lastDayOfMonth (NOVEMBER, 1901));
lastDayOfMonth(DECEMBER, 1901));
lastDayOfMonth(FEBRUARY, 1904));

public void testAddDays() throws Exception {

SerialDate newYears =
assertEquals(d(2,
assertEquals(d(1,
assertEquals(d(1,
assertEquals(d(31, DECEMBER, 1904),

}

private static SpreadsheetDate d(int day, int month,

d(1, JANUARY, 1900);

JANUARY, 1900), addDays(1,
FEBRUARY, 1900), addDays(31,
JANUARY, 1901), addDays (365,
addDays(5 * 365,

newYears));
newYears));
newYears));

newYears));

int year)

{ return new SpreadsheetDate(day, month, year); }

public void testAddMonths() throws Exception {

assertEquals(d(1, FEBRUARY, 1900), addMonths(1, d(1, JANUARY, 1900)));
assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(31, JANUARY, 1900)));
assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(30, JANUARY, 1900)));
assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(29, JANUARY, 1900)));
assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(28, JANUARY, 1900)));
assertEquals(d(27, FEBRUARY, 1900), addMonths(1, d(27, JANUARY, 1900)));
assertEquals(d(30, JUNE, 1900), addMonths(5, d(31, JANUARY, 1900)));
assertEquals(d(30, JUNE, 1901), addMonths(17, d(31, JANUARY, 1900)));
assertEquals(d(29, FEBRUARY, 1904), addMonths(49, d(31, JANUARY, 1900)));
}

public void testAddYears() throws Exception {

assertEquals(d(1, JANUARY, 1901), addYears(1, d(1
assertEquals(d(28, FEBRUARY, 1905),
assertEquals(d(28, FEBRUARY, 1905),
assertEquals(d(28, FEBRUARY, 1904),

}

JANUARY, 1900)));

addYears(1, d(29, FEBRUARY, 1904)));
addYears(1, d(28, FEBRUARY, 1904)));
addYears(1, d(28, FEBRUARY, 1903)));

304 public void testGetPreviousDayOfWeek() throws Exception {

305 assertEquals(d(24, FEBRUARY, 2006), getPreviousDayOfWeek(FRIDAY, d(1, MARCH, 2006)));

306 assertEquals(d(22, FEBRUARY, 2006), getPreviousDayOfWeek (WEDNESDAY, d(1, MARCH, 2006)));
307 assertEquals(d(29, FEBRUARY, 2004), getPreviousDayOfWeek(SUNDAY, d(3, MARCH, 2004)));

308 assertEquals(d(29, DECEMBER, 2004), getPreviousDayOfWeek (WEDNESDAY, d(5, JANUARY, 2005)));
309

310 try {

311 getPreviousDayOfweek(-1, d(1, JANUARY, 2006));

312 fail(“Invalid day of week code should throw exception”);

313 } catch (IllegalArgumentException e) {

314 3}
315 }
316

317 public void testGetFollowingDayOfWeek() throws Exception {

318 // assertEquals(d(1, JANUARY, 2005),getFollowingDayOfWeek (SATURDAY, d(25, DECEMBER, 2004)));
319 assertEquals(d(1, JANUARY, 2005), getFollowingDayOfWeek(SATURDAY, d(26, DECEMBER, 2004)));
320 assertEquals(d(3, MARCH, 2004), getFollowingDayOfwWeek (WEDNESDAY, d(28, FEBRUARY, 2004)));
321

322 try {

323 getFollowingDayOfWeek(-1, d(1, JANUARY, 2006));

324 fail(“Invalid day of week code should throw exception”);

325 } catch (IllegalArgumentException e) {

326 1}
327 }
328

329 public void testGetNearestDayOfWeek() throws Exception {

330 assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(16, APRIL, 2006)));
331 assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(17, APRIL, 2006)));
332 assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(18, APRIL, 2006)));
333 assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(19, APRIL, 2006)));
334 assertEquals(d(23, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(20, APRIL, 2006)));
335 assertEquals(d(23, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(21, APRIL, 2006)));
336 assertEquals(d(23, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(22, APRIL, 2006)));
337

338 //todo assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(16, APRIL, 2006)));
339 assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(17, APRIL, 2006)));
340 assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(18, APRIL, 2006)));
341 assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(19, APRIL, 2006)));
342 assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(20, APRIL, 2006)));
343 assertEquals(d(24, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(21, APRIL, 2006)));
344 assertEquals(d(24, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(22, APRIL, 2006)));
345

346 // assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(16, APRIL, 2006)))
347 // assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(17, APRIL, 2006)))
348 assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(18, APRIL, 2006)));
349 assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(19, APRIL, 2006)));
350 assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(20, APRIL, 2006)));
351 assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(21, APRIL, 2006)));
352 assertEquals(d(25, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(22, APRIL, 2006)));

354 // assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(16, APRIL, 2006)));
355 // assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(17, APRIL, 2006)));
356 // assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(18, APRIL, 2006)));
357 assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(19, APRIL, 2006)));
358 assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek (WEDNESDAY, d(20, APRIL, 2006)));
359 assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(21, APRIL, 2006)));
360 assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(22, APRIL, 2006)));
361

362 // assertEquals(d(13, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(16, APRIL, 2006)));
363 // assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(17, APRIL, 2006)));
364 // assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(18, APRIL, 2006)));
365 // assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(19, APRIL, 2006)));
366 assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(20, APRIL, 2006)));

367 assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(21, APRIL, 2006)));

368
369
370
371
372

374
375
376
377
378
379
380
381
382

384
385
386
387
388
389
390
391
392

394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412

414
415
416
417
418
419
420
421
422

424
425
426
427
428
429
430
431

assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(22, APRIL

// assertEquals(d(14, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(16,
// assertEquals(d(14, APRIL, 2006), getNearestDayOfweek(FRIDAY, d(17,
// assertEquals(d(21, APRIL, 2006), getNearestDayOfweek(FRIDAY, d(18,
// assertEquals(d(21, APRIL, 2006), getNearestDayOfwWeek(FRIDAY, d(19,
// assertEquals(d(21, APRIL, 2006), getNearestDayOfwWeek(FRIDAY, d(20,
assertEquals(d(21, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(21, APRIL,
assertEquals(d(21, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(22, APRIL,

// assertEquals(d(15, APRIL, 2006), getNearestDayOfWeek(SATURDAY,
// assertEquals(d(15, APRIL, 2006), getNearestDayOfWeek(SATURDAY,
// assertEquals(d(15, APRIL, 2006), getNearestDayOfWeek(SATURDAY,
// assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY,
// assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY,
// assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY,

assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(22, APRIL

try {

getNearestDayOfWeek(-1, d(1, JANUARY, 2006));
fail(“Invalid day of week code should throw exception”);
} catch (IllegalArgumentException e) {

}

}

public void testEndOfCurrentMonth() throws Exception {

SerialDate d = SerialDate.createInstance(2);

d(16,
d(17,
d(1s,
d(19,
d(20,
d(21,

APRIL,
APRIL,
APRIL,
APRIL,
APRIL,

APRIL,
APRIL,
APRIL,
APRIL,
APRIL,
APRIL,

2006)));

2006))) ;
2006))) ;
2006))) ;
2006))) ;
2006))) ;
2006))) ;

2006))) ;

2006))) ;
2006)));
2006))) ;
2006))) ;
2006))) ;
2006))) ;

2006)));

assertEquals(d(31, JANUARY, 2006), d.getEndOfCurrentMonth(d(1, JANUARY, 2006)));

assertEquals(d(28, FEBRUARY, 2006), d.getEndOfCurrentMonth(d(1, FEBRUARY, 2006)));
assertEquals(d(31, MARCH, 2006), d.getEndOfCurrentMonth(d(1, MARCH, 2006)));
assertEquals(d(30, APRIL, 2006), d.getEndOfCurrentMonth(d(1, APRIL, 2006)));

assertEquals(d(31, MAY, 2006), d.getEndOfCurrentMonth(d(1, MAY, 2006)));

assertEquals(d(30, JUNE, 2006), d.getEndOfCurrentMonth(d(1, JUNE, 2006)));
assertEquals(d(31, JULY, 2006), d.getEndOfCurrentMonth(d(1, JULY, 2006)));
assertEquals(d(31, AUGUST, 2006), d.getEndOfCurrentMonth(d(1, AUGUST, 2006)));
assertEquals(d(30, SEPTEMBER, 2006), d.getEndOfCurrentMonth(d(1, SEPTEMBER, 2006)));
assertEquals(d(31, OCTOBER, 2006), d.getEndOfCurrentMonth(d(1, OCTOBER, 2006)));
assertEquals(d(30, NOVEMBER, 2006), d.getEndOfCurrentMonth(d(1, NOVEMBER, 2006)));

assertEquals(d(31, DECEMBER, 2006), d.getEndOfCurrentMonth(d(1, DECEMBER
assertEquals(d(29, FEBRUARY, 2008), d.getEndOfCurrentMonth(d(1, FEBRUARY,

}

public void testWeekInMonthToString() throws Exception {
assertEquals(“First”,weekInMonthToString(FIRST_WEEK_IN_MONTH));
assertEquals(“Second”, weekInMonthToString(SECOND_WEEK_IN_MONTH));
assertEquals(“Third”,weekInMonthToString(THIRD_WEEK_IN_MONTH));
assertEquals(“Fourth”,weekInMonthToString(FOURTH_WEEK_IN_MONTH));
assertEquals(“Last”,weekInMonthToString(LAST_WEEK_IN_MONTH));

//todo try {

// weekInMonthToString(-1);

// fail(“”Invalid week code should throw exception”);
// } catch (IllegalArgumentException e) {

/73

}

public void testRelativeToString() throws Exception {
assertEquals(“Preceding”, relativeToString(PRECEDING));
assertEquals(“Nearest”, relativeToString(NEAREST));

assertEquals(“Following”, relativeToString(FOLLOWING));

//todo try {
// relativeToString(-1000);

// fail(“”Invalid relative code should throw exception”);

2006))) ;
2008)));

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

451

452
453
454
455
456
457

// } catch (IllegalArgumentException e) {
// 3
}

public void testCreateInstanceFromDDMMYYYY() throws Exception
SerialDate date = createInstance(l1, JANUARY, 1900);
assertEquals(1,date.getDay0fMonth());

assertEquals(JANUARY, date.getMonth());
assertEquals (1900, date.getYYYY());
assertEquals(2,date.toSerial());

}

public void testCreateInstanceFromSerial() throws Exception {
assertEquals(d(1, JANUARY, 1900),createInstance(2));
assertEquals(d(1, JANUARY, 1901), createInstance(367));

}

public void testCreateInstanceFromJavaDate() throws Exception
assertEquals(d(1, JANUARY, 1900),

createInstance(new GregorianCalendar(1900,0,1).getTime()));
assertEquals(d(1, JANUARY, 2006),

createInstance(new GregorianCalendar(2006,0,1).getTime()));

}

public static void main(String[] args) {
junit.textui.TestRunner.run(BobsSerialDateTest.class);
}

}

{

-~

© ® N O O A W N R

g g g g g g g a bh D A DD DD DD DWW W W wWwwWwwWwwWwwwNNNNNNNNNNERERERRPRRRRR R R R
N o a0 A W NP O® 0 0N OO~ ®NR O O 0N OO M~®NRO O 0N 0N~ ®®NRL O 0N 0 M®NR O

Listado B-5

SpreadsheetDate.java.

/*

* JCommon: biblioteca gratuita de clases de propdésito general para Java(tm)

* (C) Copyright 2000-2005, de Object Refinery Limited y colaboradores.

*

*

*

*

*

*

*

*

*

*

*

*

* EE.UU.

*

*

Microsystems,

junto a esta biblioteca; en caso contrario,
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

otra versioén posterior (de su elecciédn).

[Java es una marca comercial o marca comercial registrada de Sun

Inc. en Estados Unidos y otros paises.]

*
w

°
=
@
D
a
%
=
@
(0]
=
o
151
=
®

.
D
<
)

*

*

*

*

*

Cambios

*

11-0ct-2001

*

05-Nov-2001

*

12-Nov-2001

*

*

*

24-Jan-2002

*

*

29-May-2002
03-0ct-2002

*

*

13-Mar-2003
04-Sep-2003
05-Sep-2003
21-0ct-2003

*

*

*

/*

Autor original: David Gilbert (por Object Refinery Limited);

Colaboradores(s): -;

$Id: SpeadsheetDate.java,v 1.8 2005/11/03 09:25:39 mungady Exp $

Version 1 (DG);

Se afiaden los métodos getDescription() y setDescription() (DG);
Se cambia el nombre ExcelDate.java por SpreadsheetDate.java (DG);
Se corrige un error a la hora de calcular el dia, mes y afio a
partir del numero de serie (DG);

Se corrige un error a la hora de calcular el numero de serie a

Se corrigen los errores detectados por Checkstyle
Implementacién de Serializable (DG);

Métodos isInRange() completados (DG);
Implementacién de Comparable (DG);

Se afiade el método hashCode() (DG);

package org.jfree.date;

import java.util.Calendar;

Informacién del proyecto: http://www.jfree.org/jcommon/index.html

Esta biblioteca es software gratuito; puede distribuirla y/o modificarla
bajo las condiciones de la Licencia publica general GNU publicada por

la Free Software Foundation; ya sea la versioén 2.1 de la licencia, u

Esta biblioteca se distribuye con la intencién de que sea util, pero
SIN GARANTIA ALGUNA, incluida la garantia implicita de COMERCIABILIDAD
e IDONEIDAD PARA UN DETERMINADO FIN. Consulte la Licencia publica general GNU

si necesita mas informacién al respecto.

Deberia haber recibido una copia de la Licencia publica general GNU

contacte con la Free Software

(C) Copyright 2000-2005, de Object Refinery Limited y colaboradores.

partir del dia, mes y afio. Gracias a Trevor Kills por el informe (DG);
Se afiade el método equals(Object) (SourceForge ID 558850) (DG);

(DG);

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

import java.util.Date;
Jrx

*

Representa una con un entero, de forma similar a la

*

implementacién en Microsoft Excel. E1 intervalo de fechas admitido es
1-Ene-1900 a 31-Dic-9999.

*

* <p>

*

Recuerde que Excel tiene un error que reconoce el afio

*

1900 como bisiesto cuando en realidad no lo es. Encontrara mas

*

informacién en el sitio Web de Microsoft, en el articulo Q181370:
* <p>
http://support.microsoft.com/support/kb/articles/Q181/3/70.asp

* <p>

*

*

Excel usa como convencién que el 1-Ene-1900 = 1. Esta clase usa la

*

convencién de que 1-Ene-1900 = 2.

*

Como resultado, el nimero de dia de esta clase sera diferente al de

*

Excel para enero y febrero de 1900.. pero Excel afiade un dia

*

mas (29-Feb-1900 que en realidad no existe) y a partir de ahi

*

los numeros de los dias coinciden.

*

@author David Gilbert
*/

public class SpreadsheetDate extends SerialDate {

/** Para serializacién. */
private static final long serialVersionUID = -2039586705374454461L;

Jrx
* E1 numero de dia (1-Ene-1900 = 2, 2-Ene-1900 = 3.., 31-Dic-9999 =
* 2958465) .

*/

private int serial;

/** E1 dia del mes (de 1 a 28, 29, 30 o 31 en funcién del mes). */

private int day;

/** E1 mes del afio (de 1 a 12). */

private int month;

/** E1 afio (de 1900 a 9999). */

private int year;

/** Una descripcioén opcional para la fecha. */

private String description;

Jrx
* Crear una nueva instancia de la fecha.

*

* @param day el dia (entre 1 y 28/29/30/31).

* @param month el mes (entre 1 y 12).

* @param year el afio (entre 1900 y 9999).

*/

public SpreadsheetDate(final int day, final int month, final int year) {

if ((year >= 1900) && (year <= 9999)) {

this.year = year;

}

else {

throw new IllegalArgumentException(

“The ‘year’ argument must be in range 1900 to 9999.”
)i

}

if ((month >= MonthConstants.JANUARY)

122

124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172

174
175
176
177
178
179
180
181
182

184
185

&& (month <= MonthConstants.DECEMBER)) {

this.month = month;

}

else {

throw new IllegalArgumentException(

“The ‘month’ argument must be in the range 1 to 12.”
)i

}

if ((day >= 1) && (day <= SerialDate.lastDayOfMonth(month, year))) {
this.day = day;

}

else {

throw new IllegalArgumentException(“Invalid ‘day’ argument.”);

}

// es necesario sincronizar el nimero de serie con el dia-mes-afio..

this.serial = calcSerial(day, month, year);

this.description = null;

Jrx
* Constructor estandar: crear un nuevo objeto de fecha que representa el

* numero de dia especificado (que debe estar comprendido entre 2 y 2958465)
*

* @param serial numero de serie para el dia (entre 2 y 2958465).

*/

public SpreadsheetDate(final int serial) {

if ((serial >= SERIAL_LOWER_BOUND) && (serial <= SERIAL_UPPER_BOUND)) {
this.serial = serial;

}

else {

throw new IllegalArgumentException(

“SpreadsheetDate: Serial must be in range 2 to 2958465.");

}

// el dia-mes-afio debe estar sincronizado con el numero de serie..

calcbDayMonthyear();

Jrx
* Devuelve la descripcion adjuntada a la fecha. No es

* obligatorio que la fecha tenga una descripcioén, pero resulta Gtil
* en algunas aplicaciones.

*

* @return La descripcién adjuntada a la fecha.

*/

public String getDescription() {

return this.description;

}

Jrx
* Establece la descripcién de la fecha.

*

* @param description la descripcién de esta fecha (<code>null</code>
* se permite)

*/

public void setDescription(final String description) {
this.description = description;

}

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

J**

* Devuelve el numero de serie de la fecha, siendo el 1 de enero 1900

* (se corresponde, casi totalmente, al sistema de numeracion empleado en

* Microsoft Excel para Windows y Lotus 1-2-3).
*

* @return E1 numero de serie de la fecha.

*/

public int toSerial() {

return this.serial;

}

Jrx
* Devuelve una <code>java.util.Date</code> equivalente a esta fecha.
*

* @return La fecha.

*/

public Date toDate() {

final Calendar calendar = Calendar.getInstance();
calendar.set(getYYYY(), getMonth() - 1, getDayOfMonth(), ©, 0, 0);
return calendar.getTime();

}

Jrx
* Devuelve el afio (con un intervalo valido de 1900 a 9999).
*

* @return El1 afio.

*/

public int getYYYY() {

return this.year;

}

J**

* Devuelve el mes (Enero = 1, Febrero = 2, Marzo = 3).

*
* @return E1 mes del afio.
*/

public int getMonth() {
return this.month;

}

Jrx
* Devuelve el dia del mes.

*

* @return E1 dia del mes.

*/

public int getDayOfMonth() {
return this.day;

}

J**

Devuelve un cédigo que representa el dia de la semana.

*

* <p>

*

Los cédigos se definen en la clase {@link SerialDate} como:
<code>SUNDAY</code>, <code>MONDAY</code>, <code>TUESDAY</code>,

*

*

<code>WEDNESDAY</code>, <code>THURSDAY</code>, <code>FRIDAY</code>,

*

<code>SATURDAY</code>.

*

@return Un cédigo que representa el dia de la semana.
*/

public int getDayOfweek() {

return (this.serial + 6) % 7 + 1;

}

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

J**

Prueba la igualdad de esta fecha con un objeto arbitrario.

*

* <p>

*

Este método SOLO devuelve true si el objeto es una instancia de la

*

clase base {@link SerialDate} y representa el mismo dia que
{@link SpreadsheetDate}.

*

*

@param object el objeto que comparar (se permite <code>null</code>).

*

@return Un valor booleano.
*/
public boolean equals(final Object object) {

if (object instanceof SerialDate) {
final SerialDate s = (SerialDate) object;
return (s.toSerial() == this.toSerial());
}

else {

return false;

}

Jrx
* Devuelve un cédigo hash para la instancia de este objeto.
*

* @return Un cédigo hash.

*/

public int hashCode() {

return toSerial();

}

Jrx
* Devuelve la diferencia (en dias) entre esta fecha y la
* ‘otra’ fecha especificada.

*

* @param other la fecha con la que se compara.

*

* @return La diferencia (en dias) entre esta fecha y la
* otra’ fecha especificada.

*/

public int compare(final SerialDate other) {

return this.serial - other.toSerial();

}

Jrx
* Implementa el método necesario para la interfaz Comparable.

*

* @param other el otro objeto (normalmente otro SerialDate).

*

* @return Un entero negativo, cero o un entero positivo si este objeto
* es menor que, igual o mayor que el objeto especificado.

*/

public int compareTo(final Object other) {

return compare((SerialDate) other);

}

Jrx
* Devuelve true si esta SerialDate representa la misma fecha que la
* SerialDate especificada.

*

* @param other la fecha con la que se compara.

*

* @return <code>true</code> si esta SerialDate representa la misma fecha que

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

* la otra SerialDate especificada.

*/

public boolean isOn(final SerialDate other) {
return (this.serial == other.toSerial());

}

Jrx
* Devuelve true si esta SerialDate representa una fecha anterior a
* la SerialDate especificada.

*

* @param other la fecha con la que se compara.

*

* @return <code>true</code> si esta SerialDate representa una fecha anterior a
* la SerialDate especificada.

*/

public boolean isBefore(final SerialDate other) {

return (this.serial < other.toSerial());

}

Jrx
* Devuelve true si esta SerialDate representa la misma fecha que la
* SerialDate especificada.

*

* @param other la fecha con la que se compara.

*

* @return <code>true</code> si esta SerialDate representa la misma fecha
* que la SerialDate especificada.

*/

public boolean isOnOrBefore(final SerialDate other) {

return (this.serial <= other.toSerial());

}

Jrx
* Devuelve true si esta SerialDate representa la misma fecha que la
* SerialDate especificada.

*

* @param other la fecha con la que se compara.

* @return <code>true</code> si esta SerialDate representa la misma fecha
* que la SerialDate especificada.

*/

public boolean isAfter(final SerialDate other) {

return (this.serial > other.toSerial());

}

Jrx
* Devuelve true si esta SerialDate representa la misma fecha que la
* SerialDate especificada.

*

* @param other la fecha con la que se compara.

*

* @return <code>true</code> si esta SerialDate representa la misma fecha
* que la SerialDate especificada.

*/

public boolean isOnOrAfter(final SerialDate other) {

return (this.serial >= other.toSerial());

}

Jrx
* Devuelve <code>true</code> si {@link SerialDate} se encuentra en el

* intervalo especificado (INCLUSIVE). El orden de fecha de di y d2 no es
* importante.

*

* @param d1 una fecha limite para el rango.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

* @param d2 la otra fecha limite para el rango.

*

* @return Un valor booleano.

*/

public boolean isInRange(final SerialDate d1, final SerialDate d2) {
return isInRange(dl, d2, SerialDate.INCLUDE_BOTH);

}

Jrx
* Devuelve true si esta SerialDate se encuentra en el intervalo especificado

* (el invocador especifica si los puntos finales se incluyen o no). El orden

*

de d1 y d2 no es importante.

*

@param d1 una fecha limite para el rango.

*

@param d2 la otra fecha limite para el rango.

*

@param include un cédigo que controla si la fecha inicial y final

*

se incluyen en el intervalo.

*

@return <code>true</code> si esta SerialDate se encuentra en el intervalo

*

especificado.

*/

public boolean isInRange(final SerialDate d1, final SerialDate d2,
final int include) {

final int s1 = di.toSerial();

final int s2 = d2.toSerial();

final int start = Math.min(s1, s2);

final int end = Math.max(s1, s2);

final int s = toSerial();

if (include == SerialDate.INCLUDE_BOTH) {
return (s >= start & s <= end);

}

else if (include == SerialDate.INCLUDE_FIRST) {
return (s >= start & s < end);

}

else if (include == SerialDate.INCLUDE_SECOND) {
return (s > start & s <= end);

}

else {

return (s > start && s < end);

}

}

Jrx
* Calcular el nudmero de serie a partir del dia, mes y afio.

* <p>

*

1-Ene-1900 = 2.

*

@param d el dia.

*

@param m el mes.

*

@param y el afio.

*

@return el nimero de serie a partir del dia, mes y afio.

*/

private int calcSerial(final int d, final int m, final int y) {
final int yy = ((y - 1900) * 365) + SerialDate.leapYearCount(y - 1)
int mm = SerialDate.AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[m];
if (m > MonthConstants.FEBRUARY) {

if (SerialDate.isLeapYear(y)) {

mm = mm + 1;

}

}

final int dd = d;

return yy + mm + dd + 1;

442

444
445
446
447
448
449
450
451
452

454
455
456
457
458
459
460
461
462

464
465
466
467
468
469
470
471
472

474
475
476
477
478
479
480
481
482

484
485
486
487
488
489
490
491
492

494
495

Jrx
* Calcular el dia, mes y afio a partir del nudmero de serie.
*/

private void calcDayMonthYear() {

// obtener el afio a partir del nimero de serie de la fecha
final int days = this.serial - SERIAL_LOWER_BOUND;

// sobrevalorado ya que ignoramos los dias bisiestos

final int overestimatedYYYY = 1900 + (days / 365);

final int leaps = SerialDate.leapYearCount(overestimatedYYYY);
final int nonleapdays = days - leaps;

// subestimado ya que sobrevaloramos los afios

int underestimatedYYYY = 1900 + (nonleapdays / 365);

if (underestimatedYYYY == overestimatedYYYY) {
this.year = underestimatedYYYY;

}

else {

int ss1 = calcSerial(1, 1, underestimatedYYYY);
while (ssl1 <= this.serial) {
underestimatedYYYY = underestimatedYYYY + 1;
ss1 = calcSerial(1, 1, underestimatedYYYY);

}

this.year = underestimatedYYYY - 1;

}

final int ss2 = calcSerial(1, 1, this.year)

int[] daysToEndOfPrecedingMonth
= AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH;

if (isLeapYear(this.year)) {
daysToEndOfPrecedingMonth

= LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH;
}

// get the month from the serial date

int mm = 1;

int sss = ss2 + daysToEndOfPrecedingMonth[mm] - 1;
while (sss < this.serial) {

mm = mm + 1;

sss = ss2 + daysToEndOfPrecedingMonth[mm] - 1;

}

this.month = mm - 1;

// el resto es d(+1);
this.day = this.serial - ss2
- daysToEndOfPrecedingMonth[this.month] + 1;

Listado B-6
RelativeDayOfWeekRule.java

/*

* JCommon : biblioteca gratuita de clases de propésito general para

*

Java(tm)

© ® N o g »

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

*

(C) Copyright 2000-2005, de Object Refinery Limited y colaboradores.

*

Informacién del proyecto: http://www.jfree.org/jcommon/index.html

*

Esta biblioteca es software gratuito; puede distribuirla y/o modificarla

*

bajo las condiciones de la Licencia publica general GNU publicada por

*

la Free Software Foundation; ya sea la versién 2.1 de la licencia, u

*

otra versioén posterior (de su elecciédn).

*

Esta biblioteca se distribuye con la intencién de que sea util, pero
SIN GARANTIA ALGUNA, incluida la garantia implicita de COMERCIABILIDAD
e IDONEIDAD PARA UN DETERMINADO FIN. Consulte la Licencia publica general GNU

si necesita mas informacién al respecto.

*

*

*

*

Deberia haber recibido una copia de la Licencia publica general GNU

*

junto a esta biblioteca; en caso contrario, contacte con la Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* EE.UU.

*

*

[Java es una marca comercial o marca comercial registrada de Sun

*

Microsystems, Inc. en Estados Unidos y otros paises.]

*
o
o
2
Q0
03
C
<
@
©
QD

<
=
b
=
@
o
=
A
=3
=
o

Jn
Q
<
P

*

(C) Copyright 2000-2003, de Object Refinery Limited y colaboradores.

*

Autor original: David Gilbert (por Object Refinery Limited);

*

Colaboradores(s): -;

*

$Id: RelativeDayOfWeekRule.java,v 1.6 2005/11/16 15:58:40 taqua Exp $

*

Cambios (26-0ct-2001)

*

26-0ct-2001 : Se cambié el paquete por com.jrefinery.date.*;

*

03-0ct-2002 : Se corrigen los errores detectados por Checkstyle (DG);

*/

package org.jfree.date;

Vati

* Una regla de fechas anuales que devuelve una fecha por cada afio en funcién de

*

(a) una regla de referencia; (b) un dia de la semana y (c) un parametro de
seleccion (SerialDate.PRECEDING, SerialDate.NEAREST, SerialDate.FOLLOWING).

* <p>

*

*

Por ejemplo, el Viernes Santo se puede especificado ‘el Viernes ANTERIOR al

*

domingo de Resurreccion.

*

@author David Gilbert
*/
public class RelativeDayOfWeekRule extends AnnualDateRule {

/** Una referencia a la regla de fechas anuales sobre la que se basa esta regla.

private AnnualDateRule subrule;

Jrx
* E1 dia de la semana (SerialDate.MONDAY, SerialDate.TUESDAY, etc).
*/

private int dayOfweek;

/** Indica que dia de la semana (PRECEDING, NEAREST o FOLLOWING). */

private int relative;

*/

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112

114
115
116
117
118
119
120
121
122

124
125
126
127
128
129
130
131

Jrx
* Constructor predeterminado: genera una regla para el lunes siguiente al 1 de enero.
*/

public RelativeDayOfWeekRule() {

this(new DayAndMonthRule(), SerialDate.MONDAY, SerialDate.FOLLOWING);

}

Jrx
* Constructor estandar: genera una regla en funcién de la subregla proporcionada.
*

* @param subrule la regla que determina la fecha de referencia.

* @param dayOfwWeek el dia de la semana relativo a la fecha de referencia.

* @param relative indica “qué” dia de la semana (anterior, mas proéximo

* o posterior).

*/

public RelativeDayOfWeekRule(final AnnualDateRule subrule,

final int dayOfweek, final int relative) {

this.subrule = subrule;

this.dayOofweek = dayOfweek;

this.relative = relative;

}

Jrx
* Devuelve la subregla (también denominada regla de referencia).

*

* @return La regla de fechas anuales que determina la fecha de referencia para
* esta regla.

*/

public AnnualDateRule getSubrule() {

return this.subrule;

}

Jrx
* Establece la subregla.

*

* @param subrule la regla de fechas anuales que determina la fecha de
* referencia para esta regla.

*/

public void setSubrule(final AnnualDateRule subrule) {

this.subrule = subrule;

}

Jrx
* Devuelve el dia de la semana de esta regla.
*

* @return el dia de la semana de esta regla.
*/

public int getDayOfweek() {

return this.dayOfWeek;

}

Jrx
* Establece el dia de la semana de esta regla.

*

* @param dayOfWeek el dia de la semana de (SerialDate.MONDAY,
* SerialDate.TUESDAY, etc.).

*/

public void setDayOfWeek(final int dayOfweek) {
this.dayofweek = dayOofweek;

}

J**

* Devuelve el atributo ‘relativo’ que determina “qué”

132

134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172

174
175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192

194
195

* dia de la semana nos interesa (SerialDate.PRECEDING,
* SerialDate.NEAREST o SerialDate.FOLLOWING).

*

* @return E1 atributo ‘relativo’.

*/

public int getRelative() {

return this.relative;

}

Jrx
* Establece el atributo ‘relativo’ (SerialDate.PRECEDING, SerialDate.NEAREST,
* SerialDate.FOLLOWING).

*

* @param relative determina “qué” dia de la semana se selecciona con esta

* regla.

*/

public void setRelative(final int relative) {

this.relative = relative;

}

Jrx
* Crea un clon de esta regla.

*

* @return un clon de esta regla.

*

* @throws CloneNotSupportedException nunca debe producirse.

*/

public Object clone() throws CloneNotSupportedException {

final RelativeDayOfWeekRule duplicate

= (RelativeDayOfWeekRule) super.clone();

duplicate.subrule = (AnnualDateRule) duplicate.getSubrule().clone();
return duplicate;

}

Jrx
* Devuelve la fecha generada por esta regla, para el afio especificado.

*

* @param year el afio (1900 <= year <= 9999).

*

* @return La fecha generada por esta regla para un afio concreto (posiblemente
* <code>null</code>).

*/

public SerialDate getDate(final int year) {

// comprobar argumento..

if ((year < SerialDate.MINIMUM_YEAR_SUPPORTED)

|| (year > SerialDate.MAXIMUM_YEAR_SUPPORTED)) {

throw new IllegalArgumentException(
“RelativeDayOfWeekRule.getDate(): year outside valid range.”);
}

// calcular la fecha..
SerialDate result = null;

final SerialDate base = this.subrule.getDate(year);

if (base !'= null) {

switch (this.relative) {

case(SerialDate.PRECEDING):

result = SerialDate.getPreviousDayOfWeek(this.dayofweek,
base);

break;

case(SerialDate.NEAREST):

result = SerialDate.getNearestDayOfWeek(this.dayOfwWeek,

base);

196
197
198
199
200
201
202

204
205
206
207
208
209

break;

case(SerialDate.FOLLOWING):

result = SerialDate.getFollowingDayOfwWeek(this.dayOfWeek,
base);

break;

default:

break;

}

}

return result;

Listado B-7
DayDate.java (Final)

a A W N R

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

J*
* JCommon: biblioteca gratuita de clases de propdésito general para Java(tm)

*

*

* (C) Copyright 2000-2005, de Object Refinery Limited y colaboradores.

*/

package org.jfree.date;

import java.io.Serializable;

import java.util.*;

Vaki

* Una clase abstracta que representa fechas inmutables con una precisién de

*

un dia. La implementacién asigna cada fecha a un entero que

*

representa un numero ordinal de dias de un origen fijo.

*

¢Por qué no usar java.util.Date? Lo haremos, cuando tenga sentido. En ocasiones,

*

java.util.Date puede ser demasiado precisa; representa un instante en el tiempo,

*

con una precisién de 1/1000 de segundo (y la fecha depende de la

*

zona horaria). En ocasiones solo querremos representar un dia concreto (como el 21

*

de enero de 2015) sin preocuparnos de la hora del dia, la

*

zona horaria u otros aspectos. Para eso hemos definido SerialDate.

*

Usar DayDateFactory.makeDate para crear una instancia.

*

@author David Gilbert

@author Robert C. Martin realiz6 gran parte de la refactorizacién.

*

*/

public abstract class DayDate implements Comparable, Serializable {
public abstract int getOrdinalDay();

public abstract int getYear();

public abstract Month getMonth();

public abstract int getDayOfMonth();

protected abstract Day getDayOfWeekForOrdinalZero();
public DayDate plusDays(int days) {
return DayDateFactory.makeDate(getOrdinalDay() + days);

}

public DayDate plusMonths(int months) {

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112

114
115
116
117
118
119
120
121
122

124
125
126
127
128
129
130
131
132

134
135
136

int
int
int
int

int

thisMonthAsOrdinal = getMonth().toInt() - Month.JANUARY.toInt();
thisMonthAndYearAsOrdinal = 12 * getYear() + thisMonthAsOrdinal;
resultMonthAndYearAsOrdinal = thisMonthAndYearAsOrdinal + months;

resultYear = resultMonthAndYearAsOrdinal / 12;

resultMonthAsOrdinal = resultMonthAndYearAsOrdinal % 12 + Month.JANUARY.toInt();

Month resultMonth = Month.fromInt(resultMonthAsOrdinal);

int

resultDay = correctLastDayOfMonth(getDayOfMonth(), resultMonth, resultYear)

return DayDateFactory.makeDate(resultDay, resultMonth, resultYear)

}

public DayDate plusYears(int years) {

int

int

resultYear = getYear() + years;

resultDay = correctLastDayOfMonth(getDayOfMonth(), getMonth(), resultYear);

return DayDateFactory.makeDate(resultDay, getMonth(), resultYear);

}

private int correctLastDayOfMonth(int day, Month month, int year) {

int

lastDayOfMonth = DateUtil.lastDayOfMonth(month, year);

if (day > lastDayOfMonth)

day

= lastDayOfMonth;

return day;

}

public DayDate getPreviousDayOfWeek(Day targetDayOfweek) {

int

offsetToTarget = targetDayOfWeek.toInt() - getDayOfWeek().toInt();

if (offsetToTarget >= 0)
offsetToTarget -= 7;

return plusDays(offsetToTarget);

}

public DayDate getFollowingDayOfWeek(Day targetDayOfWeek) {

int

offsetToTarget = targetDayOfWeek.toInt() - getDayOfWeek().toInt();

if (offsetToTarget <= 0)
offsetToTarget += 7;

return plusDays(offsetToTarget);

}

public DayDate getNearestDayOfWeek(Day targetDayOfWeek) {

int
int

int

offsetToThisWeeksTarget = targetDayOfWeek.toInt() - getDayOfWeek().toInt();
offsetToFutureTarget = (offsetToThisWeeksTarget + 7) % 7;

offsetToPreviousTarget = offsetToFutureTarget - 7;

if (offsetToFutureTarget > 3)

return plusDays(offsetToPreviousTarget);

else

return plusDays(offsetToFutureTarget);

}

public DayDate getEndOfMonth() {
Month month = getMonth();

int

int

year = getYear();
lastDay = DateUtil.lastDayOfMonth(month, year);

return DayDateFactory.makeDate(lastDay, month, year);

}

public Date toDate() {

final Calendar calendar = Calendar.getInstance();

int

ordinalMonth = getMonth().toInt() - Month.JANUARY.toInt();

calendar.set(getYear(), ordinalMonth, getDayOfMonth(), ©, 0, 0);

return calendar.getTime();

}

public String toString() {
return String.format(“%02d-%s-%d”, getDayOfMonth(), getMonth(), getYear());

137
138
139
140
141
142

144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172

174
175
176
177
178
179

public Day getDayOfWeek() {

Day startingDay = getDayOfWeekForOrdinalZero();

int startingOffset = startingDay.toInt() - Day.SUNDAY.toInt();
int ordinalOfDayOfWeek = (getOrdinalDay() + startingOffset) % 7;
return Day.fromInt(ordinalOfDayOfWeek + Day.SUNDAY.toInt());

}

public int daysSince(DayDate date) {
return getOrdinalDay() - date.getOrdinalDay();
}

public boolean isOn(DayDate other) {
return getOrdinalDay() == other.getOrdinalDay();
}

public boolean isBefore(DayDate other) {
return getOrdinalDay() < other.getOrdinalDay();
}

public boolean isOnOrBefore(DayDate other) {
return getOrdinalDay() <= other.getOrdinalDay();
}

public boolean isAfter(DayDate other) {
return getOrdinalDay() > other.getOrdinalDay();
}

public boolean isOnOrAfter(DayDate other) {
return getOrdinalDay() >= other.getOrdinalDay();
}

public boolean isInRange(DayDate di, DayDate d2) {
return isInRange(dl, d2, DateInterval.CLOSED);
}

public boolean isInRange(DayDate di1, DayDate d2, DateInterval interval)
int left = Math.min(d1l.getOrdinalDay(), d2.getOrdinalDay());

int right = Math.max(d1.getOrdinalDay(), d2.getOrdinalDay());

return interval.isIn(getOrdinalDay(), left, right);

}

}

Listado B-8
Month.java (Final)

© © N O O A W N R

B R R R
A W N B O

package org.jfree.date;

import java.text.DateFormatSymbols;

public enum Month {

JANUARY (1), FEBRUARY(2), MARCH(3),
APRIL(4), MAY(5), JUNE(6),

JULY(7), AUGUST(8), SEPTEMBER(9),
OCTOBER(10), NOVEMBER(11), DECEMBER(12);

private static DateFormatSymbols dateFormatSymbols = new DateFormatSymbols();

private static final int[] LAST_DAY_OF_MONTH =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

private int index;

~

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

o o B~ W N B

Month(int index) {
this.index = index;

}

public static Month fromInt(int monthIndex) {
for (Month m : Month.values()) {

if (m.index == monthIndex)
return m;
}

throw new IllegalArgumentException(“Invalid month index ” + monthIndex);

}

public int lastDay() {
return LAST_DAY_OF_MONTH[index];
}

public int quarter() {
return 1 + (index - 1) / 3;

}

public String toString() {
return dateFormatSymbols.getMonths()[index - 1];
}

public String toShortString() {
return dateFormatSymbols.getShortMonths()[index - 1];
}

public static Month parse(String s) {
s = s.trim();

for (Month m : Month.values())

if (m.matches(s))

return m;

try {
return fromInt(Integer.parseInt(s));

}
catch (NumberFormatException e) {}

throw new IllegalArgumentException(“Invalid month ” + s);

}

private boolean matches(String s) {
return s.equalsIgnoreCase(toString()) ||
s.equalsIgnoreCase(toShortString());

}

public int toInt() {
return index;

}

}

Listado B-9
Day.java (Final)
package org.jfree.date;

import java.util.Calendar;

import java.text.DateFormatSymbols;

public enum Day {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

© ® N o o0~ W N R

MONDAY (Calendar .MONDAY),
TUESDAY (Calendar . TUESDAY),
WEDNESDAY (Calendar .WEDNESDAY),
THURSDAY (Calendar . THURSDAY),
FRIDAY(Calendar.FRIDAY),
SATURDAY (Calendar .SATURDAY),
SUNDAY (Calendar .SUNDAY) ;

private final int index;

private static DateFormatSymbols dateSymbols = new DateFormatSymbols();

Day(int day) {
index = day;

}

public static Day fromInt(int index) throws IllegalArgumentException {
for (Day d : Day.values())

if (d.index == index)

return d;

throw new IllegalArgumentException(

String.format(“Illegal day index: %d.”, index));

}

public static Day parse(String s) throws IllegalArgumentException {
String[] shortWeekdayNames =

dateSymbols.getShortwWeekdays();

String[] weekDayNames =

dateSymbols.getWeekdays();

s = s.trim();

for (Day day : Day.values()) {

if (s.equalsIgnoreCase(shortWeekdayNames[day.index]) ||
s.equalsIgnoreCase(weekDayNames[day.index])) {

return day;

}

}

throw new IllegalArgumentException(

String.format(“%s is not a valid weekday string”, s));

}

public String toString() {
return dateSymbols.getWeekdays()[index];
}

public int toInt() {
return index;

}

}

Listado B-10
Datelnterval.java (Final)

package org.jfree.date;

public enum DateInterval {

OPEN {

public boolean isIn(int d, int left, int right) {
return d > left && d < right;

}

H

CLOSED_LEFT {

10 public boolean isIn(int d, int left, int right) {
11 return d >= left && d < right;

12 3

3 1},

14 CLOSED_RIGHT {

15 public boolean isIn(int d, int left, int right) {
16 return d > left & d <= right;

17}

8 1,

19 CLOSED {

20 public boolean isIn(int d, int left, int right) {
21 return d >= left && d <= right;

22}
23 };
24

25 public abstract boolean isIn(int d, int left, int right);
26}

Listado B-11
WeekInMonth.java (Final)

package org.jfree.date;

public enum WeekInMonth {
FIRST(1), SECOND(2), THIRD(3), FOURTH(4), LAST(@);

private final int index;

wWeekInMonth(int index) {
this.index = index;

}

© © N O O A W N R

RO
»r ©

public int toInt() {
return index;

}

}

S
A W N

Listado B-12
WeekdayRange.java (Final)

package org.jfree.date;
public enum WeekdayRange {

LAST, NEAREST, NEXT
}

a A W N R

Listado B-13
DateUtil.java (Final)
package org.jfree.date;
import java.text.DateFormatSymbols;

public class DateUtil {

o o~ W N B

private static DateFormatSymbols dateFormatSymbols = new DateFormatSymbols();

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

© ® N o o0~ W N B

N NN NNNNNNDDNERERERRRRRPRPR R B
© ® N ® U0 A W N BP © © © N o o~ wNR O

public static String[] getMonthNames() {

return dateFormatSymbols.getMonths();

}

public static boolean isLeapYear(int year) {

boolean fourth = year % 4 == 0;

boolean hundredth = year % 100 == 0;

boolean fourHundredth = year % 400 == 0;
return fourth && (!'hundredth || fourHundredth)

}

public static int lastDayOfMonth(Month month, int year) {

if (month

== Month.

FEBRUARY && islLeapYear(year))

return month.lastDay() + 1;

else

return month.lastDay();

}

public static int leapYearCount(int year) {
= (year - 1896) / 4;

int leap100 = (year - 1800) / 100;

int leap400 = (year - 1600) / 400;

return leap4 - leapl00 + leap400;

int leap4

}
}

Listado B-14
DayDateFactory.java (Final)

package org.jfree.date;

public abstract class DayDateFactory {

private static DayDateFactory factory = new SpreadsheetDateFactory();

public static void setInstance(DayDateFactory factory) {

DayDateFactory.factory = factory;

}

protected
protected
protected
protected
protected

protected

abstract
abstract
abstract
abstract
abstract

abstract

DayDate _makeDate(int ordinal);

DayDate _makeDate(int day, Month month, int year);
DayDate _makeDate(int day, int month, int year);
DayDate _makeDate(java.util.Date date);

int _getMinimumYear();

int _getMaximumYear();

public static DayDate makeDate(int ordinal) {

return factory._makeDate(ordinal);

}

public static DayDate makeDate(int day, Month month, int year) {

return factory._makeDate(day, month, year);

}

public static DayDate makeDate(int day, int month, int year) {

return factory._makeDate(day, month, year);

}

public static DayDate makeDate(java.util.Date date) {

return factory._makeDate(date);

30
31
32
33
34
35
36
37
38
39

© ® N o O~ W N R

W W W W WNNNNNNNNDNDDNERRRERERRRPR R PR
A W N P © © ® N~ ® 00~ W NR O O © N 0 0 h» W NRLR

o g b~ W N B

public static int getMinimumYear () {
return factory._getMinimumYear();

}

public static int getMaximumYear () {
return factory._getMaximumYear();

}

}

Listado B-15
SpreadsheetDateFactory.java (Final)

package org.jfree.date;

import java.util.*;

public class SpreadsheetDateFactory extends DayDateFactory {
public DayDate _makeDate(int ordinal) {
return new SpreadsheetDate(ordinal);

}

public DayDate _makeDate(int day, Month month, int year) {
return new SpreadsheetDate(day, month, year);

}

public DayDate _makeDate(int day, int month, int year) {
return new SpreadsheetDate(day, month, year);

}

public DayDate _makeDate(Date date) {

final GregorianCalendar calendar = new GregorianCalendar();
calendar.setTime(date);

return new SpreadsheetDate(

calendar.get(Calendar.DATE),
Month.fromInt(calendar.get(Calendar.MONTH) + 1),
calendar.get(Calendar.YEAR));

}

protected int _getMinimumYear() {
return SpreadsheetDate.MINIMUM_YEAR_SUPPORTED;
}

protected int _getMaximumYear() {

return SpreadsheetDate.MAXIMUM_YEAR_SUPPORTED;
}

}

Listado B-16
SpreadsheetDate.java (Final)

/*

* JCommon: biblioteca gratuita de clases de propdésito general para Java(tm)

* (C) Copyright 2000-2005, de Object Refinery Limited y Colaboradores.

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

*/

package org.jfree.date;

import static org.jfree.date.Month.FEBRUARY;

import java.util.*;

Vaki

Representa una fecha con un entero, de forma similar a la

*

*

implementacién en Microsoft Excel. El intervalo de fechas admitido es

*

del 1-Ene-19600 al 31-Dic-9999.
* <p/>

*

Recuerde que Excel tiene un error que reconoce el afio

*

1900 como bisiesto cuando en realidad no lo es. Encontrara mas

*

informacién en el sitio de Microsoft, en el articulo Q181370:
* <p/>

*

http://support.microsoft.com/support/kb/articles/Q181/3/70.asp
* <p/>

*

Excel usa como convencién que el 1-Ene-1900 = 1. Esta clase usa la

*

convencién de que el 1-Ene-1900 = 2.

*

Como resultado, el numero de dia de esta clase serda diferente al de

*

Excel para enero y febrero de 1900.. pero Excel afiade un dia

*

mas (29-Feb-1900 que en realidad no existe) y a partir de ahi

*

los numeros de los dias coinciden.

*

@author David Gilbert

*/

public class SpreadsheetDate extends DayDate {

public static final int EARLIEST_DATE_ORDINAL = 2; // 1/1/1900
public static final int LATEST_DATE_ORDINAL = 2958465; // 12/31/9999
public static final int MINIMUM_YEAR_SUPPORTED = 1900;

public static final int MAXIMUM_YEAR_SUPPORTED = 9999;

static final int[] AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =

{0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};
static final int[] LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =
{0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};

private int ordinalDay;
private int day;
private Month month;

private int year;

public SpreadsheetDate(int day, Month month, int year) {

if (year < MINIMUM_YEAR_SUPPORTED || year > MAXIMUM_YEAR_SUPPORTED)
throw new IllegalArgumentException(

“The ‘year’ argument must be in range ” +

MINIMUM_YEAR_SUPPORTED + “ to ” + MAXIMUM_YEAR_SUPPORTED + “.”);

if (day < 1 || day > DateuUtil.lastDayOfMonth(month, year))

throw new IllegalArgumentException(“Invalid ‘day’ argument.”);

this.year = year;

this.month = month;

this.day = day;

ordinalDay = calcOrdinal(day, month, year);

}

public SpreadsheetDate(int day, int month, int year) {
this(day, Month.fromInt(month), year);
}

public SpreadsheetDate(int serial) {

115
116
117
118
119
120
121
122

124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172

174
175
176
177
178

if (serial < EARLIEST_DATE_ORDINAL || serial > LATEST_DATE_ORDINAL)
throw new IllegalArgumentException(

“SpreadsheetDate: Serial must be in range 2 to 2958465."”);

ordinalbay = serial;
calcbDayMonthyear();
}

public int getOrdinalDay() {
return ordinalDay;

}

public int getYear() {
return year;

}

public Month getMonth() {
return month;

}

public int getDayOfMonth() {
return day;

}

protected Day getDayOfWeekForOrdinalZero() {return Day.SATURDAY;}

public boolean equals(Object object) {
if (!(object instanceof DayDate))

return false;

DayDate date = (DayDate) object;
return date.getOrdinalDay() == getOrdinalDay();
}

public int hashCode() {
return getOrdinalbDay();
}

public int compareTo(Object other) {
return daysSince((DayDate) other);

}

private int calcOrdinal(int day, Month month, int year) {

int leapDaysForYear = DateUtil.leapYearCount(year - 1);

int daysUpToYear = (year - MINIMUM_YEAR_SUPPORTED) * 365 + leapDaysForYear;
int daysUpToMonth = AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[month.toInt()];
if (DateUtil.isLeapYear(year) && month.toInt() > FEBRUARY.toInt())
daysUpToMonth++;

int daysInMonth = day - 1;

return daysUpToYear + daysUpToMonth + daysInMonth + EARLIEST_DATE_ORDINAL;

}

private void calcDayMonthYear() {

int days = ordinalDay - EARLIEST_DATE_ORDINAL;

int overestimatedYear = MINIMUM_YEAR_SUPPORTED + days / 365;

int nonleapdays = days - DateUtil.leapYearCount(overestimatedyYear);
int underestimatedYear = MINIMUM_YEAR_SUPPORTED + nonleapdays / 365;

year = huntForYearContaining(ordinalDay, underestimatedYear);

int firstOrdinalofYear = firstOrdinalofYear(year);

month = huntForMonthContaining(ordinalbay, firstOrdinalOfyYear);

day = ordinalbDay - firstOrdinalOfYear - daysBeforeThisMonth(month.toInt());
}

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

private Month huntForMonthContaining(int anOrdinal, int firstOrdinalOfYear)
int daysIntoThisYear = anOrdinal - firstOrdinalOfYear;

int aMonth = 1;

while (daysBeforeThisMonth(aMonth) < daysIntoThisYear)

aMonth++;

return Month.fromInt(aMonth - 1);
}

private int daysBeforeThisMonth(int aMonth) {

if (DateUtil.isLeapYear(year))

return LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[aMonth] - 1;
else

return AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[aMonth] - 1;

}

private int huntForYearContaining(int anOrdinalDay, int startingYear) {
int ayear = startingYear;
while (firstOrdinalOfYear(aYear) <= anOrdinalDay)

aYear++;

return avear - 1;

}

private int firstOrdinalOofyear(int year) {
return calcOrdinal(l, Month.JANUARY, year);
}

public static DayDate createInstance(Date date) {
GregorianCalendar calendar = new GregorianCalendar();
calendar.setTime(date);

return new SpreadsheetDate(calendar.get(Calendar.DATE),
Month.fromInt(calendar.get(Calendar.MONTH) + 1),
calendar.get(Calendar.YEAR));

-~

Epilogo

En 2005, mientras asistia a la conferencia Agile en Denver (EE.UU.), Elisabeth
Hedrickson"* me dio una pulsera verde parecida a la que Lance Armstrong
popularizo hace unos afos. En ésta se leia Test Obsessed (Obsesionado por las
pruebas). Me la puse y la luci con orgullo. Desde que aprendi el TDD de Kent
Beck en 1999, sin duda el desarrollo controlado por pruebas me ha obsesionado.

Pero sucedi6 algo extrafio. No me podia quitar la pulsera. No porque se
hubiera quedado fisicamente pegada, sino porque estaba moralmente pegada.

La pulsera resumia mi ética profesional.

Era un indicador visible de mi compromiso por crear el mejor codigo
posible. Si me la hubiera quitado habria traicionado a esa ética y a ese
COmMpromiso.

Y todavia la llevo en la mufieca.

Cuando escribo codigo, la veo ahi. Es un recordatorio constante de la
promesa que me hice de escribir codigo limpio.

Robert Cecil “Uncle Bob” Martin (Palo Alto California, Estados Unidos, 1952).
Es un prestigioso desarrollador de software desde 1970 y consultor internacional
desde 1990. Es fundador y presidente de Object Mentor, Inc., un equipo de
experimentados consultores que ayudan a clientes de todo el mundo en
diferentes campos de la programacién como C++, Java, C#, Ruby, Programacion
orientada a objetos (POO), patrones de disefio, UML, metodologias agiles y
programacion eXtreme.

Notas

W Beck07]. <<

“ Cuando Ignaz Semmelweis recomend6 en 1847 que los médicos se lavaran las
manos, su propuesta fue rechazada aludiendo que los doctores estaban
demasiado ocupados para hacerlo entre paciente y paciente. <<

“ http://www.pragmaticprogrammer.com/booksellers/2004-12.html. <<

W [Knuth92]. <<

“ Es una adaptacién del mensaje de despedida de Robert Stephenson Smyth
Baden-Powell a los Scouts: «Intentad dejar este mundo un poco mejor de como
os lo encontrasteis...». <<

“ Como veremos mas adelante, aunque un contenedor sea una lista, no
conviene codificar el tipo de contenedor en el nombre. <<

7 Imagine que se crea una variable con el nombre klass s6lo porque el nombre
class se ha usado en otro elemento. <<

“ Uncle Bob solia hacerlo en C++ pero ha abandonado esta practica ya que no es
necesario en los IDE modernos. <<

“ http://java.sun.com/products/javabeans/docs/spec.html. <<

"' Una herramienta de pruebas de codigo abierto (www.fitnese.org). <<

" Le pregunté a Kent si todavia conservaba una copia, pero no la encontro.
Busqué en mis viejos ordenadores, pero nada. Solamente se conserva el recuerdo
de aquél programa. <<

" El lenguaje LOGO usaba la palabra clave T0 al igual que Ruby y Python
usaban def. Por tanto, todas las funciones comenzaban por T0, lo que tenia un
efecto interesante en como se disefiaban. <<

1 [KP78], p. 37. <<

"Y, por supuesto, se incluyen cadenas if/else. <<

" a. http://en.wikipedia.org/wiki/Single_responsibility_principle

b. http://www.objectmentor.com/resources/articles/srp.pdf <<

" a. http://en.wikipedia.org/wiki/Open/closed_principle

b. http://www.objectmentor.com/resources/articles/ocp.pdf <<

[18] [GOF] . ﬁ

" Terminé la refactorizacion de un modulo que usaba la forma dinamica.
Consegui convertir el moédulo outputStream en un campo de la clase y las
invocaciones de writeField a formato monddico. El resultado fue mucho mas
limpio. <<

I Existen algunos que creen que pueden evitar volver a compilar e implementar,
y nos hemos encargado de ellos. <<

! Ejemplo de principio abierto/cerrado (OCP) [PPP02]. <<

= E] principio DRY. [PRAG]. <<

= [SP72]. <<

21 [KP78], p. 144. <<

»I La tendencia actual de los IDE de comprobar la ortografia de los comentarios
sera un balsamo para los que tenemos que leer gran cantidad de codigo. <<

* E]l cuadro muestra sigma/2 por encima y debajo de la media. Asumo que la
distribucion de la longitud de archivos no es normal, por lo que la desviacion
estandar no es matematicamente precisa. Pero aqui el objetivo no es la precision,
sino la sensacion. <<

“ Es lo contrario a lo que sucede en lenguajes como Pascal, C y C++ que
obligan a definir, o al menos a declarar, las funciones antes de usarlas. <<

“ sA quien voy a engafiar? Sigo siendo programador de lenguajes de
ensamblado. En este caso, el habito si hace al monje. <<

»I Siempre existe una solucién conocida por los disefiadores orientados a objetos
con experiencia: VISITOR o entrega dual, por ejemplo. Pero son técnicas
costosas y suelen devolver la estructura de un programa por procedimientos. <<

“I http://es.wikipedia.org/wiki/Ley_de_Demeter. <<

“I De la estructura Apache. <<

I En ocasiones se denomina Feature Envy (Envidia de las caracteristicas), de
[Refactoring]. <<

t3 [Martin]. <<

“ [BeckTDD], pp. 136-137. <<

*I'Véase el patron del adaptador en [GOF]. <<

s Mas informacion al respecto en [WELC]. <<

“! Professionalism and Test-Driven Development, Robert C. Martin, Object
Mentor, ITEEE Software, Mayo/Junio 2007 (Vol. 24, No. 3) pp. 32-36
http://doi.ieeecomputersociety.org/10.1109/MS.2007.85 <<

= http://fitnesse.org/FitNesse.AcceptanceTestPatterns. <<

»I'Véase el apartado sobre asignaciones mentales del capitulo 2. <<

ol Véase la entrada de Dave Astel:
http://www.artima.com/weblogs/viewpost.jsp?thread=35578 <<

“ [RSpec]. <<

[42] [GOF] . ﬁ

I 1Cifase al codigo! <<

“I Materiales de formacién de Object Mentor. <<

[45] [RDD] ﬁ

“s Encontrara mas Informacién sobre este principio en [PPP]. <<

1 [Knuth92]. <<

[48] [PPP] . 5

[49] [PPP] . 5

b0 [Mezzaros07]. <<

[51] [GOF] . ﬁ

*I'Véase, por ejemplo, [Fowler]. <<

*I'Véase [Spring], También existe una estructura Spring. NET. <<

“ No olvide que la creacion de instancias/evaluacion tardia es so6lo una
optimizacion, puede que prematura. <<

551 Sisterna de administracion de base de datos. <<

* Consulte [AOSD] si necesita informacion general sobre aspectos y [Aspect]] y
[Colyer] para Informacion concreta de Aspect]. <<

“ No se necesita la modificacion manual del codigo fuente de destino. <<

*'Véase [CGLIB], [ASM] y [Javassist]. <<

®I Si necesita ejemplos mas detallados de la API Proxy y ejemplos de uso,
consulte [Goetz]. <<

“ AOP se suele confundir con técnicas empleadas para implementarlo, como la
intercepcion y envoltorio de métodos a través de proxies. El verdadero valor de
un sistema AOP es la capacidad para especificar comportamientos del sistema de
forma concisa y modular. <<

“'Véase [Spring] y [JBoss]. Java puro significa sin Aspect]. <<

(621 Adaptado de www.theserverside.com/tt/articles/article.tss?1=IntrotoSpring?25.
pring
<<

[63] [GOF] . ﬁ

“ El ejemplo se puede simplificar mediante mecanismos que usen convenciones
y anotaciones de Java 5 para reducir la cantidad necesaria de l6gica de conexion
explicita. <<

*l Adaptado de http://www.onjava.com/pub/a/onjava/2006/05/17/standardizing-
with-ejb3-java-persistence-api.html. <<

“'Véase [Aspect]] y [Colyer]. <<

“? No confundir con la practica de disefio anticipado. BDUF es la practica de
disefiar todo por adelantado antes de implementar nada. <<

* Existe una cantidad significativa de exploracion iterativa y detalles de analisis,
incluso una vez iniciada la construccion. <<

I 'E]l término fue empleado por primera vez por [Kolence]. <<

71 E] trabajo de [Alexander] ha sido una gran influencia para la comunidad de
software. <<

1 Véase, por ejemplo, [DSL]. [JMock] es un buen ejemplo de API de Java que
crea un DSL. <<

[72] [XPE] ﬁ

[73] [GOF] . ﬁ

7 Correspondencia privada. <<

7 Rayos cosmicos, repeticiones, etc. <<

7 'Véase el apéndice A. <<

7I'Véase el apéndice A. <<

[78] [PPP] . 5

I'Véase el apéndice A. <<

= [PRAG]. <<

e [Lea99]. <<

! http://en.wikipedia.org/wiki/Producer-consumer. <<

*I http://en.wikipedia.org/wiki/Readers-writers_problem. <<

“I http://es.wikipedia.org/wiki/Problema_de_la_cena_de_los_filosofos. <<

*I'Véase el apéndice A. <<

“s Una seccion critica es cualquier seccion de codigo que debe protegerse de
usos simultaneos por parte del programa para que sea correcta. <<

“I'Véase el apéndice A. <<

I 'Véase el apéndice A. <<

» ;Sabia que el modelo de procesos de Java no garantiza el procesamiento
preventivo? Los SO modernos si lo hacen, de modo que lo obtiene de forma
gratuita. No obstante, la MVJ no lo garantiza. <<

“" No es estrictamente el caso. Como la MVJ no garantiza los procesos
preventivos, un determinado algoritmo puede que siempre funcione en un SO
que no prevea los procesos. Lo contrario también es posible, pero por distintos
motivos. <<

[91]
https://www.ibm.com/developerworks/community/groups/service/html/communi
lang=es&communityUuid=18d10b14-e2c8-4780-bace-9af1fc463cc0. <<

I Hace poco modifiqué este modulo para Ruby. Tenia una séptima parte del
tamafio original y una mejor estructura. <<

» Para evitar este tipo de sorpresas, afiadi una nueva prueba de unidad que
invocaba todas las pruebas de FitNesse. <<

4 JUnit Pocket Guide, Kent Beck, O’Reilly. 2004. p. 43. <<

»I'Véase el capitulo 1. <<

“ Una solucion mejor seria que el Javadoc presentara todos los comentarios con
formato previo, para que tengan el mismo aspecto en el codigo y en el
documento. <<

" Algunos revisores de este texto no comparten esta decision. Sostienen que en
una estructura de cédigo abierto es mas recomendable ejercer control manual
sobre el ID de serie para que los cambios minimos del software no invaliden las
fechas sefalizadas antiguas. Me parece justo. Sin embargo, al menos el fallo,
aunque sea inconveniente, tiene un motivo evidente. Por otra parte, si el autor de
la clase se olvida de actualizar el ID, el modo de fallo sera indefinido y puede
que silencioso. Creo que la moraleja es que no debe esperar a deserializar entre
versiones. <<

[98] [GOF] . ﬁ

! Ibid. <<

ol Ibid. <<

w1 [Simmons04], p. 73. <<

w2 [Refactoring]. <<

" [Beck97]. <<

4 [Refactoring]. <<

" http://es.wikipedia.org/wiki/Principio_de_la_Minima_Sorpresa <<

e [PRAG]. <<

1 [GOF]. <<

s [GOF]. <<

=l [Refactoring]. <<

mo En concreto, el Principio de Responsabilidad Unica, el Principio
Abierto/Cerrado y el Principio de Cierre Comun. Véase [PPP]. <<

w1 [Beck97], p. 108. <<

" [Beck07]. <<

"3 Es distinto saber como funciona el codigo y saber si el algoritmo se encargara
de realizar la tarea para la que se necesita. Es habitual desconocer si un
algoritmo es el adecuado. Desconocer lo que hace el codigo es indolencia. <<

4O mejor todavia, una clase Money que use enteros. <<

= [PRAG]. p. 138. <<

" Véase la cita de Ward Cunningham del capitulo 1. <<

w7 [DDD]. <<

" Puede comprobar personalmente el cédigo antes y después, y revisar las
versiones con y sin subprocesos, que veremos en un apartado posterior. <<

" Es una comparacion simplificada, pero para los objetivos de este ejercicio es
un modelo valido. <<

" De hecho, la interfaz Iterator es incompatible con subprocesos por
naturaleza. No se disefi6 para usar varios subprocesos, de modo que no deberia
sorprenderle. <<

1 Por ejemplo, alguien afiade un resultado de depuracién y el problema
desaparece. El codigo de depuracion corrige el problema, pero permanece en el
sistema. <<

2 Siglas de There ain’t no such thing as a free lunch (Todo tiene un precio). <<

"1 http://www.haifa.ibm.com/projects/verification/contest/index.html <<

0241 \/éase [Lea99] P. 191. <<

" http://www.qualitytree.com/ <<

Table of Contents

Cddigo limpio
Agradecimientos
Prologo

Introduccion
Sobre la imagen de cubierta
1. Codigo Limpio
Hagase el cédigo
Cddigo Incorrecto
El coste total de un desastre
El gran cambio de disefio
Actitud

El enigma
(El arte del cédigo limpio?
Concepto de codigo limpio
Escuelas de pensamiento
Somos autores
La regla del Boy Scout

Precuela y principios
Conclusion

Bibliografia
2. Nombres con sentido
Introduccion
Usar nombres que revelen las intenciones
Evitar la desinformacién
Realizar distinciones con sentido
Usar nombres que se puedan pronunciar
Usar nombres que se puedan buscar
Evitar codificaciones
Notacion hingara
Prefijos de miembros
Interfaces e Implementaciones
Evitar asignaciones mentales
Nombres de clases
Nombres de métodos
No se exceda con el atractivo

Una palabra por concepto
No haga juegos de palabras
Usar nombres de dominios de soluciones
Usar nombres de dominios de problemas
Anadir contexto con sentido
No afadir contextos innecesarios
Conclusion
3. Funciones
Tamariio reducido
Bloques y sangrado
Hacer una cosa
Secciones en funciones
Un nivel de abstraccion por funcion
Leer c6digo de arriba a abajo: la regla descendente
Instrucciones Switch
Usar nombres descriptivos
Argumentos de funciones
Formas monadicas habituales
Argumentos de indicador
Funciones diadicas
Triadas
Objeto de argumento
Listas de argumentos
Verbos y palabras clave
Sin efectos secundarios
Argumentos de salida
Separacion de consultas de comando
Mejor excepciones que devolver codigos de error
Extraer bloques Try/Catch

El procesamiento de errores es una cosa
El iman de dependencias Error.java

No repetirse[22]

Programacion estructurada

Coémo crear este tipo de funciones

Conclusion

SetupTeardownIncluder
Bibliografia
4. Comentarios
Los comentarios no compensan el cddigo incorrecto

Explicarse en el cédigo
Comentarios de calidad
Comentarios legales
Comentarios informativos
Explicar la intencién
Clarificacién
Advertir de las consecuencias
Comentarios TODO
Amplificacién
Javadoc en API publicas
Comentarios incorrectos
Balbucear
Comentarios redundantes
Comentarios confusos
Comentarios obligatorios
Comentarios periodicos
Comentarios sobrantes

Comentarios sobrantes espeluznantes

No usar comentarios si se puede usar una funcién o una variable
Marcadores de posicién

Comentarios de llave de cierre
Asignaciones y menciones
Cddigo comentado
Comentarios HTMI.
Informacion no local
Demasiada informacion
Conexiones no evidentes
Encabezados de funcién
Javadocs en c6digo no publico
Ejemplo

Bibliografia
5. Formato

La funcion del formato
Formato vertical
La metafora del periédico
Apertura vertical entre conceptos
Densidad vertical
Distancia vertical
Declaraciones de variables

Variables de instancia
Funciones dependientes
Afinidad conceptual
Orden vertical
Formato horizontal
Apertura y densidad horizontal
Alineacién horizontal

Sangrado
Romper el sangrado

Ambitos ficticios
Reglas de equipo
Reglas de formato de Uncle Bob

6. Objetos y estructuras de datos

Abstraccion de datos
Antisimetria de datos y objetos
La ley de Demeter

Choque de trenes

Hibridos

Ocultar la estructura
Objetos de transferencia de datos

Registro activo
Conclusion

Bibliografia

7. Procesar errores
Usar excepciones en lugar de codigos devueltos
Crear primero la instruccion try-catch-finally
Usar excepciones sin comprobar
Ofrecer contexto junto a las excepciones

Definir clases de excepcion de acuerdo a las necesidades del invocador

Definir el flujo normal
No devolver Null

No pasar Null
Conclusién
Bibliografia
8. Limites
Utilizar c6digo de terceros

Explorar y aprender limites
Aprender log4j
Las pruebas de aprendizaje son algo mas que gratuitas

Usar cédigo que todavia no existe
Limites limpios
Bibliografia
9. Pruebas de unidad
Las tres leyes del DGP

Realizar pruebas limpias
Las pruebas propician posibilidades
Pruebas limpias
Lenguaje de pruebas especifico del dominio
Un estandar dual
Una afirmacion por prueba
Un solo concepto por prueba
F.I.R.S.T.[44]
Conclusion
Bibliografia
10. Clases
Organizacion de clases

Encapsulacion
Las clases deben ser de tamano reducido

El Principio de responsabilidad tinica

Cohesion

Mantener resultados consistentes en muchas clases de tamafo
reducido

Organizar los cambios
Aislarnos de los cambios

Bibliografia
11. Sistemas
Cdmo construir una ciudad
Separar la construccion de un sistema de su uso

Separar Main
Factorias

Inyectar dependencias
Evolucionar

Aspectos transversales
Proxies de Java
Estructuras AOP Java puras

Aspectos de AspectJ
Pruebas de unidad de la arquitectura del sistema

Optimizar la toma de decisiones

Usar estandares cuando afiadan un valor demostrable
Los sistemas necesitan lenguajes especificos del dominio

Conclusion
Bibliografia

12. Emergencia
Limpieza a través de disefios emergentes

Primera regla del disefio sencillo: Ejecutar todas las pruebas
Reglas 2 a 4 del disefio sencillo: Refactorizar

Eliminar duplicados
Expresividad
Clases y métodos minimos
Conclusion
Bibliografia
13. Concurrencia
;Por qué concurrencia?
Mitos e imprecisiones
Desafios
Principios de defensa de la concurrencia
Principio de responsabilidad tnica (SRP)
Corolario: Limitar el ambito de los datos
Corolario: Usar copias de datos
Corolario: Los procesos deben ser independientes
Conaocer las bibliotecas
Colecciones compatibles con procesos
Conocer los modelos de ejecucion
Productor-Consumidor[82]
Lectores-Escritores[83]
La cena de los fil6sofos[84]
Dependencias entre métodos sincronizados
Reducir el tamafio de las secciones sincronizadas
Crear codigo de cierre correcto es complicado
Probar c6digo con procesos
Considerar los fallos como posibles problemas de los procesos
Conseguir que primero funcione el cddigo sin procesos
El c6digo con procesos se debe poder conectar a otros elementos

El c6digo con procesos debe ser modificable
Ejecutar con mds procesos que procesadores
Ejecutar en diferentes plataformas

Disefiar el c6digo para probar y forzar fallos

Manual
Automatica
Conclusion

Bibliografia
14. Refinamiento sucesivo
Implementacién de Args
Como se ha realizado
Args: El primer borrador
Entonces me detuve
Sobre el incrementalismo
Argumentos de cadena
Conclusion
15. Aspectos internos de JUnit
La estructura JUnit
Conclusion
16. Refactorizacion de SerialDate
Primero, conseguir que funcione
Hacer que sea correcta
Conclusion
Bibliografia
17. Sintomas y heuristica
Comentarios
C1: Informacion inapropiada
C2: Comentario obsoleto
C3: Comentario redundante
C4: Comentario mal escrito
C5: Codigo comentado

Entorno

E1: La generacion requiere mas de un paso

E2: Las pruebas requieren mas de un paso
Funciones

F1: Demasiados argumentos

E2: Argumentos de salida

E3: Argumentos de indicador

F4: Funcién muerta

General
G1: Varios lenguajes en un archivo de codigo

G2: Comportamiento evidente no implementado
G3: Comportamiento incorrecto en los limites

—
(ab]
<
Q)

Nombres

G4: Medidas de seguridad canceladas

G5: Duplicacion

G6: Cdbdigo en un nivel de abstraccion incorrecto

G7: Clases base que dependen de sus variantes

G8: Exceso de informacion

G9: Cédigo muerto

G10: Separacion vertical

G11: Incoherencia

G12: Desorden

G13: Conexiones artificiales

G14: Envidia de las caracteristicas

G15: Argumentos de selector

G16: Intencion desconocida

G17: Responsabilidad desubicada

G18: Elementos estaticos incorrectos

G19: Usar variables explicativas

G20: Los nombres de funcién deben indicar lo que hacen
G21: Comprender el algoritmo

G22: Convertir dependencias légicas en fisicas

G23: Polimorfismo antes que If/Else o Switch/Case

G24: Seguir las convenciones estandar

G25: Sustituir nimeros magicos por constantes con nombre
G26: Precisién

G27: Estructura sobre convencion

G28: Encapsular condicionales

G29: Evitar condicionales negativas

G30: Las funciones sélo deben hacer una cosa

G31: Conexiones temporales ocultas

G32: Evitar la arbitrariedad

G33: Encapsular condiciones de limite

G34: Las funciones sélo deben descender un nivel de abstraccion
G35: Mantener los datos configurables en los niveles superiores

G36: Evitar desplazamientos transitivos

J1: Evitar extensas listas de importacion mediante el uso de
comodines

J2: No heredar constantes
J3: Constantes frente a enumeraciones

N1: Elegir nombres descriptivos
N2: Elegir nombres en el nivel correcto de abstraccion
N3: Usar nomenclatura estandar siempre que sea posible
N4: Nombres inequivocos
IN5: Usar nombres extensos para ambitos extensos
N6: Evitar codificaciones
N7: Los nombres deben describir efectos secundarios
Pruebas (Test)
T1: Pruebas insuficientes
T2: Usar una herramienta de cobertura
T3: No ignorar pruebas triviales
T4: Una prueba ignorada es una pregunta sobre una ambigiiedad
T5: Probar condiciones de limite
T6: Probar de forma exhaustiva junto a los errores
T7: Los patrones de fallo son reveladores
T8: Los patrones de cobertura de pruebas pueden ser reveladores
T9: Las pruebas deben ser rapidas
Conclusion

Bibliografia
Apéndice A. Concurrencia II
Ejemplo cliente/servidor
El servidor
Afadir subprocesos
Observaciones del servidor
Conclusion
Posibles rutas de ejecucion
Numero de rutas
Un examen mas profundo
Conclusion
Conocer su biblioteca
La estructura Executor
Soluciones no blogueantes
Clases incompatibles con subprocesos
Las dependencias entre métodos pueden afectar al c6digo concurrente
Tolerar el fallo
Bloqueo basado en el cliente
Blogueo basado en el servidor
Aumentar la producciéon
Calculo de produccion de un solo subproceso

Calculo de produccién con varios subprocesos
Bloqueo mutuo
Exclusion mutua

Bloqueo y espera

No expropiacion

Espera circular

Evitar la exclusion mutua
Evitar bloqueo y espera
Evitar la expropiacion
Evitar la espera circular

Probar c6digo con multiples subprocesos
Herramientas para probar cédigo basado en subprocesos
Conclusion

Ejemplos de cédigo completos
Cliente/Servidor sin subprocesos
Cliente/Servidor con subprocesos

Apéndice B. org.jfree.date.SerialDate

Epilogo
Autor

Notas

	Código limpio
	Agradecimientos
	Prólogo
	Introducción
	Sobre la imagen de cubierta
	1. Código Limpio
	Hágase el código
	Código Incorrecto
	El coste total de un desastre
	El gran cambio de diseño
	Actitud
	El enigma
	¿El arte del código limpio?
	Concepto de código limpio

	Escuelas de pensamiento
	Somos autores
	La regla del Boy Scout
	Precuela y principios
	Conclusión
	Bibliografía

	2. Nombres con sentido
	Introducción
	Usar nombres que revelen las intenciones
	Evitar la desinformación
	Realizar distinciones con sentido
	Usar nombres que se puedan pronunciar
	Usar nombres que se puedan buscar
	Evitar codificaciones
	Notación húngara
	Prefijos de miembros
	Interfaces e Implementaciones

	Evitar asignaciones mentales
	Nombres de clases
	Nombres de métodos
	No se exceda con el atractivo
	Una palabra por concepto
	No haga juegos de palabras
	Usar nombres de dominios de soluciones
	Usar nombres de dominios de problemas
	Añadir contexto con sentido
	No añadir contextos innecesarios
	Conclusión

	3. Funciones
	Tamaño reducido
	Bloques y sangrado

	Hacer una cosa
	Secciones en funciones

	Un nivel de abstracción por función
	Leer código de arriba a abajo: la regla descendente

	Instrucciones Switch
	Usar nombres descriptivos
	Argumentos de funciones
	Formas monádicas habituales
	Argumentos de indicador
	Funciones diádicas
	Triadas
	Objeto de argumento
	Listas de argumentos
	Verbos y palabras clave

	Sin efectos secundarios
	Argumentos de salida

	Separación de consultas de comando
	Mejor excepciones que devolver códigos de error
	Extraer bloques Try/Catch
	El procesamiento de errores es una cosa
	El imán de dependencias Error.java

	No repetirse[22]
	Programación estructurada
	Cómo crear este tipo de funciones
	Conclusión
	SetupTeardownIncluder
	Bibliografía

	4. Comentarios
	Los comentarios no compensan el código incorrecto
	Explicarse en el código
	Comentarios de calidad
	Comentarios legales
	Comentarios informativos
	Explicar la intención
	Clarificación
	Advertir de las consecuencias
	Comentarios TODO
	Amplificación
	Javadoc en API públicas

	Comentarios incorrectos
	Balbucear
	Comentarios redundantes
	Comentarios confusos
	Comentarios obligatorios
	Comentarios periódicos
	Comentarios sobrantes
	Comentarios sobrantes espeluznantes
	No usar comentarios si se puede usar una función o una variable
	Marcadores de posición
	Comentarios de llave de cierre
	Asignaciones y menciones
	Código comentado
	Comentarios HTML
	Información no local
	Demasiada información
	Conexiones no evidentes
	Encabezados de función
	Javadocs en código no público
	Ejemplo

	Bibliografía

	5. Formato
	La función del formato
	Formato vertical
	La metáfora del periódico
	Apertura vertical entre conceptos
	Densidad vertical
	Distancia vertical
	Declaraciones de variables
	Variables de instancia
	Funciones dependientes
	Afinidad conceptual

	Orden vertical

	Formato horizontal
	Apertura y densidad horizontal
	Alineación horizontal
	Sangrado
	Romper el sangrado

	Ámbitos ficticios

	Reglas de equipo
	Reglas de formato de Uncle Bob

	6. Objetos y estructuras de datos
	Abstracción de datos
	Antisimetría de datos y objetos
	La ley de Demeter
	Choque de trenes
	Híbridos
	Ocultar la estructura

	Objetos de transferencia de datos
	Registro activo

	Conclusión
	Bibliografía

	7. Procesar errores
	Usar excepciones en lugar de códigos devueltos
	Crear primero la instrucción try-catch-finally
	Usar excepciones sin comprobar
	Ofrecer contexto junto a las excepciones
	Definir clases de excepción de acuerdo a las necesidades del invocador
	Definir el flujo normal
	No devolver Null
	No pasar Null
	Conclusión
	Bibliografía

	8. Límites
	Utilizar código de terceros
	Explorar y aprender límites
	Aprender log4j
	Las pruebas de aprendizaje son algo más que gratuitas
	Usar código que todavía no existe
	Límites limpios
	Bibliografía

	9. Pruebas de unidad
	Las tres leyes del DGP
	Realizar pruebas limpias
	Las pruebas propician posibilidades

	Pruebas limpias
	Lenguaje de pruebas específico del dominio
	Un estándar dual

	Una afirmación por prueba
	Un solo concepto por prueba

	F.I.R.S.T.[44]
	Conclusión
	Bibliografía

	10. Clases
	Organización de clases
	Encapsulación

	Las clases deben ser de tamaño reducido
	El Principio de responsabilidad única
	Cohesión
	Mantener resultados consistentes en muchas clases de tamaño reducido

	Organizar los cambios
	Aislarnos de los cambios

	Bibliografía

	11. Sistemas
	Cómo construir una ciudad
	Separar la construcción de un sistema de su uso
	Separar Main
	Factorías
	Inyectar dependencias

	Evolucionar
	Aspectos transversales

	Proxies de Java
	Estructuras AOP Java puras
	Aspectos de AspectJ

	Pruebas de unidad de la arquitectura del sistema
	Optimizar la toma de decisiones
	Usar estándares cuando añadan un valor demostrable
	Los sistemas necesitan lenguajes específicos del dominio
	Conclusión
	Bibliografía

	12. Emergencia
	Limpieza a través de diseños emergentes
	Primera regla del diseño sencillo: Ejecutar todas las pruebas
	Reglas 2 a 4 del diseño sencillo: Refactorizar
	Eliminar duplicados
	Expresividad
	Clases y métodos mínimos
	Conclusión
	Bibliografía

	13. Concurrencia
	¿Por qué concurrencia?
	Mitos e imprecisiones

	Desafíos
	Principios de defensa de la concurrencia
	Principio de responsabilidad única (SRP)
	Corolario: Limitar el ámbito de los datos
	Corolario: Usar copias de datos
	Corolario: Los procesos deben ser independientes

	Conocer las bibliotecas
	Colecciones compatibles con procesos

	Conocer los modelos de ejecución
	Productor-Consumidor[82]
	Lectores-Escritores[83]
	La cena de los filósofos[84]

	Dependencias entre métodos sincronizados
	Reducir el tamaño de las secciones sincronizadas
	Crear código de cierre correcto es complicado
	Probar código con procesos
	Considerar los fallos como posibles problemas de los procesos
	Conseguir que primero funcione el código sin procesos
	El código con procesos se debe poder conectar a otros elementos
	El código con procesos debe ser modificable
	Ejecutar con más procesos que procesadores
	Ejecutar en diferentes plataformas
	Diseñar el código para probar y forzar fallos
	Manual
	Automática

	Conclusión
	Bibliografía

	14. Refinamiento sucesivo
	Implementación de Args
	Cómo se ha realizado

	Args: El primer borrador
	Entonces me detuve
	Sobre el incrementalismo

	Argumentos de cadena
	Conclusión

	15. Aspectos internos de JUnit
	La estructura JUnit
	Conclusión

	16. Refactorización de SerialDate
	Primero, conseguir que funcione
	Hacer que sea correcta
	Conclusión
	Bibliografía

	17. Síntomas y heurística
	Comentarios
	C1: Información inapropiada
	C2: Comentario obsoleto
	C3: Comentario redundante
	C4: Comentario mal escrito
	C5: Código comentado

	Entorno
	E1: La generación requiere más de un paso
	E2: Las pruebas requieren más de un paso

	Funciones
	F1: Demasiados argumentos
	F2: Argumentos de salida
	F3: Argumentos de indicador
	F4: Función muerta

	General
	G1: Varios lenguajes en un archivo de código
	G2: Comportamiento evidente no implementado
	G3: Comportamiento incorrecto en los límites
	G4: Medidas de seguridad canceladas
	G5: Duplicación
	G6: Código en un nivel de abstracción incorrecto
	G7: Clases base que dependen de sus variantes
	G8: Exceso de información
	G9: Código muerto
	G10: Separación vertical
	G11: Incoherencia
	G12: Desorden
	G13: Conexiones artificiales
	G14: Envidia de las características
	G15: Argumentos de selector
	G16: Intención desconocida
	G17: Responsabilidad desubicada
	G18: Elementos estáticos incorrectos
	G19: Usar variables explicativas
	G20: Los nombres de función deben indicar lo que hacen
	G21: Comprender el algoritmo
	G22: Convertir dependencias lógicas en físicas
	G23: Polimorfismo antes que If/Else o Switch/Case
	G24: Seguir las convenciones estándar
	G25: Sustituir números mágicos por constantes con nombre
	G26: Precisión
	G27: Estructura sobre convención
	G28: Encapsular condicionales
	G29: Evitar condicionales negativas
	G30: Las funciones sólo deben hacer una cosa
	G31: Conexiones temporales ocultas
	G32: Evitar la arbitrariedad
	G33: Encapsular condiciones de límite
	G34: Las funciones sólo deben descender un nivel de abstracción
	G35: Mantener los datos configurables en los niveles superiores
	G36: Evitar desplazamientos transitivos

	Java
	J1: Evitar extensas listas de importación mediante el uso de comodines
	J2: No heredar constantes
	J3: Constantes frente a enumeraciones

	Nombres
	N1: Elegir nombres descriptivos
	N2: Elegir nombres en el nivel correcto de abstracción
	N3: Usar nomenclatura estándar siempre que sea posible
	N4: Nombres inequívocos
	N5: Usar nombres extensos para ámbitos extensos
	N6: Evitar codificaciones
	N7: Los nombres deben describir efectos secundarios

	Pruebas (Test)
	T1: Pruebas insuficientes
	T2: Usar una herramienta de cobertura
	T3: No ignorar pruebas triviales
	T4: Una prueba ignorada es una pregunta sobre una ambigüedad
	T5: Probar condiciones de límite
	T6: Probar de forma exhaustiva junto a los errores
	T7: Los patrones de fallo son reveladores
	T8: Los patrones de cobertura de pruebas pueden ser reveladores
	T9: Las pruebas deben ser rápidas

	Conclusión
	Bibliografía

	Apéndice A. Concurrencia II
	Ejemplo cliente/servidor
	El servidor
	Añadir subprocesos
	Observaciones del servidor
	Conclusión

	Posibles rutas de ejecución
	Número de rutas
	Un examen más profundo
	Conclusión

	Conocer su biblioteca
	La estructura Executor
	Soluciones no bloqueantes
	Clases incompatibles con subprocesos

	Las dependencias entre métodos pueden afectar al código concurrente
	Tolerar el fallo
	Bloqueo basado en el cliente
	Bloqueo basado en el servidor

	Aumentar la producción
	Cálculo de producción de un solo subproceso
	Cálculo de producción con varios subprocesos

	Bloqueo mutuo
	Exclusión mutua
	Bloqueo y espera
	No expropiación
	Espera circular
	Evitar la exclusión mutua
	Evitar bloqueo y espera
	Evitar la expropiación
	Evitar la espera circular

	Probar código con múltiples subprocesos
	Herramientas para probar código basado en subprocesos
	Conclusión
	Ejemplos de código completos
	Cliente/Servidor sin subprocesos
	Cliente/Servidor con subprocesos

	Apéndice B. org.jfree.date.SerialDate
	Epílogo
	Autor
	Notas

